Combinatorics SEminAR

The maximum size of a Sidon set contained in a sparse random set of integers

Sangjune Lee
Emory University

Abstract

A set A of integers is a Sidon set if all the sums $a_{1}+a_{2}$, with $a_{1} \leq a_{2}$ and $a_{1}, a_{2} \in A$, are distinct. In the 1940s, Chowla, Erdős and Turán showed that the maximum possible size of a Sidon set contained in $[n]=\{0,1, \ldots, n-1\}$ is $\sqrt{n}(1+o(1))$. We study Sidon sets contained in sparse random sets of integers, replacing the 'dense environment' $[n]$ by a sparse, random subset R of $[n]$.

Let $R=[n]_{m}$ be a uniformly chosen, random m-element subset of $[n]$. Let $F\left([n]_{m}\right)=\max \{|S|: S \subset$ $[n]_{m}$ Sidon $\}$. An abridged version of our results states as follows. Fix a constant $0 \leq a \leq 1$ and suppose $m=m(n)=(1+o(1)) n^{a}$. Then there is a constant $b=b(a)$ for which $F\left([n]_{m}\right)=n^{b+o(1)}$ almost surely. The function $b=b(a)$ is a continuous, piecewise linear function of a, not differentiable at two points: $a=1 / 3$ and $a=2 / 3$; between those two points, the function $b=b(a)$ is constant.

This is joint work with Yoshiharu Kohayakawa and Vojtech Rödl.

Friday, April 8, 2011, 4:00 pm
Mathematics and Science Center: W306

Mathematics and Computer Science Emory University

