Analysis and Differential Geometry Seminar

A solution to a problem of determining the sides of a lens

Hasan Palta
Emory University

Abstract

Suppose that a beam of light with the positive vertical direction \mathbf{k} is crossing a domain Ω in the horizontal plane $z=0$ with some intensity $I \in L^{1}(\bar{\Omega})$ and is refracted at both sides of a lens in such a way that the final direction is also \mathbf{k} and that the beam illuminates a set T_{d} in the plane $z=d$ with intensity $L \in L^{1}\left(\bar{T}_{d}\right)$. Let n_{1} and n_{2} be the refractive indices of the ambient environment and of the lens, respectively. Such a construction generates a mapping $P: \Omega \rightarrow T$ where T is the orthogonal projection of the domain T_{d} onto $z=0$. We consider the inverse problem of recovering the two sides $z \in C(\bar{\Omega})$ and $w \in C(\bar{T})$ of the lens for given domains Ω and T_{d} and the corresponding intensities I and L. In analytic formulation, this problem requires a solution to a nonlinear partial differential equation of Monge-Ampère type. In this talk, we present a different approach to this problem, describe an algorithm giving approximate solutions using general properties of geometric optics and give some examples.

Tuesday, September 20, 2011, 4:00 pm
Mathematics and Science Center: W301

