Analysis and Differential Geometry Seminar

A solution to a problem of determining the sides of a lens

Hasan Palta Emory University

Abstract: Suppose that a beam of light with the positive vertical direction \mathbf{k} is crossing a domain Ω in the horizontal plane z = 0 with some intensity $I \in L^1(\overline{\Omega})$ and is refracted at both sides of a lens in such a way that the final direction is also \mathbf{k} and that the beam illuminates a set T_d in the plane z = d with intensity $L \in L^1(\overline{T}_d)$. Let n_1 and n_2 be the refractive indices of the ambient environment and of the lens, respectively. Such a construction generates a mapping $P : \Omega \to T$ where T is the orthogonal projection of the domain T_d onto z = 0. We consider the inverse problem of recovering the two sides $z \in C(\overline{\Omega})$ and $w \in C(\overline{T})$ of the lens for given domains Ω and T_d and the corresponding intensities I and L. In analytic formulation, this problem requires a solution to a nonlinear partial differential equation of Monge-Ampère type. In this talk, we present a different approach to this problem, describe an algorithm giving approximate solutions using general properties of geometric optics and give some examples.

> Tuesday, September 20, 2011, 4:00 pm Mathematics and Science Center: W301

MATHEMATICS AND COMPUTER SCIENCE EMORY UNIVERSITY