Combinatorics SEminar

5-Coloring Graphs on Surfaces

Luke Postle
Georgia Institute of Technology

Abstract

Graph coloring is a much studied subfield of graph theory. Theorems concerning coloring graphson topological surfaces, such as the Four Color Theorem or the Heawood Bound, are a useful avenue tounderstanding graph coloring in general. A deep theorem of Thomassen from the 1990's shows that forany surface that there are only finitely many 6 -critical graphs that embed on that surface. We discuss thehistory of this modern approach and its realisation for small surfaces. We also give a shorter self-containedproof of Thomassen's result by showing that for any 6 -critical graph G that embeds on a surface of genus g,that the number of vertices is at most linear in g. Finally, we discuss generalizations to 5 -list coloring,such as a recent solution to Albertson's conjecture that a planar graph with distant precolored vertices hasa 5 -list-coloring.

Wednesday, January 25, 2012, 3:00 pm
Mathematics and Science Center: W306

Mathematics and Computer Science Emory University

