Dissertation Defense
 SEminar

Problems on Sidon sets of integers

Sangjune Lee
Emory University

Abstract

A set A of non-negative integers is a Sidon set if all the sums $a_{1}+a_{2}$, with $a_{1} \leq a_{2}$ and $a_{1}, a_{2} \in A$, are distinct. In this dissertation, we deal with three results on Sidon sets: two results are about finite Sidon sets in $[n]=\{0,1, \cdots, n-1\}$ and the last one is about infinite Sidon sets in \mathbb{N} (the set of natural numbers).

First, we consider the problem of Cameron-Erdős estimating the number of Sidon sets in $[n]$. We obtain an upper bound $2^{c \sqrt{n}}$ on the number of Sidon sets which is sharp with the previous lower bound up to a constant factor in the exponent.

Next, we study the maximum size of Sidon sets contained in sparse random sets $R \subset[n]$. Let $R=$ $[n]_{m}$ be a uniformly chosen, random m-element subset of $[n]$. Let $F\left([n]_{m}\right)=\max \{|S|: S \subset$ $[n]_{m}$ is Sidon $\}$. Fix a constant $0 \leq a \leq 1$ and suppose $m=(1+o(1)) n^{a}$. We show that there is a constant $b=b(a)$ for which $F\left([n]_{m}\right)=n^{b+o(1)}$ almost surely and we determine $b=b(a)$. Surprisingly, between two points $a=1 / 3$ and $a=2 / 3$, the function $b=b(a)$ is constant.

Next, we deal with infinite Sidon sets in sparse random subsets of \mathbb{N}. Fix $0<\delta \leq 1$, and let $R=R_{\delta}$ be the set obtained by choosing each element $i \subset \mathbb{N}$ independently with probability $i^{-1+\delta}$. We show that for every $0<\delta \leq 2 / 3$ there exists a constant $c=c(\delta)$ such that a random set R satisfies the following with probability 1 : - Every Sidon set $S \subset R$ satisfies that $|S \cap[n]| \leq n^{c+o(1)}$ for every sufficiently large n. - There exists a large Sidon set $S \subset R$ such that $|S \cap[n]| \geq n^{c+o(1)}$ for every sufficiently large n.

Tuesday, April 3, 2012, 2:30 pm
Mathematics and Science Center: W304

Advisor: Vojtech Rodl

Mathematics and Computer Science Emory University

