DISSERTATION DEFENSE SEMINAR

Problems on Sidon sets of integers

Sangjune Lee Emory University

Abstract: A set A of non-negative integers is a Sidon set if all the sums $a_1 + a_2$, with $a_1 \le a_2$ and $a_1, a_2 \in A$, are distinct. In this dissertation, we deal with three results on Sidon sets: two results are about finite Sidon sets in $[n] = \{0, 1, \dots, n-1\}$ and the last one is about infinite Sidon sets in \mathbb{N} (the set of natural numbers).

First, we consider the problem of Cameron–Erdős estimating the number of Sidon sets in [n]. We obtain an upper bound $2^{c\sqrt{n}}$ on the number of Sidon sets which is sharp with the previous lower bound up to a constant factor in the exponent.

Next, we study the maximum size of Sidon sets contained in sparse random sets $R \subset [n]$. Let $R = [n]_m$ be a uniformly chosen, random *m*-element subset of [n]. Let $F([n]_m) = \max\{|S|: S \subset [n]_m \text{ is Sidon}\}$. Fix a constant $0 \leq a \leq 1$ and suppose $m = (1 + o(1))n^a$. We show that there is a constant b = b(a) for which $F([n]_m) = n^{b+o(1)}$ almost surely and we determine b = b(a). Surprisingly, between two points a = 1/3 and a = 2/3, the function b = b(a) is constant.

Next, we deal with infinite Sidon sets in sparse random subsets of N. Fix $0 < \delta \leq 1$, and let $R = R_{\delta}$ be the set obtained by choosing each element $i \subset \mathbb{N}$ independently with probability $i^{-1+\delta}$. We show that for every $0 < \delta \leq 2/3$ there exists a constant $c = c(\delta)$ such that a random set R satisfies the following with probability 1:

- Every Sidon set $S \subset R$ satisfies that $|S \cap [n]| \leq n^{c+o(1)}$ for every sufficiently large n.
- There exists a large Sidon set $S \subset R$ such that $|S \cap [n]| \ge n^{c+o(1)}$ for every sufficiently large n.

Tuesday, April 3, 2012, 2:30 pm Mathematics and Science Center: W304

Advisor: Vojtech Rodl

MATHEMATICS AND COMPUTER SCIENCE EMORY UNIVERSITY