Combinatorics Seminar

Progressions with a pseudorandom step

Elad Aigner-Horev
Hamburg University

Abstract

An open problem of interest in combinatorial number theory is that of providing a non-ergodic proof to the so called polynomial Szemerdi theorem. So far, the landmark result in this venue is that of Green who considered the emergence of 3 -term arithmetic progressions whose gap is a sum of two squares (not both zero) in dense sets of integers. In view of this we consider the following problem. Given two dense subsets A and S of a finite abelian group G, what is the weakest "pseudorandomness assumption" which, once put on S, implies that A contains a 3 -term arithmetic progression whose gap is in S? We answer this question for $G=Z_{n}$ and $G=F_{p}^{n}$. To quantify pseudorandomness we use Gowers norms.

Monday, October 28, 2013, 4:00 pm
Mathematics and Science Center: W301

Mathematics and Computer Science Emory University

