# Combinatorics SEminar 

# On Erdos' conjecture on the number of edges in 5-cycles 

Zoltan Furedi<br>Renyi Institute of Mathematics, Budapest, Hungary


#### Abstract

Erdos, Faudree, and Rousseau (1992) showed that a graph on $n$ vertices and at least $\left[n^{2} / 4\right]+1$ edges has at least $2[n / 2]+1$ edges on triangles and this result is sharp. They also considered a conjecture of Erdos that such a graph can have at most $n^{2} / 36$ non-pentagonal edges with an extremal graph having two components, a complete graph on $[2 n / 3]+1$ vertices and a complete bipartite graph on the rest. This was mentioned in other papers of Erdos and also it is No. 27 in Fan Chung's problem book.

In this talk we give a graph of $\left[n^{2} / 4\right]+1$ edges with much more, namely $n^{2} / 8(2+\sqrt{2})+O(n)=$ $n^{2} / 27.31$ pentagonal edges, disproving the original conjecture. We show that this coefficient is asymptotically the best possible.

Given graphs H and F let $E_{0}(H, F)$ denote the set of edges of H which do not appear in a subgraph isomorphic to F , and let $h(n, e, F)$ denote the maximum of $\left|E_{0}(H, F)\right|$ among all graphs H of n vertices and e edges. We asymptotically determine $h\left(n, c n^{2}, C_{3}\right)$ and $h\left(n, c n^{2}, C_{5}\right)$ for fixed c , $1 / 4<c<1 / 2$. For $2 k+1 \geq 7$ we establish the conjecture of Erdos et al. that $h\left(n, c n^{2}, C_{2 k+1}\right)$ is obtained from the above two-component example.

One of our main tools (beside Szemeredi's regularity) is a new version of Zykov's symmetrization what we can apply for more graphs, simultaneously.


Friday, December 6, 2013, 4:00 pm
Mathematics and Science Center: W306

This is joint work with Zeinab Maleki.

## Mathematics and Computer Science Emory University

