Dissertation
 Defense

Some Ramsey-type Theorems

Troy Retter
Emory University

Abstract

Extending the concept of the Ramsey numbers, Erdős and Rogers introduced the function

$$
f_{s, t}(n)=\min \left\{\max \left\{|W|: W \subseteq V(G) \text { and } G[W] \text { contains no } K_{s}\right\}\right\}
$$

where the minimum is taken over all K_{t}-free graphs G of order n. We establish that for every $s \geq 3$ there exist constants c_{1} and c_{2} such that $f_{s, s+1}(n) \leq c_{1}(\log n)^{c_{2}} \sqrt{n}$. We also prove that for all $t-2 \geq s \geq 4$, there exists a constant c_{3} such that $f_{s, t}(n) \leq c_{3} \sqrt{n}$. In doing so, we give a partial answer to a question of Erdős.

Another question of Erdős, answered by Rǒdl and Ruciński, asks if for every pair of positive integers ℓ and k, there exist a graph H having girth k and the property that every ℓ-coloring of the edges of H yields a monochromatic cycle C_{k}. Here, we establish that such a graph exists with at most $r^{O\left(k^{2}\right)} k^{O\left(k^{3}\right)}$ vertices, where $r=r_{\ell}\left(C_{k}\right)$ is the ℓ color Ramsey number for the cycle C_{k}. We also consider two closely related problems.

Finally, for a graph S, the h-subdivision $S^{(h)}$ is obtained by replacing each edge with a path of length $h+1$. For any graph S of maximum degree d on $s \geq s_{0}(h, d, \ell)$ vertices, we show there exists a graph G with $(\log s)^{20 h} s^{1+1 /(h+1)}$ edges having the following Ramsey property: any coloring of the edges of G with ℓ colors yields a monochromatic copy of the subdivided graph $S^{(h)}$. This result complements work of Pak regarding 'long' subdivisions of bounded degree.

Wednesday, March 2, 2016, 11:30 am
Mathematics and Science Center: E408

Advisor: Vojtech Rodl

Mathematics and Computer Science Emory University

