Combinatorics Seminar

Infinite Sidon sets contained in sparse random sets of integers

Sang June Lee

Duksung University, Seoul

Abstract

A set S of natural numbers is a Sidon set if all the sums $s_{1}+s_{2}$ with s_{1}, $s_{2} \in S$ and $s_{1} \leq s_{2}$ are distinct. Let constants $\alpha>0$ and $0<\delta<1$ be fixed, and let $p_{m}=\min \left\{1, \alpha m^{-1+\delta}\right\}$ for all positive integers m. Generate a random set $R \subset \mathbb{N}$ by adding m to R with probability p_{m}, independently for each m. We investigate how dense a Sidon set S contained in R can be. Our results show that the answer is qualitatively very different in at least three ranges of δ. We prove quite accurate results for the range $0<\delta \leq 2 / 3$, but only obtain partial results for the range $2 / 3<\delta \leq 1$.

This is joint work with Yoshiharu Kohayakawa and Vojtech Rodl.

4:00 pm Monday, January 23, 2017

MSC W303

