Combinatorics Seminar

On strong Sidon sets of integers

Sang June Lee

Duksung Women's University

Abstract: Let \mathbb{N} be the set of natural numbers. A set $A \subset \mathbb{N}$ is called a *Sidon set* if the sums $a_1 + a_2$, with $a_1, a_2 \in S$ and $a_1 \leq a_2$, are distinct, or equivalently, if

$$|(x+w) - (y+z)| \ge 1$$

for every $x, y, z, w \in S$ with $x < y \le z < w$. We define strong Sidon sets as follows: For a constant α with $0 \le \alpha < 1$, a set $S \subset \mathbb{N}$ is called an α -strong Sidon set if

 $|(x+w) - (y+z)| \ge w^{\alpha}$

for every $x, y, z, w \in S$ with $x < y \le z < w$.

The motivation of strong Sidon sets is that a strong Sidon set generates many Sidon sets by altering each element a bit. This implies that a dense strong Sidon set will guarantee a dense Sidon set contained in a sparse random subset of \mathbb{N} .

In this talk, we are interested in how dense a strong Sidon set can be. This is joint work with Yoshiharu Kohayakawa, Carlos Gustavo Moreira and Vojtěch Rödl.

Monday, January 29, 2018 – 4:00 pm Mathematics & Science Center – W303

MATHEMATICS AND COMPUTER SCIENCE EMORY UNIVERSITY