DISSERTATION DEFENSE

On Cycles, Chorded Cycles, and Degree Conditions

Ariel Keller Emory University

Abstract: Sufficient conditions to imply the existence of certain substructures in a graph are of considerable interest in extremal graph theory, and conditions that guarantee a large set of cycles or chorded cycles are a recurring theme. This dissertation explores different degree sum conditions that are sufficient for finding a large set of vertex-disjoint cycles or a large set of vertex-disjoint cycles in a graph.

For an integer $t \ge 1$, let $\sigma_t(G)$ be the smallest sum of degrees of t independent vertices of G. We first prove that if a graph G has order at least 7k + 1 and degree sum condition $\sigma_4(G) \ge 8k - 3$, with $k \ge 2$, then G contains k vertex-disjoint cycles. Then, we consider an equivalent condition for chorded cycles, proving that if G has order at least 11k + 7 and $\sigma_4(G) \ge 12k - 3$, with $k \ge 2$, then G contains k vertex-disjoint cycles. We prove that the degree sum condition in each result is sharp. Finally, we conjecture generalized degree sum conditions on $\sigma_t(G)$ for $t \ge 2$ sufficient to imply that G contains k vertex-disjoint cycles for $k \ge 2$ and k vertex-disjoint chorded cycles for $k \ge 2$. This is joint work with Ronald J. Gould and Kazuhide Hirohata.

Thursday, March 1, 2018, 3:00 pm MSC N301

Advisor: Ron Gould

MATHEMATICS AND COMPUTER SCIENCE EMORY UNIVERSITY