Algebra and Number Theory Seminar

Strong u-invariant and Period-Index bound

Shilpi Mandal Emory University

Abstract: For a central simple algebra A over K, there are two major invariants, viz., *period* and *index*.

For a field K, define the Brauer *l*-dimension of K for a prime number *l*, denoted by $\operatorname{Br}_l \operatorname{dim}(K)$, as the smallest $d \in \mathbb{N} \cup \{\infty\}$ such that for every finite field extension L/K and every central simple *L*-algebra A of period a power of *l*, we have that $\operatorname{ind}(A)$ divides $\operatorname{per}(A)^d$.

If K is a number field or a local field (a finite extension of the field of p-adic numbers \mathbb{Q}_p , for some prime number p), then classical results from class field theory tell us that $\operatorname{Br}_l \dim(K) = 1$. This invariant is expected to grow under a field extension, bounded by the transcendence degree. Some recent works in this area include that of Lieblich, Harbater-Hartmann-Krashen for K a complete discretely valued field, in the good characteristic case. In the bad characteristic case, for such fields K, Parimala-Suresh have given some bounds.

Also, the *u*-invariant of K, denoted by u(K), is the maximal dimension of anisotropic quadratic forms over K. For example, $u(\mathbb{C}) = 1$; for F a non-real global or local field, we have u(F) = 1, 2, 4, or 8, etc.

In this talk, I will present similar bounds for the Br_l dim and the strong *u*-invariant of a complete non-Archimedean valued field K with residue field κ .

Tuesday, October 1, 2024, 4:00 pm Mathematics and Science Center: MSC W303

MATHEMATICS Emory University