Combinatorics Seminar

Higher rank antipodality

Márton Naszódi Alfréd Rényi Institute of Mathematics, and Loránd Eötvös University, Budapest

Abstract: Motivated by general probability theory, we say that the set X in \mathbb{R}^d is antipodal of rank k, if for any k+1 elements $q_1, \ldots, q_{k+1} \in X$, there is an affine map from convX to the k-dimensional simplex Δ_k that maps q_1, \ldots, q_{k+1} onto the k+1 vertices of Δ_k . For k = 1, it coincides with the well-studied notion of (pairwise) antipodality introduced by Klee.

We consider the following natural generalization of Klee's problem on antipodal sets: What is the maximum size of an antipodal set of rank k in \mathbb{R}^d ? We present a geometric characterization of antipodal sets of rank k and adapting the argument of Danzer and Grünbaum originally developed for the k = 1 case, we prove an upper bound which is exponential in the dimension. We point out that this problem can be connected to a classical question in computer science on finding *perfect hashes*, and it provides a lower bound on the maximum size, which is also exponential in the dimension. Joint work with Zsombor Szilágyi and Mihály Weiner.

> Thursday, December 5, 2024, 4:00 pm Mathematics and Science Center: MSC W303

> > MATHEMATICS Emory University