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Integer Programs




An integer progam is an optimization problem

max C'x
st. Ax=>b (IP)
x ezl



Traditional Solution of IPs

Theorem (Fundamental Theorem of Applied Math)

If P is a hard problem, then turning P into a linear algebra
problem and throwing it into MATLAB provides a solution.

Attend a scientific computing talk. Ol



Traditional Solution of IPs (Serious)

Theorem (Fundamental Theorem of Integer Programming')
Let X = {x € Z" |Ax = b} the feasible region to (IP). Then,

max{c'x|x € X} = max{c'x|x € conv(X)}

TSee e.g. Nemhauser-Wolsey Integer and Combinatorial Optimization
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Traditional Solution of IPs (Serious)

Theorem (Fundamental Theorem of Integer Programming')
Let X = {x € Z" |Ax = b} the feasible region to (IP). Then,

max{c'x|x € X} = max{c'x|x € conv(X)}
Key idea: Can solve a sequence of linear programs over polyhedra

which contain conv(X).

Leads to Branch & Bound and Cutting Plane algorithms.

TSee e.g. Nemhauser-Wolsey Integer and Combinatorial Optimization
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Example
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Grobner Bases




Consider a linear system of equations Ax = b, A € GL,(C).
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a1 012 Q1,n
Gy -+ Qan| . .
IfA= . _ | Isupper triangular, we can solve Ax =b
arm

with n equations of a single variable via backsubstitution.




Consider a linear system of equations Ax = b, A € GL,(C).

a1 012 Q1,n
Gy -+ Qan| . .
IfA= . _ | Isupper triangular, we can solve Ax =b
arm

with n equations of a single variable via backsubstitution.

Moreover, we can decompose general A € GL,(C) into A = LU and
solve Ax = b “easily”.



Grobner Bases 2

Fix the lexicographic monomial ordering on C[xq, X, ..., Xp]. If
I € C[x1,Xa,...,Xq] is an ideal, set LT(I) = (LT(f)|f € I).

2See e.g Dummit& Foote Section 9.6 or Cox, Little, 0'Shea Ideals, Varieties, and
Algorithms Ch. 2& 3
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Grobner Bases 2

Fix the lexicographic monomial ordering on C[xq, X, ..., Xp]. If

I € C[x1,Xa,...,Xq] is an ideal, set LT(I) = (LT(f)|f € I).

A subset G C [ is a Grobner Basis of [ if [ = (G) and

LT(1) = {LT(g)Ig € G).

G is reduced if each g; € G is monic and if LT(g;) does not divide any
term of g; for i # .

2See e.g Dummit& Foote Section 9.6 or Cox, Little, 0'Shea Ideals, Varieties, and
Algorithms Ch. 2& 3



Grobner Bases

1. Every ideal | C C[xy, Xy, ...,Xn] has a unique reduced Grébner
basis G ={g1,92,...,9m}

2. Every f € C[xy, X2, ...,Xy] can be written uniquely in the form
f=f +r wheref; €  and no monomial in r is divisible by LT(g;).

Denote r =f mod G.



Buchberger's Algorithm

Given I = {f1,f2,...,fm) € C[x1,X2,...,Xn], we can find a Grobner
Basis:

1. G={fi.fo,.-.,fm}
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Buchberger's Algorithm

Given I = {f1,f2,...,fm) € C[x1,X2,...,Xn], we can find a Grobner
Basis:

1. G= {ﬁ',fZa"wfm}
2. For each fi,fj € G,

LCM(LT(f;) LTf/

LCM(LT(f;),LT(f;
21 Set S(fi, ) = —pg o, — ol

22 1f S(fi,fj)) = 0 mod G, continue |teratmg

23 IfS(fi,fj)) # 0 mod G, append G = GU {S(fi,f;) mod G} and go
back to 2.




Consider | = (X1 + X3 + 3X3 — 4, X3 — X1,X5 — X2, X3 — X3).
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Consider | = (X1 + X3 + 3X3 — 4, X3 — X1,X5 — X2, X3 — X3).

A Grobner Basis for | is

G= {X1 + Xy 4 3X3 — 4.X3 — X1, X5 — X2, X3 — X3,

X2X37X272X3+2,X37/|}

The reduced Grobner basis for [ is

Gred = {XW +X2 _17X% _X27X3 _1}

1



Foreach1<¢<n,letl, =1NC[Xp41,Xe42,--.,%n] De the
/™ elimination ideal.




Elimination

Foreach1<¢<n,letl, =1NC[Xp41,Xe42,--.,%n] De the
/™ elimination ideal.

If G is a Grobner basis of I, then G N C[Xg41, X¢p+2, - - -, Xn] IS a Grobner
basis of I,.




Extension

Why is elimination useful?
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Theorem

Let I = {f1,f2,...,fs) C C[xq,X%a,...,Xa]- Then,

LT(fi) = gi(x2, X3, - - - ,xn)xf/’ for some g; € C[x, X3, ...,Xn]. Moreover,
if (a3,as,...,a,) € V(I1), and (az, as, ..., an) € V((g;)), then 3a, € C
such that (a4, ay, ..., an) € V(I).



Extension

Why is elimination useful?

Theorem

Let I = {f1,f2,...,fs) C C[xq,X%a,...,Xa]- Then,

LT(fi) = gi(x2, X3, - - - ,xn)xf/’ for some g; € C[x, X3, ...,Xn]. Moreover,
if (a3,as,...,a,) € V(I1), and (az, as, ..., an) € V((g;)), then 3a, € C
such that (a4, ay, ..., an) € V(I).

Key takeaway: Can use partial solutions to get full solutions.



Return to Example

We had G = {X1 + X2 — 1,X3 — Xo, X3 — 1} was a reduced Grobner basis
of I = (X1 + X2 +3X3 — &, X7 — X1,X5 — X2, X5 — X3).
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Return to Example

We had G = {X1 + X2 — 1,X3 — Xo, X3 — 1} was a reduced Grobner basis
of I = (X1 + X2 +3X3 — &, X7 — X1,X5 — X2, X5 — X3).

G, =G6GNCs] = (3 —-1) = [XGV(/z) = xgzq

I4 :<X%—X2,X3—1> — |:X€V(/1) - X2€{O,1} andX3:11|
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Return to Example

We had G = {X1 + X2 — 1,X3 — Xo, X3 — 1} was a reduced Grobner basis
of I = (X1 + X2 +3X3 — &, X7 — X1,X5 — X2, X5 — X3).
G, =G6GNCs] = (3 —-1) = [XGV(/z) = xgzq
Iy = <X% — X2, X3 — 1> — |:X & V(/1) — X € {0,1} and x3 = ’|i|

=04 +X =1, —x2,x3 — 1) = V() ={(1,0,1),(0,1,1)}

14



Using Grobner Bases for Integer
Programming




Return to Integer Programming?

Restrict our attention to binary integer programs:

X = {x € {0,1}"]Ax = b}

3Bertsimas et. al A New Algebraic Geometry Algorithm for Integer Programming



Return to Integer Programming?

Restrict our attention to binary integer programs:

X = {x € {0,1}"]Ax = b}

Then,

XeX «— xeV({x x,,Za,Jx, b))

3Bertsimas et. al A New Algebraic Geometry Algorithm for Integer Programming



Solving IPs

Using

xeX < xeV(( xHZa,Jx, b;)

and the Elimination and Extension theorems, we can either
determine that a problem is infeasible or enumerate its solutions

16



Example Part 3

Consider the BIP feasible region

X ={xec{0,13x +x +3x; =4}
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Example Part 3

Consider the BIP feasible region
X ={xe{0,1%|x; + X2 + 3x3 = 4}
In our “new” language,

X = V({1 4+ X2 4+ 3X3 — 4, X5 — X1, X5 — Xp, X3 — X3))

=V({x14+ X2 — 1,5 — X, X3 — 1))



Example Part 3

Consider the BIP feasible region

X ={xe{0,1%|x; + X2 + 3x3 = 4}

In our “new” language,

X

V(X1 + Xg 4 3%3 — 4, X3 — X1, X3 — X2, X5 — X3))
V(0 4% = 1,6 = X, X3 = 1))

{(1,0,1),(0,1,1)}



Structure of Feasible Set

The terms of the reduced Gobner basis capture the logical
dependency of the optimization variables:

X1+ X —1,X5 — X, X3 — 1)



Structure of Feasible Set

The terms of the reduced Gobner basis capture the logical
dependency of the optimization variables:

X1+ X —1,X5 — X, X3 — 1)

Exactly one of x; or x, is 1, x3 must be 1.



Maximization

Add in an objective function z = cTx:

max Z=C'x
st. Ax=>b
x € {0,1}"
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Maximization

Add in an objective function z = cTx:

max Z=C'x
st. Ax=>b
x € {0,1}"

Look at

n n
= (¢ — x,-,Za,-Jx}- — b[,ZC,-x,- —2) CC[x1,X%2, - - -, Xn, 2]
j=1 j=1
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Example Part 4

Look at the Binary IP

max Z = X1 + 3Xy + 5X3
St X1+ X+3X3=4
x€{0,1}?
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Example Part 4

Look at the Binary IP

max Z = X1 + 3Xy + 5X3
St X1+ X+3X3=4
x€{0,1}?

Ideal is

I = (X1 + X2 +3X3 — &4, X3 — X1, X5 — X2, X3 — X3,X1 + 3% + 5%3 — 2)

1 1
= (x1+ 524X = 5743, —1,2> — 14z + 48)
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Example Part 4 (cont.)

1 1
= (X + 52—4,)@ — §z+3,x3 —1,2> — 14z + 48)

S0, 5 = INC[z] = (2 — 14z + 48).
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Example Part 4 (cont.)

1 1
= (x1+ 524X = 57 +3,% —1,2> — 14z + 48)

S0, 5 = INC[z] = (2 — 14z + 48).

Feasible Objective Values are:

V(Is) = {6,8}
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Example Part 4 (cont.)

1 1
= (x1+ 524X = 57 +3,% —1,2> — 14z + 48)

S0, 5 = INC[z] = (2 — 14z + 48).

Feasible Objective Values are:

V(Is) = {6,8}

Take z = 8 and apply extension theorem:

(X1,X2,%3;2) = (0,1,1; 8)

is optimal solution & objective value.
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Conclusions

- Integer Programs are an interesting class of optimization
problems

- Grobner Bases assist in computation in polynomial rings

- Integer Programs can be translated into questions about ideals
in C[x1,X2, ..., Xn, 2.

- Don't try to implement this in MATLAB

22
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