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Integer Programs



IPs

An integer progam is an optimization problem

max c⊤x
s.t. Ax = b

x ∈ Zn+

(IP)
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Traditional Solution of IPs

Theorem (Fundamental Theorem of Applied Math)
If P is a hard problem, then turning P into a linear algebra
problem and throwing it into MATLAB provides a solution.

Proof.
Attend a scientific computing talk.
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Traditional Solution of IPs (Serious)

Theorem (Fundamental Theorem of Integer Programming1)
Let X = {x ∈ Zn+|Ax = b} the feasible region to (IP). Then,

max{c⊤x|x ∈ X} = max{c⊤x|x ∈ conv(X )}

Key idea: Can solve a sequence of linear programs over polyhedra
which contain conv(X ).

Leads to Branch & Bound and Cutting Plane algorithms.

1See e.g. Nemhauser-Wolsey Integer and Combinatorial Optimization
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Example

max
9∑

i,j,k=1

xi,j,k

s.t.
9∑
i=1

xi,j,k = 1 ∀j, k,

9∑
j=1

xi,j,k = 1 ∀i, k,

∑
(i,j)∈Sℓ

xi,j,k = 1 ∀k, Sℓ,

9∑
k=1

xi,j,k = 1 ∀i, j,

xi,j,k = 1 (i, j, k) ∈ C
x ∈ {0, 1}729
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Gröbner Bases



Motivation

Consider a linear system of equations Ax = b, A ∈ GLn(C).

If A =


a1,1 a1,2 · · · a1,n

a2,2 · · · a2,n
. . . ...

ann

 is upper triangular, we can solve Ax = b

with n equations of a single variable via backsubstitution.

Moreover, we can decompose general A ∈ GLn(C) into A = LU and
solve Ax = b “easily”.
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Gröbner Bases 2

Fix the lexicographic monomial ordering on C[x1, x2, . . . , xn]. If
I ⊆ C[x1, x2, . . . , xn] is an ideal, set LT(I) = ⟨LT(f)|f ∈ I⟩.

A subset G ⊆ I is a Gröbner Basis of I if I = ⟨G⟩ and
LT(I) = ⟨LT(g)|g ∈ G⟩.

G is reduced if each gi ∈ G is monic and if LT(gi) does not divide any
term of gj for i ̸= j.

2See e.g Dummit& Foote Section 9.6 or Cox, Little, O’Shea Ideals, Varieties, and
Algorithms Ch. 2& 3
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Gröbner Bases

Theorem
1. Every ideal I ⊂ C[x1, x2, . . . , xn] has a unique reduced Gröbner
basis G = {g1,g2, . . . ,gm}

2. Every f ∈ C[x1, x2, . . . , xn] can be written uniquely in the form
f = fI + r, where fI ∈ I and no monomial in r is divisible by LT(gi).

Denote r = f mod G.
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Buchberger’s Algorithm

Given I = ⟨f1, f2, . . . , fm⟩ ⊆ C[x1, x2, . . . , xn], we can find a Gröbner
Basis:

1. G = {f1, f2, . . . , fm}

2. For each fi, fj ∈ G,
2.1 Set S(fi, fj) =

LCM(LT(fi),LT(fj))
LT(fi)

fi −
LCM(LT(fi),LT(fj))

LT(fj)
fj

2.2 If S(fi, fj) = 0 mod G, continue iterating
2.3 If S(fi, fj) ̸= 0 mod G, append G = G ∪ {S(fi, fj) mod G} and go

back to 2.
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Example

Consider I = ⟨x1 + x2 + 3x3 − 4, x21 − x1, x22 − x2, x23 − x3⟩.

A Gröbner Basis for I is

G =
{
x1 + x2 + 3x3 − 4,x21 − x1, x22 − x2, x23 − x3,

x2x3 − x2 − 2x3 + 2, x3 − 1
}

The reduced Gröbner basis for I is

Gred =
{
x1 + x2 − 1, x22 − x2, x3 − 1

}
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Elimination

For each 1 ≤ ℓ ≤ n, let Iℓ = I ∩ C[xℓ+1, xℓ+2, . . . , xn] be the
ℓth elimination ideal.

Theorem
If G is a Gröbner basis of I, then G ∩ C[xℓ+1, xℓ+2, . . . , xn] is a Gröbner
basis of Iℓ.

12



Elimination

For each 1 ≤ ℓ ≤ n, let Iℓ = I ∩ C[xℓ+1, xℓ+2, . . . , xn] be the
ℓth elimination ideal.

Theorem
If G is a Gröbner basis of I, then G ∩ C[xℓ+1, xℓ+2, . . . , xn] is a Gröbner
basis of Iℓ.

12



Extension

Why is elimination useful?

Theorem
Let I = ⟨f1, f2, . . . , fs⟩ ⊆ C[x1, x2, . . . , xn]. Then,
LT(fi) = gi(x2, x3, . . . , xn)xNi1 for some gi ∈ C[x2, x3, . . . , xn]. Moreover,
if (a2,a3, . . . ,an) ∈ V(I1), and (a2,a3, . . . ,an) ̸∈ V(⟨gi⟩), then ∃a1 ∈ C
such that (a1,a2, . . . ,an) ∈ V(I).

Key takeaway: Can use partial solutions to get full solutions.
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Return to Example

We had G =
{
x1 + x2 − 1, x22 − x2, x3 − 1

}
was a reduced Gröbner basis

of I = ⟨x1 + x2 + 3x3 − 4, x21 − x1, x22 − x2, x23 − x3⟩.

G2 = G ∩ C[x3] = ⟨x3 − 1⟩ =⇒
[
x ∈ V(I2) =⇒ x3 = 1

]

I1 = ⟨x22 − x2, x3 − 1⟩ =⇒
[
x ∈ V(I1) =⇒ x2 ∈ {0, 1} and x3 = 1

]

I = ⟨x1 + x2 − 1, x22 − x2, x3 − 1⟩ =⇒ V(I) = {(1, 0, 1), (0, 1, 1)}
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Using Gröbner Bases for Integer
Programming



Return to Integer Programming3

Restrict our attention to binary integer programs:

X = {x ∈ {0, 1}n|Ax = b}

Then,

x ∈ X ⇐⇒ x ∈ V(⟨x2i − xi,
n∑
j=1

ai,jxj − bi⟩)

3Bertsimas et. al A New Algebraic Geometry Algorithm for Integer Programming
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Solving IPs

Using

x ∈ X ⇐⇒ x ∈ V(⟨x2i − xi,
n∑
j=1

ai,jxj − bi⟩)

and the Elimination and Extension theorems, we can either
determine that a problem is infeasible or enumerate its solutions

16



Example Part 3

Consider the BIP feasible region

X = {x ∈ {0, 1}3| x1 + x2 + 3x3 = 4}

In our “new” language,

X = V(⟨x1 + x2 + 3x3 − 4, x21 − x1, x22 − x2, x23 − x3⟩)
= V(⟨x1 + x2 − 1, x22 − x2, x3 − 1⟩)
= {(1, 0, 1), (0, 1, 1)}
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Structure of Feasible Set

The terms of the reduced Göbner basis capture the logical
dependency of the optimization variables:

⟨x1 + x2 − 1, x22 − x2, x3 − 1⟩

Exactly one of x1 or x2 is 1, x3 must be 1.
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Maximization

Add in an objective function z = c⊤x:

max z = c⊤x
s.t. Ax = b

x ∈ {0, 1}n

Look at

I = ⟨x2i − xi,
n∑
j=1

ai,jxj − bi,
n∑
j=1

cjxj − z⟩ ⊆ C[x1, x2, . . . , xn, z]
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Example Part 4

Look at the Binary IP

max z = x1 + 3x2 + 5x3
s.t. x1 + x2 + 3x3 = 4

x ∈ {0, 1}3

Ideal is

I = ⟨x1 + x2 + 3x3 − 4, x21 − x1, x22 − x2, x23 − x3, x1 + 3x2 + 5x3 − z⟩

= ⟨x1 +
1
2z− 4, x2 −

1
2z+ 3, x3 − 1, z2 − 14z+ 48⟩

20
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Example Part 4 (cont.)

I = ⟨x1 +
1
2z− 4, x2 −

1
2z+ 3, x3 − 1, z2 − 14z+ 48⟩

So, I3 = I ∩ C[z] = ⟨z2 − 14z+ 48⟩.

Feasible Objective Values are:

V(I3) = {6, 8}

Take z = 8 and apply extension theorem:

(x1, x2, x3; z) = (0, 1, 1; 8)

is optimal solution & objective value.
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Conclusions

• Integer Programs are an interesting class of optimization
problems

• Gröbner Bases assist in computation in polynomial rings
• Integer Programs can be translated into questions about ideals
in C[x1, x2, . . . , xn, z].

• Don’t try to implement this in MATLAB
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