

Gröbner bases and Integer Programming

RANT

Alex Dunbar

March 23 2021

Emory University

Table of contents

1. Integer Programs
2. Gröbner Bases
3. Using Gröbner Bases for Integer Programming

Integer Programs

An integer program is an optimization problem

$$\begin{aligned} & \max c^\top x \\ \text{s.t. } & Ax = b \\ & x \in \mathbb{Z}_+^n \end{aligned} \tag{IP}$$

Traditional Solution of IPs

Theorem (Fundamental Theorem of Applied Math)

If \mathcal{P} is a hard problem, then turning \mathcal{P} into a linear algebra problem and throwing it into MATLAB provides a solution.

Proof.

Attend a scientific computing talk. □

Traditional Solution of IPs (Serious)

Theorem (Fundamental Theorem of Integer Programming¹)

Let $\mathcal{X} = \{x \in \mathbb{Z}_+^n \mid Ax = b\}$ the feasible region to (IP). Then,

$$\max\{c^\top x \mid x \in \mathcal{X}\} = \max\{c^\top x \mid x \in \text{conv}(\mathcal{X})\}$$

¹See e.g. Nemhauser-Wolsey *Integer and Combinatorial Optimization*

Traditional Solution of IPs (Serious)

Theorem (Fundamental Theorem of Integer Programming¹)

Let $\mathcal{X} = \{x \in \mathbb{Z}_+^n \mid Ax = b\}$ the feasible region to (IP). Then,

$$\max\{c^\top x \mid x \in \mathcal{X}\} = \max\{c^\top x \mid x \in \text{conv}(\mathcal{X})\}$$

Key idea: Can solve a sequence of linear programs over polyhedra which contain $\text{conv}(\mathcal{X})$.

¹See e.g. Nemhauser-Wolsey *Integer and Combinatorial Optimization*

Traditional Solution of IPs (Serious)

Theorem (Fundamental Theorem of Integer Programming¹)

Let $\mathcal{X} = \{x \in \mathbb{Z}_+^n \mid Ax = b\}$ the feasible region to (IP). Then,

$$\max\{c^\top x \mid x \in \mathcal{X}\} = \max\{c^\top x \mid x \in \text{conv}(\mathcal{X})\}$$

Key idea: Can solve a sequence of linear programs over polyhedra which contain $\text{conv}(\mathcal{X})$.

Leads to Branch & Bound and Cutting Plane algorithms.

¹See e.g. Nemhauser-Wolsey *Integer and Combinatorial Optimization*

Example

$$\max \sum_{i,j,k=1}^9 x_{i,j,k}$$

$$\text{s.t. } \sum_{i=1}^9 x_{i,j,k} = 1 \quad \forall j, k,$$

$$\sum_{j=1}^9 x_{i,j,k} = 1 \quad \forall i, k,$$

$$\sum_{(i,j) \in S_\ell} x_{i,j,k} = 1 \quad \forall k, S_\ell,$$

$$\sum_{k=1}^9 x_{i,j,k} = 1 \quad \forall i, j,$$

$$x_{i,j,k} = 1 \quad (i, j, k) \in \mathcal{C}$$

$$x \in \{0, 1\}^{729}$$

						3	6	
					8		4	
7				5				
		4					1	
	6		4					
								8
				6			2	7
8							5	
			1					

Example

$$\max \sum_{i,j,k=1}^9 x_{i,j,k}$$

$$\text{s.t. } \sum_{i=1}^9 x_{i,j,k} = 1 \quad \forall j, k,$$

$$\sum_{j=1}^9 x_{i,j,k} = 1 \quad \forall i, k,$$

$$\sum_{(i,j) \in S_\ell} x_{i,j,k} = 1 \quad \forall k, S_\ell,$$

$$\sum_{k=1}^9 x_{i,j,k} = 1 \quad \forall i, j,$$

$$x_{i,j,k} = 1 \quad (i, j, k) \in \mathcal{C}$$

$$x \in \{0, 1\}^{729}$$

2	8	9	7	4	3	6	1	5
6	5	3	2	8	1	4	7	9
7	4	1	9	5	6	2	8	3
5	7	4	8	3	2	1	9	6
9	6	8	4	1	7	5	3	2
1	3	2	5	6	9	7	4	8
4	1	5	6	9	8	3	2	7
8	2	6	3	7	4	9	5	1
3	9	7	1	2	5	8	6	4

Gröbner Bases

Motivation

Consider a linear system of equations $Ax = b$, $A \in GL_n(\mathbb{C})$.

Motivation

Consider a linear system of equations $Ax = b$, $A \in GL_n(\mathbb{C})$.

If $A = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & \cdots & a_{2,n} \\ \ddots & & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{bmatrix}$ is upper triangular, we can solve $Ax = b$ with n equations of a single variable via backsubstitution.

Motivation

Consider a linear system of equations $Ax = b$, $A \in GL_n(\mathbb{C})$.

If $A = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & \cdots & a_{2,n} \\ \ddots & & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{bmatrix}$ is upper triangular, we can solve $Ax = b$

with n equations of a single variable via backsubstitution.

Moreover, we can decompose general $A \in GL_n(\mathbb{C})$ into $A = LU$ and solve $Ax = b$ “easily”.

Fix the lexicographic monomial ordering on $\mathbb{C}[x_1, x_2, \dots, x_n]$. If $I \subseteq \mathbb{C}[x_1, x_2, \dots, x_n]$ is an ideal, set $LT(I) = \langle LT(f) | f \in I \rangle$.

²See e.g Dummit& Foote Section 9.6 or Cox, Little, O'Shea *Ideals, Varieties, and Algorithms* Ch. 2& 3

Fix the lexicographic monomial ordering on $\mathbb{C}[x_1, x_2, \dots, x_n]$. If $I \subseteq \mathbb{C}[x_1, x_2, \dots, x_n]$ is an ideal, set $LT(I) = \langle LT(f) | f \in I \rangle$.

A subset $G \subseteq I$ is a Gröbner Basis of I if $I = \langle G \rangle$ and $LT(I) = \langle LT(g) | g \in G \rangle$.

²See e.g Dummit& Foote Section 9.6 or Cox, Little, O'Shea *Ideals, Varieties, and Algorithms* Ch. 2& 3

Fix the lexicographic monomial ordering on $\mathbb{C}[x_1, x_2, \dots, x_n]$. If $I \subseteq \mathbb{C}[x_1, x_2, \dots, x_n]$ is an ideal, set $LT(I) = \langle LT(f) | f \in I \rangle$.

A subset $G \subseteq I$ is a Gröbner Basis of I if $I = \langle G \rangle$ and $LT(I) = \langle LT(g) | g \in G \rangle$.

G is reduced if each $g_i \in G$ is monic and if $LT(g_i)$ does not divide any term of g_j for $i \neq j$.

²See e.g Dummit& Foote Section 9.6 or Cox, Little, O'Shea *Ideals, Varieties, and Algorithms* Ch. 2& 3

Theorem

1. Every ideal $I \subset \mathbb{C}[x_1, x_2, \dots, x_n]$ has a unique reduced Gröbner basis $G = \{g_1, g_2, \dots, g_m\}$
2. Every $f \in \mathbb{C}[x_1, x_2, \dots, x_n]$ can be written uniquely in the form $f = f_I + r$, where $f_I \in I$ and no monomial in r is divisible by $LT(g_i)$.

Denote $r = f \bmod G$.

Buchberger's Algorithm

Given $I = \langle f_1, f_2, \dots, f_m \rangle \subseteq \mathbb{C}[x_1, x_2, \dots, x_n]$, we can find a Gröbner Basis:

1. $G = \{f_1, f_2, \dots, f_m\}$

Buchberger's Algorithm

Given $I = \langle f_1, f_2, \dots, f_m \rangle \subseteq \mathbb{C}[x_1, x_2, \dots, x_n]$, we can find a Gröbner Basis:

1. $G = \{f_1, f_2, \dots, f_m\}$
2. For each $f_i, f_j \in G$,
 - 2.1 Set $S(f_i, f_j) = \frac{LCM(LT(f_i), LT(f_j))}{LT(f_i)} f_i - \frac{LCM(LT(f_i), LT(f_j))}{LT(f_j)} f_j$

Buchberger's Algorithm

Given $I = \langle f_1, f_2, \dots, f_m \rangle \subseteq \mathbb{C}[x_1, x_2, \dots, x_n]$, we can find a Gröbner Basis:

1. $G = \{f_1, f_2, \dots, f_m\}$
2. For each $f_i, f_j \in G$,
 - 2.1 Set $S(f_i, f_j) = \frac{\text{LCM}(LT(f_i), LT(f_j))}{LT(f_i)} f_i - \frac{\text{LCM}(LT(f_i), LT(f_j))}{LT(f_j)} f_j$
 - 2.2 If $S(f_i, f_j) = 0 \pmod{G}$, continue iterating

Buchberger's Algorithm

Given $I = \langle f_1, f_2, \dots, f_m \rangle \subseteq \mathbb{C}[x_1, x_2, \dots, x_n]$, we can find a Gröbner Basis:

1. $G = \{f_1, f_2, \dots, f_m\}$
2. For each $f_i, f_j \in G$,
 - 2.1 Set $S(f_i, f_j) = \frac{\text{LCM}(LT(f_i), LT(f_j))}{LT(f_i)} f_i - \frac{\text{LCM}(LT(f_i), LT(f_j))}{LT(f_j)} f_j$
 - 2.2 If $S(f_i, f_j) = 0 \pmod{G}$, continue iterating
 - 2.3 If $S(f_i, f_j) \neq 0 \pmod{G}$, append $G = G \cup \{S(f_i, f_j) \pmod{G}\}$ and go back to 2.

Example

Consider $I = \langle x_1 + x_2 + 3x_3 - 4, x_1^2 - x_1, x_2^2 - x_2, x_3^2 - x_3 \rangle$.

Example

Consider $I = \langle x_1 + x_2 + 3x_3 - 4, x_1^2 - x_1, x_2^2 - x_2, x_3^2 - x_3 \rangle$.

A Gröbner Basis for I is

$$G = \left\{ x_1 + x_2 + 3x_3 - 4, x_1^2 - x_1, x_2^2 - x_2, x_3^2 - x_3, \right. \\ \left. x_2x_3 - x_2 - 2x_3 + 2, x_3 - 1 \right\}$$

Example

Consider $I = \langle x_1 + x_2 + 3x_3 - 4, x_1^2 - x_1, x_2^2 - x_2, x_3^2 - x_3 \rangle$.

A Gröbner Basis for I is

$$G = \left\{ x_1 + x_2 + 3x_3 - 4, x_1^2 - x_1, x_2^2 - x_2, x_3^2 - x_3, x_2x_3 - x_2 - 2x_3 + 2, x_3 - 1 \right\}$$

The reduced Gröbner basis for I is

$$G_{\text{red}} = \left\{ x_1 + x_2 - 1, x_2^2 - x_2, x_3 - 1 \right\}$$

Elimination

For each $1 \leq \ell \leq n$, let $I_\ell = I \cap \mathbb{C}[x_{\ell+1}, x_{\ell+2}, \dots, x_n]$ be the ℓ^{th} elimination ideal.

For each $1 \leq \ell \leq n$, let $I_\ell = I \cap \mathbb{C}[x_{\ell+1}, x_{\ell+2}, \dots, x_n]$ be the ℓ^{th} elimination ideal.

Theorem

If G is a Gröbner basis of I , then $G \cap \mathbb{C}[x_{\ell+1}, x_{\ell+2}, \dots, x_n]$ is a Gröbner basis of I_ℓ .

Extension

Why is elimination useful?

Why is elimination useful?

Theorem

Let $I = \langle f_1, f_2, \dots, f_s \rangle \subseteq \mathbb{C}[x_1, x_2, \dots, x_n]$. Then,

$LT(f_i) = g_i(x_2, x_3, \dots, x_n)x_1^{N_i}$ for some $g_i \in \mathbb{C}[x_2, x_3, \dots, x_n]$. Moreover, if $(a_2, a_3, \dots, a_n) \in V(I_1)$, and $(a_2, a_3, \dots, a_n) \notin V(\langle g_i \rangle)$, then $\exists a_1 \in \mathbb{C}$ such that $(a_1, a_2, \dots, a_n) \in V(I)$.

Why is elimination useful?

Theorem

Let $I = \langle f_1, f_2, \dots, f_s \rangle \subseteq \mathbb{C}[x_1, x_2, \dots, x_n]$. Then,

$LT(f_i) = g_i(x_2, x_3, \dots, x_n)x_1^{N_i}$ for some $g_i \in \mathbb{C}[x_2, x_3, \dots, x_n]$. Moreover, if $(a_2, a_3, \dots, a_n) \in V(I_1)$, and $(a_2, a_3, \dots, a_n) \notin V(\langle g_i \rangle)$, then $\exists a_1 \in \mathbb{C}$ such that $(a_1, a_2, \dots, a_n) \in V(I)$.

Key takeaway: Can use partial solutions to get full solutions.

Return to Example

We had $G = \{x_1 + x_2 - 1, x_2^2 - x_2, x_3 - 1\}$ was a reduced Gröbner basis of $I = \langle x_1 + x_2 + 3x_3 - 4, x_1^2 - x_1, x_2^2 - x_2, x_3^2 - x_3 \rangle$.

Return to Example

We had $G = \{x_1 + x_2 - 1, x_2^2 - x_2, x_3 - 1\}$ was a reduced Gröbner basis of $I = \langle x_1 + x_2 + 3x_3 - 4, x_1^2 - x_1, x_2^2 - x_2, x_3^2 - x_3 \rangle$.

$$G_2 = G \cap \mathbb{C}[x_3] = \langle x_3 - 1 \rangle \implies [x \in V(I_2) \implies x_3 = 1]$$

Return to Example

We had $G = \{x_1 + x_2 - 1, x_2^2 - x_2, x_3 - 1\}$ was a reduced Gröbner basis of $I = \langle x_1 + x_2 + 3x_3 - 4, x_1^2 - x_1, x_2^2 - x_2, x_3^2 - x_3 \rangle$.

$$G_2 = G \cap \mathbb{C}[x_3] = \langle x_3 - 1 \rangle \implies [x \in V(I_2) \implies x_3 = 1]$$

$$I_1 = \langle x_2^2 - x_2, x_3 - 1 \rangle \implies [x \in V(I_1) \implies x_2 \in \{0, 1\} \text{ and } x_3 = 1]$$

Return to Example

We had $G = \{x_1 + x_2 - 1, x_2^2 - x_2, x_3 - 1\}$ was a reduced Gröbner basis of $I = \langle x_1 + x_2 + 3x_3 - 4, x_1^2 - x_1, x_2^2 - x_2, x_3^2 - x_3 \rangle$.

$$G_2 = G \cap \mathbb{C}[x_3] = \langle x_3 - 1 \rangle \implies [x \in V(I_2) \implies x_3 = 1]$$

$$I_1 = \langle x_2^2 - x_2, x_3 - 1 \rangle \implies [x \in V(I_1) \implies x_2 \in \{0, 1\} \text{ and } x_3 = 1]$$

$$I = \langle x_1 + x_2 - 1, x_2^2 - x_2, x_3 - 1 \rangle \implies V(I) = \{(1, 0, 1), (0, 1, 1)\}$$

Using Gröbner Bases for Integer Programming

Return to Integer Programming³

Restrict our attention to binary integer programs:

$$\mathcal{X} = \{x \in \{0,1\}^n \mid Ax = b\}$$

³Bertsimas et. al *A New Algebraic Geometry Algorithm for Integer Programming*

Return to Integer Programming³

Restrict our attention to binary integer programs:

$$\mathcal{X} = \{x \in \{0,1\}^n \mid Ax = b\}$$

Then,

$$x \in \mathcal{X} \iff x \in V(\langle x_i^2 - x_i, \sum_{j=1}^n a_{i,j}x_j - b_i \rangle)$$

³Bertsimas et. al *A New Algebraic Geometry Algorithm for Integer Programming*

Using

$$x \in \mathcal{X} \iff x \in V(\langle x_i^2 - x_i, \sum_{j=1}^n a_{i,j}x_j - b_i \rangle)$$

and the Elimination and Extension theorems, we can either determine that a problem is infeasible or enumerate its solutions

Example Part 3

Consider the BIP feasible region

$$\mathcal{X} = \{x \in \{0,1\}^3 \mid x_1 + x_2 + 3x_3 = 4\}$$

Example Part 3

Consider the BIP feasible region

$$\mathcal{X} = \{x \in \{0,1\}^3 \mid x_1 + x_2 + 3x_3 = 4\}$$

In our “new” language,

$$\mathcal{X} = V(\langle x_1 + x_2 + 3x_3 - 4, x_1^2 - x_1, x_2^2 - x_2, x_3^2 - x_3 \rangle)$$

Example Part 3

Consider the BIP feasible region

$$\mathcal{X} = \{x \in \{0,1\}^3 \mid x_1 + x_2 + 3x_3 = 4\}$$

In our “new” language,

$$\begin{aligned}\mathcal{X} &= V(\langle x_1 + x_2 + 3x_3 - 4, x_1^2 - x_1, x_2^2 - x_2, x_3^2 - x_3 \rangle) \\ &= V(\langle x_1 + x_2 - 1, x_2^2 - x_2, x_3 - 1 \rangle)\end{aligned}$$

Example Part 3

Consider the BIP feasible region

$$\mathcal{X} = \{x \in \{0,1\}^3 \mid x_1 + x_2 + 3x_3 = 4\}$$

In our “new” language,

$$\begin{aligned}\mathcal{X} &= V(\langle x_1 + x_2 + 3x_3 - 4, x_1^2 - x_1, x_2^2 - x_2, x_3^2 - x_3 \rangle) \\ &= V(\langle x_1 + x_2 - 1, x_2^2 - x_2, x_3 - 1 \rangle) \\ &= \{(1, 0, 1), (0, 1, 1)\}\end{aligned}$$

Structure of Feasible Set

The terms of the reduced Göbner basis capture the logical dependency of the optimization variables:

$$\langle x_1 + x_2 - 1, x_2^2 - x_2, x_3 - 1 \rangle$$

Structure of Feasible Set

The terms of the reduced Göbner basis capture the logical dependency of the optimization variables:

$$\langle x_1 + x_2 - 1, x_2^2 - x_2, x_3 - 1 \rangle$$

Exactly one of x_1 or x_2 is 1, x_3 must be 1.

Maximization

Add in an objective function $z = c^T x$:

$$\max z = c^T x$$

$$\text{s.t. } Ax = b$$

$$x \in \{0, 1\}^n$$

Maximization

Add in an objective function $z = c^\top x$:

$$\begin{aligned} \max \quad & z = c^\top x \\ \text{s.t.} \quad & Ax = b \\ & x \in \{0, 1\}^n \end{aligned}$$

Look at

$$I = \langle x_i^2 - x_i, \sum_{j=1}^n a_{i,j}x_j - b_i, \sum_{j=1}^n c_jx_j - z \rangle \subseteq \mathbb{C}[x_1, x_2, \dots, x_n, z]$$

Example Part 4

Look at the Binary IP

$$\max z = x_1 + 3x_2 + 5x_3$$

$$\text{s.t. } x_1 + x_2 + 3x_3 = 4$$

$$x \in \{0,1\}^3$$

Example Part 4

Look at the Binary IP

$$\max z = x_1 + 3x_2 + 5x_3$$

$$\text{s.t. } x_1 + x_2 + 3x_3 = 4$$

$$x \in \{0,1\}^3$$

Ideal is

$$I = \langle x_1 + x_2 + 3x_3 - 4, x_1^2 - x_1, x_2^2 - x_2, x_3^2 - x_3, x_1 + 3x_2 + 5x_3 - z \rangle$$

Example Part 4

Look at the Binary IP

$$\begin{aligned} \max \quad & z = x_1 + 3x_2 + 5x_3 \\ \text{s.t.} \quad & x_1 + x_2 + 3x_3 = 4 \\ & x \in \{0, 1\}^3 \end{aligned}$$

Ideal is

$$\begin{aligned} I &= \langle x_1 + x_2 + 3x_3 - 4, x_1^2 - x_1, x_2^2 - x_2, x_3^2 - x_3, x_1 + 3x_2 + 5x_3 - z \rangle \\ &= \langle x_1 + \frac{1}{2}z - 4, x_2 - \frac{1}{2}z + 3, x_3 - 1, z^2 - 14z + 48 \rangle \end{aligned}$$

Example Part 4 (cont.)

$$I = \left\langle x_1 + \frac{1}{2}z - 4, x_2 - \frac{1}{2}z + 3, x_3 - 1, z^2 - 14z + 48 \right\rangle$$

$$\text{So, } I_3 = I \cap \mathbb{C}[z] = \langle z^2 - 14z + 48 \rangle.$$

Example Part 4 (cont.)

$$I = \langle x_1 + \frac{1}{2}z - 4, x_2 - \frac{1}{2}z + 3, x_3 - 1, z^2 - 14z + 48 \rangle$$

So, $I_3 = I \cap \mathbb{C}[z] = \langle z^2 - 14z + 48 \rangle$.

Feasible Objective Values are:

$$V(I_3) = \{6, 8\}$$

Example Part 4 (cont.)

$$I = \left\langle x_1 + \frac{1}{2}z - 4, x_2 - \frac{1}{2}z + 3, x_3 - 1, z^2 - 14z + 48 \right\rangle$$

$$\text{So, } I_3 = I \cap \mathbb{C}[z] = \langle z^2 - 14z + 48 \rangle.$$

Feasible Objective Values are:

$$V(I_3) = \{6, 8\}$$

Take $z = 8$ and apply extension theorem:

$$(x_1, x_2, x_3; z) = (0, 1, 1; 8)$$

is optimal solution & objective value.

Conclusions

- Integer Programs are an interesting class of optimization problems
- Gröbner Bases assist in computation in polynomial rings
- Integer Programs can be translated into questions about ideals in $\mathbb{C}[x_1, x_2, \dots, x_n, z]$.
- Don't try to implement this in MATLAB