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1. Overview

My research goal is to leverage algebraic and geometric structures to better understand
optimization and machine learning problems. I am particularly interested in connections
between optimization and real and tropical algebraic geometry.

Real algebraic geometry is the study of polynomial equations and inequalities defined over
the real numbers. In recent years, a growing body of work has linked convex optimization
and real algebraic geometry. A key observation which allows for this link is that a sum of
squares certificate that a polynomial is globally nonnegative can be obtained via a semidef-
inite programming feasibility problem. Tropical algebra, on the other hand, studies the
(max,+) semiring structure on R ∪ {−∞} and polynomial and rational functions over this
semiring. The geometric objects associated to such functions are polyhedral. A recent line
of work has connected the study of ReLU neural networks to tropical geometry, showing
that functions which are representable by ReLU neural networks are also representable as
tropical rational functions.

In my PhD work, I contribute to these growing connections. In the realm of real algebraic
geometry, I study systems of quadratic equations and inequalities. In particular, in joint work
with Greg Blekherman [BD24], we use tools from algebraic topology to connect certificates of
emptiness and convexity properties of the solution set of a system of quadratic inequalities to
properties of an associated curve. In ongoing joint work with Greg Blekherman and Rainer
Sinn, we seek low-rank solutions to the semidefinite programming feasibility problems which
certify that a ternary form is a sum of squares. In another direction, in ongoing joint work
with Elizabeth Newman, we study semidefinite programming using the framework of tensor-
tensor products for third-order tensors, connecting the choice of tensor-tensor product to the
representation theory of finite groups. Moving to tropical algebra, in joint work with Lars
Ruthotto [DR24], we provide a heuristic for regression problems over the class of tropical
rational functions, motivated by the connection with ReLU networks. Prior to my PhD work,
I worked on multiobjecitve integer programming. In joint work with Saumya Sinha and
Andrew Schaefer [DSS23], we studied relaxations for such problems and developed analogs
of Lagrangian and superadditive duality for the multiobjective setting.

Detailed summaries of my past and current projects, as well as potential directions for
future research, are included below. Section 2 details work in real algebraic geometry and
optimization, Section 3 details work on regression with tropical rational functions, and Sec-
tion 4 describes work on multiobjective integer programming. Section 5 describes my plans
for future research.

2. Real Algebraic Geometry and Optimization

Real algebraic geometry is concerned with the solution sets of polynomial equations and
inequalities defined over the real numbers. Of particular importance are connections with
convexity and convex optimization. This section details my contributions to the area, orga-
nized across three projects.

2.1. Systems of Quadratics. An important problem in real algebraic geometry is the
certification that a variety has no real points. Semidefinite programming can be used for such
certificates. If Q1, Q2, Q3 are quadratic forms in the variables x0, x1, . . . , xn then −(

∑n
i=0 x

2
i )

is a sum of squares mod the ideal ⟨Q1, Q2, Q3⟩ if and only if there is a positive definite linear
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combination of the Qi and these conditions certify the emptiness of VR(Q1, Q2, Q3) ⊆ RPn.
However, if there is no positive definite linear combination of the Qi, one needs to consider
alternative certificates such as a hierarchy of SDPs.

In [BD24], we use algebraic topology to develop an alternate certificate. Our main tool is
a spectral sequence developed by Agrachev and Lerario [AL12] which relates the homology
of VR(Q1, Q2, Q3) to the eigenvalues of linear combinations of the Qi.

Theorem 1 ([BD24, Theorem 1.1]). Suppose that n ≥ 4 and that g(λ) = det(λ1Q1+λ2Q2+
λ3Q3) is smooth. Then, VR(Q1, Q2, Q3) ⊆ RPn is empty if and only if g is hyperbolic and
there is µ ∈ R3 such that

∑3
i=1 µiQi has n positive eigenvalues and one negative eigenvalue.

The hyperbolicity of the polynomial g gives an interpretation in terms of convexity. A
smooth hyperbolic polynomial is a homogeneous polynomial which defines a hypersurface
that has maximally nested ovaloids, the innermost one bounding a convex set. Any hyper-
bolic plane curve possesses a definite determinantal representation by the Helton-Vinnikov
theorem [HV07]. A consequence of Theorem 1 is that the only other determinantal repre-
sentations of hyperbolic plane curves which define an empty subvariety of RPn must have
a combination which achieves n positive eigenvalues. In particular, there must be a hyper-
bolicity cone P of g which either has positive semidefinite matrices or matrices with exactly
two negative eigenvalues.

The spectral sequence argument used to prove Theorem 1 also provides information about
the solution sets of systems of quadratic inequalities. Let S = {x ∈ Rn | Qi(x, 1) ≤ 0, i =
1, 2, 3} be the affine set of solutions to the inequalities defined by the Qi. Building on work in
[DMS22; BDS24a], we seek a description of conv(S) in terms of aggregations (nonnegative
linear combinations) of the defining inequalities. In [BD24, Theorem 1.2], we show that when
the variety VR(Q1, Q2, Q3) is empty, no nonzero aggregation lies in the hyperbolicity cone
P , and the set S has no points at infinity, then conv(S) can be obtained via finitely many
aggregations. This expands the known cases where conv(S) can be obtained via aggregations
beyond those known in [DMS22; BDS24a].

2.2. Tensor-Tensor Products. A line of work [New19; Kil+21; KKA15] has developed
a family of tensor-tensor products for third order tensors which depends on an invertible
matrix M . Formally, given a, b ∈ Cp, the multiplication a ∗M b = M−1 diag(Ma)Mb turns
Cp into a commutative ring. Third order tensors in Cm×n×p are then viewed as matrices
with entries in Cp, refered to as tubes. Many matrix factorizations, such as the SVD,
have analogs for third order tensors equipped with the ∗M -product. In ongoing work with
Elizabeth Newman, we offer two contributions to this area.

First, we investigate ∗M -semidefinite tensors and semidefinite programming problems. For
the remainder of this section, we assume that M is an orthogonal real matrix. A symmetric
tensor A ∈ Rn×n×p is M -PSD if ⟨X ,A ∗M X⟩ ≥ 0 for all X ∈ Rn×1×p, where ⟨A,B⟩ =∑

i,j,k aijkbijk and a tensor is symmetric if aijk = ajik for all 1 ≤ i, j ≤ n. Such tensors share
many properties analogous to those of PSD matrices. Moreover, given a symmetric tensor A,
membership in PSDn

M can be determined facewise in the transform domain (i.e., by looking

at the tensor Â with tubes Âi,j,: = MAi,j,:). Using the framework of M -PSD tensors, we
study M -semidefinite programming problems, optimization problems of the form

(M -SDP) max⟨C,X⟩ s.t. ⟨A(i),X⟩ = b(i) for i = 1, 2, . . . ,m, and X ∈ PSDn
M .
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The problem (M -SDP) can be used to formulate a minimum nuclear norm tensor completion
problem, similar to [KLL21].

Since membership in PSDn
M can be determined facewise in the transform domain, solv-

ing problems of the form (M -SDP) amounts to solving block diagonal SDPs. We connect
this block diagonalization to the invariant semidefinite programming problems studied by
Gaterman and Parillo [GP04]. In doing so, we provide an interpretation of the ∗M -product
through the lens of representation theory, our second primary contribution.

Let ρ : G → GLp(C) be a representation of a finite group and Cp ≃
⊕m

i=1 Vi the decompo-
sition into irreducibles. If M represents a change of basis from the standard basis on Cp to
a basis compatible with the decomposition into irreducibles, then Schur’s Lemma gives an
explicit subspace Wρ of tubes for which the multiplication map is ρ-equivariant. The linear
equations defining Wρ are described in terms of the dimensions of the Vi in the decomposi-
tion of Cp into irreducibles and the rows of M . If the affine constraints in (M -SDP) enforce
membership in Wρ, then the problem can be written as a standard SDP with matrix variable
of size np× np which is invariant under the representation of G given by ρ̂(g) = Im ⊗ ρ(g).

2.3. Pythagoras Numbers for Ternary Forms. Sums of squares certificates for global
nonnegativity of polynomials correspond to semidefinite programming feasibility problems.
If f ∈ R[x1, x2, . . . , xn]2d is a degree 2d homogeneous polynomial, then f is a sum of squares
if and only if f(x) = [x]⊤d Q[x]d for some positive semidefinite matrix Q, where [x]d is a
vector containing all monomials of degree d in the variables x1, x2, . . . , xn. Such a matrix Q
is called a Gram Matrix for f . The Pythagoras number py(n, 2d) is the minimum rank r
such that every sum of squares f ∈ R[x1, x2, . . . , xn]2d has a Gram matrix of rank at most r.
One can computationally leverage low-rank structure in semidefinite programming problems
through Burer-Monteiro methods, which replace the

(
n−1+d

d

)
×
(
n−1+d

d

)
matrix variable with

a factorization into BB⊤, where B is
(
n−1+d

d

)
× r, see e.g. [BM03].

One application of computing Pythagoras numbers in general is the problem of partially
specified PSD matrix completion problems. This in turn has applications to rigidity theory
and embedding discrete metric spaces into Rr [LV14b; LV14a].

In forthcoming work with Greg Blekherman and Rainer Sinn [BDS24b], we investigate the
cases n = 3 and 8 ≤ 2d ≤ 12. It is well-known that d+1 ≤ py(3, 2d) ≤ d+2 (see e.g. [Ble+22;
Sch17]). In our work, we relate the problem of computing py(3, 2d) to structure theorems for
Artinian Gorenstien algebras [Die96]. Using this approach, we prove that py(3, 2d) = d+ 1
for 2d = 8, 10, 12.

3. Regression with Tropical Rational Functions

A tropical rational function is a function of the form

f(x) = max
i=1,2,...D

(⟨w(i), x⟩+ pi)− max
i=1,2,...,D

(⟨w(i), x⟩+ qi).

Where w1, w2, . . . , wn ∈ Zn. Such functions are piecewise linear and known to be highly
expressive–up to scaling of inputs, any function which can be written as a ReLU Neural
Network can be written as a tropical rational function [ZNL18]. To this end, in [DR24], we
propose a heuristic for ℓ∞-regression over the space of tropical rational functions. Specifically,
given a dataset (x(1), y(1)), (x(2), y(2)), . . . , (x(N), y(N)) ∈ Rn × R and a fixed set of exponents
w(1), w(2), . . . , w(D) ∈ Zn, we want to solve
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(1)

arg min
p1,p2,...,pD,q1,q2,...,qD

(
max

j=1,2,...,N

∣∣∣∣ max
i=1,2,...D

(⟨w(i), x(j)⟩+ pi)− max
i=1,2,...,D

(⟨w(i), x(j)⟩+ qi)− yj

∣∣∣∣) .

To do so, we leverage existing results on tropical polynomial regression to develop an al-
ternating minimization heuristic for (1) which alternates between optimizing the variables
(p1, p2, . . . , pD) and (q1, q2, . . . , qD). This builds on existing work in tropical polynomial re-
gression (see e.g., [MT20]). Experimentally, our heuristic finds approximate solutions to (1);
however, in the context of learning problems these solutions have large validation errors, sug-
gesting a need for regularization. Theoretically, we show that the objective function L in the
problem (1) is itself a tropical rational function of the variables p1, p2, . . . , pD, q1, q2, . . . , qD
and that the alternating minimization heuristic produces iterates which are contained in the
nondifferentiability locus of L, providing a geometric interpretation of the problem.

4. Multiobjective Integer Programming Duality

A multiobjective integer (linear) program is the problem of optimizing several, often
competing, linear objective functions over the integral points of a polyhedron. Here, a feasible
solution x is efficient to a problem with objective matrix C if Cx − Cy ∈ Rk

+ (i.e. has
nonnegative entries) for all feasible solutions y, and we seek the set of all efficient solutions.
Such problems are typically written in the form

(MOIP) Max Cx s.t. Ax ≦ b, x ∈ Zn
+,

where C ∈ Zk×n, A ∈ Rm×n, and b ∈ Rm.
In [DSS23], we investigate relaxations and develop dual programs for (MOIP). A pri-

mary focus in our work is Lagrangian relaxation. Given a matrix Λ of nonnegative multipliers
and a partition of the constraint matrix into two sets of rows A(1) and A(2), the Lagrangian
relaxation of (MOIP) is the problem

(LR(Λ)) Max Cx+ Λ(b(1) − A(1)x) s.t. A(2)x ≦ b(2), x ∈ Zn
+.

We show via example that there can be efficient solutions to (LR(Λ)) whose corresponding
objective values provide strictly better bounds on the set of feasible objectives for (MOIP)
than a convex hull relaxation. This contrasts with the single objective case, where the
convex hull relaxation is the tightest possible relaxation. We introduce Lagrangian and
superadditive dual problems, which generalize Lagrangian and superadditive dual problems
for the single objective case and provide conditions for the dual to be strong at supported
efficient solutions, i.e. those which are also efficient to both (MOIP) and its convex hull
relaxation [DSS23, Theorems 7 and 8].

5. Future Directions

I have plans for several directions for future research, extending my current results and
broadening into adjacent areas. A direct extension of the work in [BD24] is to consider sums
of squares certificates for properties of systems of three quadratics.
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Question 5.1. Let Q1, Q2, Q3 be quadratic forms on Rn+1. What is the minimum posi-
tive integer d such that −(

∑n
i=0 x

2
i )

d is a sum of squares mod the ideal ⟨Q1, Q2, Q3⟩ when
VR(Q1, Q2, Q3) is empty? What is the minimum nonnegative even integer 2d such that if Q1

is positive on VR(Q2, Q3) then there is f ∈ Σn,2d such that fQ1 is SOS mod ⟨Q2, Q3⟩?
It was shown by Barvinok in [Bar93] that the emptiness of a real variety defined by m

quadratic forms can be determined in time polynomial in n. Question 5.1 is additionally
related to existing results in the real algebraic geometry literature, where it is known that
any nonnegative quadratic form on a variety of minimal degree is a sum of squares of linear
forms [BSV16]. A variety X defined by the complete intersection of two quadratics is of
almost minimal degree, that is, codim(X) = deg(X) + 2 and therefore a natural candidate
for future work. The problem of minimizing a quadratic function subject to a finite number
of quadratic constraints has also been studied in the optimization literature [Bie16], where
it is known that a polynomial time algorithm can solve the problem. We propose to answer
these questions by building on the results in [BD24]. Theorem 1 shows that there are limited
possibilities for the sturcture of the degree 2 part of the ideal I = ⟨Q1, Q2, Q3⟩. We intend to
leverage this dichotomy to understand conditions for existence of a linear functional ℓ which
separates Σn,2d and I2d. Moreover, due to the limited structure of I2, we conjecture that the
integer d in Question 5.1 is independent of the number of variables n.
This is similar to many problems in convex algebraic geometry, where it is necessary to

understand linear functionals on the vector space of polynomials ℓ ∈ R[x0, . . . , xn]
∗
2d. In many

cases, one wishes to decompose ℓ into the sum of point evaluations ℓ =
∑k

i=1 evzi , with an
upper bound on the number of points k. By identifying ℓ = ⟨F, •⟩ through the apolar inner
product, this becomes a question about symmetric tensor decomposition. Moreover, one
often needs the points zi to satisfy some reality conditions, for example coming in complex
conjugate pairs or being almost real, meaning that all points are real except possibly one
complex conjugate pair. The study of almost-real rank of forms F ∈ R[x0, x1]d was initiated
in [BCJ24], and we propose extending these results with a focus on the underlying geometry.

Question 5.2. What are typical and maximal almost real ranks of forms F ∈ R[x0, . . . , xn]d?
What are the geometric properties of schemes Γ ⊆ Pn which certify the almost real rank
of F? More generally, what are the answers to the analogous questions if we are concerned
with less restrictive reality requirements on the points?

Symmetric tensor ranks have also recently appeared in the study of neural networks with
monomial activation functions, as important components in descriptions of the neurovariety,
the Zariski closure of the set of functions representable with a given architecture [Koh24]. I
plan to investigate analogous questions for networks with ReLU activation functions from a
tropical perspective.

Question 5.3. Is the set of functions representable by a ReLU neural network of fixed
architecture given by trop(X) for some semialgebraic set X defined over R{{t}}? How do
factorizations of tropical polynomials affect representability?

Answering Question 5.3 would help to strengthen the connection between ReLU network
architecture and the geometry of tropical functions. Ultimately, this could establish a use for
applying the alternating heuristic for the solution of (1) to the training of ReLU networks.
Additionally, determining if (1) has a solution with objective less than some fixed δ > 0 is
a tropical linear programming feasiblity problem, inviting the use of tropical convexity to
understand bounds on approximation error for ReLU networks of specified architecture.
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