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Introduction

Tropical algebra has recently been connected extensively with neural networks. In
particular, [1, 3] show that popular neural network architectures have tropical alge-
braic descriptions. We are working to answer the following questions:

1. Is it feasible to solve regression problems over tropical rational functions?

2. What are the implications for neural network training and initialization?

We present an algorithm for regression with tropical rational functions and examine
its use as a heuristic for neural network initialization.

Tropical Rational Regression

Our method for tropical rational regression is based on the following known result
about solutions to max-plus linear systems of equations (e.g. [2]):

Let A ∈ Rm×n and b ∈ Rm and denote by ⊞ and ⊞′ max-plus and min-plus
matrix-vector multiplication, respectively. Then,

x̂ := (−A⊤)⊞′ b = argmin
x
∥A⊞ x− b∥p s.t. A⊞ x ≤ b

and

x̂ +
1

2
∥A⊞ x̂∥∞ = argmin

x
∥A⊞ x− b∥∞

Let D = {(xi, yi)}Ni=1 ⊆ Rn × R be a dataset. A tropical rational function r is
the difference of two tropical polynomials and has the form

r(x) = p(x)− q(x) = max
w∈W

(w⊤x + pw)− max
w∈W

(w⊤x + qw)

for some finite subset W ⊆ Zn
≥0. Set X ∈ RN×|W | to be the matrix with entries

Xi,w = (w⊤xi). The minimization problem for tropical regression is

min
r∈T(x)

∥
[
r(x1) r(x2) · · · r(xN )

]⊤ − y∥∞ = min
p,q
∥X ⊞ p−X ⊞ q− y∥∞.

For fixed q, minp ∥X ⊞ p − (X ⊞ q + y)∥∞ is a tropical polynomial regression
problem. So, we can compute

p∗(q) = −XT⊞′(X⊞q+y)+
1

2

∥∥∥X ⊞
(
−XT ⊞′ (X ⊞ q + y)

)
− (X ⊞ q + y)

∥∥∥
∞

,

and similarly for q∗(p). Alternating between polynomial regression for the numerator
provides a heuristic for∞-norm regression over tropical rational functions using only
max-plus and min-plus matrix-vector products.

Algorithm 1 Alternating fit for tropical rational functions

Input: Dataset D = (xi, yi)
N
i=1 ⊆ Rn × R,

Set of permissible exponents W ⊆ Zn
≥0,

Maximum number of iterations kmax

Output: Vectors p and q of coefficients of tropical polynomials such that p(xi)− q(xi) ≈ yi

1: X ∈ RN×|W | ←Xi,w = (w⊤xi)
2: p0,q0 ← −∞,q0

0 ← mean(y)
3: for k ≤ kmax do
4: pk ← argminp ∥X ⊞ p−X ⊞ qk−1 − y∥∞
5: qk ← argminq ∥X ⊞ pk −X ⊞ q− y∥∞
6: end for
7: p← pkmax; q← qkmax

Results

We apply Algorithm 1 to two datasets. The noisy sin dataset consists of N = 200 pairs (xi, yi)

consisting of uniformly spaced points xi ∈ [−1, 12] and yi = sin(xi)+ϵi, where ϵi
iid∼ N (0, 0.052).

The peaks dataset is generated in MATLAB and consists of 492 datapoints (xi, yi) equally
spaced in the grid [−3, 3]2 and values zi corresponding to a nonlinear combination of Gaussians.
For the noisy sin dataset, we fit a tropical rational function which is the difference of two degree
15 tropical polynomials. For the peaks dataset, we fit a tropical rational function which is the
difference of two tropical polynomials with exponents W = {(w1, w2)|0 ≤ w1, w2 ≤ 31} ⊆ Z2.
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Fig. 1: Tropical rational approximations to noisy sin data and peaks data and the convergence behavior of Algorithm 1 during training.

ReLU Neural Networks

A fully connected ReLU neural network is a function ν : Rn→ R such that

ν = ρ(L) ◦ σ ◦ ρ(L−1) ◦ σ ◦ · · · ◦ σ ◦ ρ(1)

where σ(x) = max(x, 0) and ρ(j) is affine linear. By [3], ReLU neural networks with integer
weights are tropical rational functions. Because

max(a⊤1 x + b1, a
⊤
2 x + b2) =

[
1 1 −1

]
σ

a1 − a⊤2
a2
−a2

x +

b1 − b2
b2
−b2


is a fully connected network and max(ν1, ν2) = σ(ν1 − ν2) + σ(ν2)− σ(−ν2) for any networks
ν1, ν2, we can express a tropical rational function as a ReLU network whose depth grows with
log2(#monomials) and whose hidden layers have a natural 3× 6 block sparsity structure.

Neural Network Initialization

We use Algorithm 1 to provide a heuristic for weight initialization in ReLU networks,
which we fit to the noisy sin and peaks datasets. For each dataset, we compare fully
connected networks with weight initialization determined by tropical rational regres-
sion (Full Trop), fully connected networks with the same architecture and randomly
intialized weights (Full Rand), networks with the block 3 × 6 sparsity pattern en-
forced during training and tropical initialization (Sparse Trop), and networks with
the block 3 × 6 sparsity pattern and randomly initialized weights (Sparse Rand).
The random initialization is the PyTorch default. Networks are trained in PyTorch
with a mean square error loss function.
The tropical rational regression initialization heuristic outperforms the PyTorch
default initialization for the noisy sin dataset:

Full Trop Sparse Trop Full Rand Sparse Rand

Loss at Initialization 0.003859 0.003837 0.596953 0.776548
Loss at 1000 Epochs 0.002364 0.002611 0.006050 0.002907

Tab. 1: Training loss across initialization strategies for neural networks fit to noisy sin data

However, the tropical initialization does not outperform the default initialization
for the peaks dataset:

Full Trop Sparse Trop Full Rand Sparse Rand

Loss at Initialization 0.155525 0.154782 3.882785 3.482387
Loss at 100 Epochs 0.011248 0.011371 0.005648 0.006236

Tab. 2: Training loss across initialization strategies for neural networks fit to peaks data

Conclusions and Future Directions

We have proposed an algorithm for regression with tropical rational functions. This
method experimentally appears to be effective and quick to compute. The use of this
method as a heuristic for the initialization of neural networks remains open, with
successful and unsuccessful examples. Future goals are to

• Develop a better theoretical understanding of the convergence behavior of Al-
gorithm 1. In particular, develop an informed criterion to stop iterations.

• Modify Algorithm 1 to enforce sparsity during tropical rational regression. This
could allow for a data-informed choice of monomial basis for the numerator and
denominator polynomials.

• Explore different neural network architectures for initialization (e.g. skip con-
nections, architectures informed by activation regions). In general, there are
many neural networks which can represent a given function. Different architec-
tures may benefit more from tropical initialization.
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