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Inverse Problems

b = A(x) + ε

• Noisy observations b ∈ Rm

• Known forward process A : Rn → Rm

• Parameters of interest x ∈ Rn

• Noise ε ∈ Rm

Challenges
• Large scale
• Ill-posedness
• Uncertainty quantification

Deblurring Problem

Tomography Problem
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Machine Learning Techniques for Inverse Problems

Previous Works

• Full inversion, surrogate modeling [Kulkarni et al. 2016]

• Regularization [Afkham et al. 2021; Li et al. 2020]

• Uncertainty quantification [Goh et al. 2019; Lan et al. 2022]

[Arridge et al. 2019], [Bai et al. 2020], [Lucas et al. 2018]
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Encoder Decoder Networks

Supervised learning technique, popular network architecture in a variety of
machine learning tasks

• b ∈ Rm

• z ∈ Rr with 0 < r < min(m,n)
• x ∈ Rn

• e : Rn → Rr

• d : Rr → Rm
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Autoencoders

Self-supervised learning technique, often used in dimensionality reduction and
denoising applications

• b ∈ Rm

• zb ∈ Rr with 0 < r < m
• eb : Rm → Rr

• db : Rr → Rm
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Paired Autoencoders for Inference and Regularization (PAIR)

Key ideas
• use self-supervised learning to
create an autoencoder for targets, x

• use self-supervised learning to
create an autoencoder for inputs, b

• use supervised learning to find a
forward and/or inverse mapping
between latent spaces

Works with similar paired structures: [Kun et al. 2015], [Feng et al. 2023]
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Theory for Linear Autoencoders

Consider
zx = ex(x) = Ex with E ∈ Rr×n

and
x ≈ dx(zx) = Dzx with D ∈ Rn×r

Then, define a linear autoencoder

(dx ◦ ex)(x) = DE︸︷︷︸
=Y

x ≡ Yx
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Bayes Risk Minimization

Let X be a random variable with a given probability distribution. An optimal linear
autoencoder is given by

(Ê, D̂) = argmin
E,D

E ‖DEX − X‖22

which simplifies to

Ŷ = argmin
rank(Y)≤r

f (Y) = E ‖YX − X‖22 = E ‖(Y− I)X‖22
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Bayes Risk Minimization

Given random variable X with symmetric positive definite second moment

• EXX> = Γ = LL>

Optimization Problem

min
rank(Y)≤r

f (Y) = E tr
(
X>(Y− I)>(Y− I)X

)
= E tr

(
(Y− I)>(Y− I)XX>

)
= tr

(Y− I)>(Y− I)EXX>︸ ︷︷ ︸
LL>

 = tr
(
L>(Y− I)>(Y− I)L

)
= ‖(Y− I)L‖2F
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Bayes Risk Minimization

• Theorem •

Let matrix L ∈ Rn×n have full rank with SVD given by L = ULΣLV>L . Then

Ŷ = UL,rU>
L,r,

where UL,r contains the first r columns of orthogonal matrix UL, is a solution
to the minimization problem

min
rank(Y)≤r

‖YL− L‖2F,

having a minimal ‖Y‖F. This solution is unique if and only if either r ≥ n or
1 ≤ r < n and σr(L) > σr+1(L). [Friedland and Torokhti 2007], [Chung and Chung 2017]
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Bayes Risk Minimization Summary

• The low rank solution Ŷ = UL,rU>
L,r is unique for given conditions

• The decomposition into encoder Ê and decoder D̂ is not unique, since

Ŷ = UL,rK︸ ︷︷ ︸
D̂

K−1U>
L,r︸ ︷︷ ︸

Ê

for any invertible r × r matrix K
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Empirical Bayes Risk

• Work directly with samples of a fixed distribution
• Realizations x1, . . . , xN of random variable X stored as

X = [x1, . . . , xN] ∈ Rn×N

One optimal choice of encoder and decoder

Ê = K−1U>
X,r and D̂ = UX,rK

which is a low-rank SVD approximation of X
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Linear Mapping between Latent Spaces

• Inverse mapping: Consider

ZX =

 | |
ex(x1) . . . ex(xN)

| |

 and ZB =

 | |
eb(b1) . . . eb(bM)

| |


then, using empirical Bayes risk minimization

M̂† = argmin
M†

∥∥∥M†ZB − ZX
∥∥∥2
F
= ZXZ†B

• Forward mapping: Analogously,

M̂ = ZBZ†X

[Feng et al. 2023]
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Computed Tomography Example with Shepp Logan Phantoms

Noisy Sinogram Inputs, b Shepp Logan Targets, x
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Results from Linear PAIR

Emma Hart | ehart5@emory.edu | Emory University 14/25



Comparison of Linear Techniques

• Input Autoencoder: ‖DbEbb− b‖
• Target Autoencoder: ‖DxExx− x‖
• PAIR Inversion: ‖DxM†Ebb− x‖
• PAIR Forward: ‖DbMExx− b‖
• TSVD Inversion: ‖VA,rΣ−>

A,r U>
A,rb− x‖

• TSVD Forward: ‖UA,rΣA,rV>A,rx− b‖
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Deblurring Example with MNIST Digits

Blurry Digit Inputs, b Clear Digit Targets, x
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Nonlinear PAIR for MNIST Deblurring
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Results: MNIST Testing Data
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Results: Other Similar Images
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Advantages and Disadvantages

• PAIR can outperform existing methods
when (# paired training images) is
limited, but (# unpaired images) is
abundant

• Fully supervised approaches can
achieve more accurate results, but can
take longer to converge
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Out of Distribution Detection
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Out of Distribution Metrics

• PAIR offers some cheaply computable metrics to help predict if a new sample
is “in distribution” of training data

‖(db◦eb)(b)‖2
‖b‖2

‖db(Mex(xpred))−b‖2
‖b‖2

‖(dx◦ex)(xpred)−xpred‖2
‖xpred‖2

‖M†eb(b)−ex(xpred)‖2
‖ex(xpred)‖2

‖Mex(xpred)−eb(b)‖2
‖eb(b)‖2
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Out of Distribution Detection
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Continuing Work: Refining Solution with Latent Space Regularization

• When our out of distribution metrics are high, this may indicate we need to
refine our solution

• We can still use the parametrization we found and leverage our forward
model:

argmin
z∈Zx

1
2 ‖A (Dx(z))− b‖2 + α

2 ‖z− z?‖2

https://arxiv.org/abs/2405.13220
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Conclusions and Future Work

Conclusions

• Autoencoders can be used for dimension reduction in inverse problems
• Self-supervised learning of inputs and targets
• Supervised learning for mapping between latent spaces

• Theory for linear autoencoders and linear mappings
• Numerical results are promising, especially when paired data is limited

Future work

• Uncertainty quantification with variational autoencoders
• Explore new regularization/priors
• Generalization to other problems/data with exclusions
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Experiment Design

• 60, 000 28× 28 pixel handwritten MNIST images (50, 000 training and 10, 000
testing)

• Both convolutional neural network (CNN) autoencoders, each with 236
parameters

• 2 layer encoder (77 parameters), 3 layer decoder (159 parameters)
• 3× 3 kernel
• ReLU activation at each inner layer, sigmoid at output layer
• Adam optimization
• mean squared error loss

• Latent space with dimension 7× 7× 3
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