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Investigating Two Types of Combustion

Smoldering Combustion Flaming Combustion
@ burning of solid fuel @ burning of gaseous fuel
@ slow o fast
@ low temperature @ high temperature

These two types of combustion are intimately related, occurring together
in nature and seemingly feeding into each other. The aim of this project
was to give further insight into this relationship and the transition from
smoldering to flaming.
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Reaction Steps

Pyrolysis and Fuel Oxidation:

oxygen + solid fuel — char + flammable gas

Char Oxidation:
oxygen + char — ash + smoke

Gas Oxidation:

oxygen + flammable gas — smoke
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Model

Initial State of the System

<= Gas Velocity

< Ambient Air
Solid Fuel
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Model

Reaction 1: Pyrolysis and Fuel Oxidation

<= Gas Velocity

Ambient Air

X 3

Flammable Gas
Char Solid Fuel
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Model

Reaction 1: Pyrolysis and Fuel Oxidation

<= Gas Velocity
- Ambient Air
Flammable Gas
Char. Solid Fuel
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Model

Reaction 1: Pyrolysis and Fuel Oxidation
Reaction 3: Flammable Gas Oxidation

Smoke

<= Gas Velocity

Flammable Gas

Ambient Air
Char.

Solid Fuel
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Mathematical Model: Reaction Rates

Reaction rates (W;) are assumed to be have an Arrhenius dependence on

tem peratu re.
E-
Wy = KiPY pre” RT

Ws = KoPY pee™ 7
2 E3
W3 = KsP“YFe rT

P pressure pr  solid fuel density
Y  oxygen fraction pc  char density

F flammable gas fraction T  temperature

K;  pre-exponential terms E; activation energies
R ideal gas constant
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Mathematical Model: Heat Capacity Terms

Heat capacity terms are constructed such that we can consider unequal

heat capacities for each of the products, reactions, and inert gas species in
the system:

C= Cfpf+ccpc+Capa+coxypg+Cngpg+Csm5pg+Ci(]-_ Y_F_S)pg

M = pgvglcoxY + cieF + csmS +ci(l— Y — F = 5)]

C  weighted heat capacity M

weighted heat capacity flux
Y  oxygen fraction F

flammable gas fraction

S smoke fraction v gas velocity

p  densities (for fuel, char, ash, total gas)

¢ heat capacities (for fuel, char, ash, oxygen, flammable gas, smoke, inert gas)

Emma Hart (Colgate University) Three Step Reaction Model of Combustion January 2022 9/23



Mathematical Model: Conservation of Energy

Energy is assumed to be conserved in an adiabatic system with no heat

losses:
oCT 8MT_ 2T

=\ W 4% W
5 T ox aX2+Ql 1+ QW2+ QsWs3
t time space
C  weighted heat capacity weighted heat capacity flux

T  temperature reaction rates

> X T x

Q; heat of reactions thermal conductivity
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Mathematical Model: Solid Masses

Fuel Mass:

opr
or
Char Mass: 5
% = paWr — Wa
Ash Mass:
dpa
ot = Ha2 VV2
t time T  temperature
pr  solid fuel density pe  char density
pa  ash density W;  reaction rates
te1  char produced per unit fuel ta2  ash produced per unit char
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Mathematical Model: Gas Masses

Total Gas Mass:

0 OpgV,
ﬁ_i_ Pg g:(,Ucl—1)W1+(Na2_1)W2+(M5m3_1)W3

ot Ox
Oxidizer Mass:
OpsY  OpgveY %Y
8gt + gaxg = Doxng — poxit W1 — proxoWa — piox3 W3
t time X  space
Pg  gas density vy gas velocity
Y  oxygen fraction W;  reaction rates
ltc1  char produced per unit fuel a2 ash produced per unit char
sm3  smoke produced per unit gas Loxi  OXygen consumed per reaction

Do« oxygen diffusion coefficient
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Mathematical Model: Gas Masses

Flammable Gas Mass:

OpgF  OpgvgF 0*F
=D — Wwp — W- 1
ot + Ox fgPg Ix2 +:“fg1 1 3 ( )

Smoke Mass:

2
8ggt5 + apgigs - Dsmpggxl;_ + Hsm2 W2 + Hsm3 W3 (2)

t time X space
Pg  gas density v  gas velocity

F flammable gas fraction S smoke fraction
W; reaction rates i1 flam-gas produced per unit fuel

Wsm2 smoke produced per unit char Ism3 smoke produced per unit gas

Dy, flam-gas diffusion coefficient Ds, smoke gas diffusion coefficient
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Mathematical Model: Gas Momentum and Equation of
State

This model assumes Darcy's law for fluid flow through a porous medium
and the ideal gas law to give the following two equations.

Gas Momentum:
oP

I —kfvg
Equation of State:
P = pgRT
X  space P pressure
v gas velocity pg  gas density
T  temperature ks friction coefficient
R  ideal gas constant
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Further Developing Equations

Nondimensionalization

To reduce parameters and simplify the system, these equations were
combined and nondimensionalized to create a system of nine PDEs

Moving Coordinate System
Then, this system was converted to moving coordinates of the form
R=x+4ut, t=t
@ a uniformly propagating wave would then appear as a solution
independent of time in this system

@ u is the speed of the propagating wave; it is constant in space, but
may vary in time with pulsations of the wave

@ & = 0 defined where ps = 3 (where half of fuel is consumed)

to keep the reaction front defined at x =0
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Results and Limitations

Results
It was found

@ this system could support pyrolysis/fuel-oxidation, smoldering, and
flaming solution types

@ considering unequal gas heat capacities did have qualitative effects on
the solutions

Limitations
e Changing dt significantly affects how the solutions evolve

@ Very close to the ending of this project, a sign change mistake was
found in the coded finite difference schemes of the oxygen, flammable
gas, and smoke fractions. Initial simulations with this error fixed did
not seem to help the system’s sensitivity to the time-step size, or to
dramatically change the types of solutions that can evolve.
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Pyrolysis and Fuel Oxidation
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Smoldering
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Flaming
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Different Gas Capacities: Pyrolysis and Fuel Oxidation

Equal Gas Heat Capacities

Unequal Gas Heat Capacities
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Different Gas Capacities: Smoldering

Equal Gas Heat Capacities Unequal Gas Heat Capacities
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Different Gas Capacities:

Equal Gas Heat Capacities
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Unequal Gas Heat Capacities
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Further Work

@ Exploring the parameter space with corrected code
@ Further looking into changing the effect of dt

@ Adding an adaptive time-stepping scheme, that could perhaps help to
support more dramatic flaming solutions

@ Looking for a region of bi-stability in the parameter space, where
either type of solution could form based only on differences in the
initial conditions
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