b. Show that B is not invertible.
[Hint: Column $3=3$ (column 2) - column 1.]

Exercise 2.4.36 Show that a square matrix A is invertible if and only if it can be left-cancelled: $A B=A C$ implies $B=C$.
Exercise 2.4.37 If $U^{2}=I$, show that $I+U$ is not invertible unless $U=I$.

Exercise 2.4.38
a. If J is the 4×4 matrix with every entry 1 , show that $I-\frac{1}{2} J$ is self-inverse and symmetric.
b. If X is $n \times m$ and satisfies $X^{T} X=I_{m}$, show that $I_{n}-2 X X^{T}$ is self-inverse and symmetric.

Exercise 2.4.39 An $n \times n$ matrix P is called an idempotent if $P^{2}=P$. Show that:
a. I is the only invertible idempotent.
b. P is an idempotent if and only if $I-2 P$ is selfinverse.
c. U is self-inverse if and only if $U=I-2 P$ for some idempotent P.
d. $I-a P$ is invertible for any $a \neq 1$, and that $(I-a P)^{-1}=I+\left(\frac{a}{1-a}\right)^{P}$.

Exercise 2.4.40 If $A^{2}=k A$, where $k \neq 0$, show that A is invertible if and only if $A=k I$.

Exercise 2.4.41 Let A and B denote $n \times n$ invertible matrices.
a. Show that $A^{-1}+B^{-1}=A^{-1}(A+B) B^{-1}$.
b. If $A+B$ is also invertible, show that $A^{-1}+B^{-1}$ is invertible and find a formula for $\left(A^{-1}+B^{-1}\right)^{-1}$.

Exercise 2.4.42 Let A and B be $n \times n$ matrices, and let I be the $n \times n$ identity matrix.
a. Verify that $A(I+B A)=(I+A B) A$ and that $(I+B A) B=B(I+A B)$.
b. If $I+A B$ is invertible, verify that $I+B A$ is also invertible and that $(I+B A)^{-1}=I-B(I+A B)^{-1} A$.

2.5 Elementary Matrices

It is now clear that elementary row operations are important in linear algebra: They are essential in solving linear systems (using the gaussian algorithm) and in inverting a matrix (using the matrix inversion algorithm). It turns out that they can be performed by left multiplying by certain invertible matrices. These matrices are the subject of this section.

Definition 2.12 Elementary Matrices

An $n \times n$ matrix E is called an elementary matrix if it can be obtained from the identity matrix I_{n} by a single elementary row operation (called the operation corresponding to E). We say that E is of type I, II, or III if the operation is of that type (see Definition 1.2).

Hence

$$
E_{1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad E_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 9
\end{array}\right], \quad \text { and } \quad E_{3}=\left[\begin{array}{ll}
1 & 5 \\
0 & 1
\end{array}\right]
$$

are elementary of types I, II, and III, respectively, obtained from the 2×2 identity matrix by interchanging rows 1 and 2 , multiplying row 2 by 9 , and adding 5 times row 2 to row 1 .

Suppose now that the matrix $A=\left[\begin{array}{lll}a & b & c \\ p & q & r\end{array}\right]$ is left multiplied by the above elementary matrices E_{1}, E_{2}, and E_{3}. The results are:

$$
\begin{aligned}
E_{1} A & =\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{lll}
a & b & c \\
p & q & r
\end{array}\right]=\left[\begin{array}{lll}
p & q & r \\
a & b & c
\end{array}\right] \\
E_{2} A & =\left[\begin{array}{ll}
1 & 0 \\
0 & 9
\end{array}\right]\left[\begin{array}{lll}
a & b & c \\
p & q & r
\end{array}\right]=\left[\begin{array}{ccc}
a & b & c \\
9 p & 9 q & 9 r
\end{array}\right] \\
E_{3} A & =\left[\begin{array}{ll}
1 & 5 \\
0 & 1
\end{array}\right]\left[\begin{array}{lll}
a & b & c \\
p & q & r
\end{array}\right]=\left[\begin{array}{ccc}
a+5 p & b+5 q & c+5 r \\
p & q & r
\end{array}\right]
\end{aligned}
$$

In each case, left multiplying A by the elementary matrix has the same effect as doing the corresponding row operation to A. This works in general.

Lemma 2.5.1: ${ }^{10}$

If an elementary row operation is performed on an $m \times n$ matrix A, the result is $E A$ where E is the elementary matrix obtained by performing the same operation on the $m \times m$ identity matrix.

Proof. We prove it for operations of type III; the proofs for types I and II are left as exercises. Let E be the elementary matrix corresponding to the operation that adds k times row p to row $q \neq p$. The proof depends on the fact that each row of $E A$ is equal to the corresponding row of E times A. Let $K_{1}, K_{2}, \ldots, K_{m}$ denote the rows of I_{m}. Then row i of E is K_{i} if $i \neq q$, while row q of E is $K_{q}+k K_{p}$. Hence:

$$
\begin{aligned}
& \text { If } i \neq q \text { then row } i \text { of } E A=K_{i} A=(\text { row } i \text { of } A) \\
& \begin{aligned}
\text { Row } q \text { of } E A=\left(K_{q}+k K_{p}\right) A & =K_{q} A+k\left(K_{p} A\right) \\
& =(\text { row } q \text { of } A) \text { plus } k(\text { row } p \text { of } A) .
\end{aligned}
\end{aligned}
$$

Thus $E A$ is the result of adding k times row p of A to row q, as required.
The effect of an elementary row operation can be reversed by another such operation (called its inverse) which is also elementary of the same type (see the discussion following (Example 1.1.3). It follows that each elementary matrix E is invertible. In fact, if a row operation on I produces E, then the inverse operation carries E back to I. If F is the elementary matrix corresponding to the inverse operation, this means $F E=I$ (by Lemma 2.5.1). Thus $F=E^{-1}$ and we have proved

Lemma 2.5.2

Every elementary matrix E is invertible, and E^{-1} is also a elementary matrix (of the same type). Moreover, E^{-1} corresponds to the inverse of the row operation that produces E.

The following table gives the inverse of each type of elementary row operation:

Type	Operation	Inverse Operation
I	Interchange rows p and q	Interchange rows p and q
II	Multiply row p by $k \neq 0$	Multiply row p by $1 / k, k \neq 0$
III	Add k times row p to row $q \neq p$	Subtract k times row p from row $q, q \neq p$

[^0]Note that elementary matrices of type I are self-inverse.

Example 2.5.1

Find the inverse of each of the elementary matrices

$$
E_{1}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad E_{2}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 9
\end{array}\right], \quad \text { and } \quad E_{3}=\left[\begin{array}{ccc}
1 & 0 & 5 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

Solution. E_{1}, E_{2}, and E_{3} are of type I, II, and III respectively, so the table gives

$$
E_{1}^{-1}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]=E_{1}, \quad E_{2}^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \frac{1}{9}
\end{array}\right], \quad \text { and } \quad E_{3}^{-1}=\left[\begin{array}{rrr}
1 & 0 & -5 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

Inverses and Elementary Matrices

Suppose that an $m \times n$ matrix A is carried to a matrix B (written $A \rightarrow B$) by a series of k elementary row operations. Let $E_{1}, E_{2}, \ldots, E_{k}$ denote the corresponding elementary matrices. By Lemma 2.5.1, the reduction becomes

$$
A \rightarrow E_{1} A \rightarrow E_{2} E_{1} A \rightarrow E_{3} E_{2} E_{1} A \rightarrow \cdots \rightarrow E_{k} E_{k-1} \cdots E_{2} E_{1} A=B
$$

In other words,

$$
A \rightarrow U A=B \quad \text { where } U=E_{k} E_{k-1} \cdots E_{2} E_{1}
$$

The matrix $U=E_{k} E_{k-1} \cdots E_{2} E_{1}$ is invertible, being a product of invertible matrices by Lemma 2.5.2. Moreover, U can be computed without finding the E_{i} as follows: If the above series of operations carrying $A \rightarrow B$ is performed on I_{m} in place of A, the result is $I_{m} \rightarrow U I_{m}=U$. Hence this series of operations carries the block matrix $\left[\begin{array}{ll}A & I_{m}\end{array}\right] \rightarrow\left[\begin{array}{ll}B & U\end{array}\right]$. This, together with the above discussion, proves

Theorem 2.5.1

Suppose A is $m \times n$ and $A \rightarrow B$ by elementary row operations.

1. $B=U A$ where U is an $m \times m$ invertible matrix.
2. U can be computed by $\left[\begin{array}{ll}A & I_{m}\end{array}\right] \rightarrow\left[\begin{array}{ll}B & U\end{array}\right]$ using the operations carrying $A \rightarrow B$.
3. $U=E_{k} E_{k-1} \cdots E_{2} E_{1}$ where $E_{1}, E_{2}, \ldots, E_{k}$ are the elementary matrices corresponding (in order) to the elementary row operations carrying A to B.

Example 2.5.2

If $A=\left[\begin{array}{lll}2 & 3 & 1 \\ 1 & 2 & 1\end{array}\right]$, express the reduced row-echelon form R of A as $R=U A$ where U is invertible.
Solution. Reduce the double matrix $\left[\begin{array}{ll}A & I\end{array}\right] \rightarrow\left[\begin{array}{ll}R & U\end{array}\right]$ as follows:

$$
\begin{aligned}
{\left[\begin{array}{ll}
A & I
\end{array}\right]=\left[\begin{array}{lll|ll}
2 & 3 & 1 & 1 & 0 \\
1 & 2 & 1 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll|ll}
1 & 2 & 1 & 0 & 1 \\
2 & 3 & 1 & 1 & 0
\end{array}\right] } & \rightarrow\left[\begin{array}{rrr|rr}
1 & 2 & 1 & 0 & 1 \\
0 & -1 & -1 & 1 & -2
\end{array}\right] \\
& \rightarrow\left[\begin{array}{rrr|rr}
1 & 0 & -1 & 2 & -3 \\
0 & 1 & 1 & -1 & 2
\end{array}\right]
\end{aligned}
$$

Hence $R=\left[\begin{array}{rrr}1 & 0 & -1 \\ 0 & 1 & 1\end{array}\right]$ and $U=\left[\begin{array}{rr}2 & -3 \\ -1 & 2\end{array}\right]$.

Now suppose that A is invertible. We know that $A \rightarrow I$ by Theorem 2.4.5, so taking $B=I$ in Theorem 2.5.1 gives $\left[\begin{array}{ll}A & I\end{array}\right] \rightarrow\left[\begin{array}{ll}I & U\end{array}\right]$ where $I=U A$. Thus $U=A^{-1}$, so we have $\left[\begin{array}{ll}A & I\end{array}\right] \rightarrow\left[\begin{array}{ll}I & A^{-1}\end{array}\right]$. This is the matrix inversion algorithm in Section 2.4. However, more is true: Theorem 2.5.1 gives $A^{-1}=U=E_{k} E_{k-1} \cdots E_{2} E_{1}$ where $E_{1}, E_{2}, \ldots, E_{k}$ are the elementary matrices corresponding (in order) to the row operations carrying $A \rightarrow I$. Hence

$$
\begin{equation*}
A=\left(A^{-1}\right)^{-1}=\left(E_{k} E_{k-1} \cdots E_{2} E_{1}\right)^{-1}=E_{1}^{-1} E_{2}^{-1} \cdots E_{k-1}^{-1} E_{k}^{-1} \tag{2.10}
\end{equation*}
$$

By Lemma 2.5.2, this shows that every invertible matrix A is a product of elementary matrices. Since elementary matrices are invertible (again by Lemma 2.5.2), this proves the following important characterization of invertible matrices.

Theorem 2.5.2

A square matrix is invertible if and only if it is a product of elementary matrices.

It follows from Theorem 2.5.1 that $A \rightarrow B$ by row operations if and only if $B=U A$ for some invertible matrix B. In this case we say that A and B are row-equivalent. (See Exercise 2.5.17.)

Example 2.5.3

Express $A=\left[\begin{array}{rr}-2 & 3 \\ 1 & 0\end{array}\right]$ as a product of elementary matrices.
Solution. Using Lemma 2.5.1, the reduction of $A \rightarrow I$ is as follows:

$$
A=\left[\begin{array}{rr}
-2 & 3 \\
1 & 0
\end{array}\right] \rightarrow E_{1} A=\left[\begin{array}{rr}
1 & 0 \\
-2 & 3
\end{array}\right] \rightarrow E_{2} E_{1} A=\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right] \rightarrow E_{3} E_{2} E_{1} A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

where the corresponding elementary matrices are

$$
E_{1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad E_{2}=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right], \quad E_{3}=\left[\begin{array}{cc}
1 & 0 \\
0 & \frac{1}{3}
\end{array}\right]
$$

Hence $\left(E_{3} E_{2} E_{1}\right) A=I$, so:

$$
A=\left(E_{3} E_{2} E_{1}\right)^{-1}=E_{1}^{-1} E_{2}^{-1} E_{3}^{-1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{rr}
1 & 0 \\
-2 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right]
$$

Smith Normal Form

Let A be an $m \times n$ matrix of rank r, and let R be the reduced row-echelon form of A. Theorem 2.5.1 shows that $R=U A$ where U is invertible, and that U can be found from $\left[\begin{array}{ll}A & I_{m}\end{array}\right] \rightarrow\left[\begin{array}{ll}R & U\end{array}\right]$.

The matrix R has r leading ones (since rank $A=r$) so, as R is reduced, the $n \times m$ matrix R^{T} contains each row of I_{r} in the first r columns. Thus row operations will carry $R^{T} \rightarrow\left[\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right]_{n \times m}$. Hence Theorem 2.5.1 (again) shows that $\left[\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right]_{n \times m}=U_{1} R^{T}$ where U_{1} is an $n \times n$ invertible matrix. Writing $V=U_{1}^{T}$, we obtain

$$
U A V=R V=R U_{1}^{T}=\left(U_{1} R^{T}\right)^{T}=\left(\left[\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right]_{n \times m}\right)^{T}=\left[\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right]_{m \times n}
$$

Moreover, the matrix $U_{1}=V^{T}$ can be computed by $\left[\begin{array}{ll}R^{T} & I_{n}\end{array}\right] \rightarrow\left[\left[\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right]_{n \times m} V^{T}\right.$. . This proves

Theorem 2.5.3

Let A be an $m \times n$ matrix of rank r. There exist invertible matrices U and V of size $m \times m$ and $n \times n$, respectively, such that

$$
U A V=\left[\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right]_{m \times n}
$$

Moreover, if R is the reduced row-echelon form of A, then:

1. U can be computed by $\left[\begin{array}{ll}A & I_{m}\end{array}\right] \rightarrow\left[\begin{array}{ll}R & U\end{array}\right]$;
2. V can be computed by $\left[\begin{array}{ll}R^{T} & I_{n}\end{array}\right] \rightarrow\left[\left[\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right]_{n \times m} V^{T}\right]$.

If A is an $m \times n$ matrix of rank r, the matrix $\left[\begin{array}{rr}I_{r} & 0 \\ 0 & 0\end{array}\right]$ is called the Smith normal form ${ }^{11}$ of A. Whereas the reduced row-echelon form of A is the "nicest" matrix to which A can be carried by row operations, the Smith canonical form is the "nicest" matrix to which A can be carried by row and column operations. This is because doing row operations to R^{T} amounts to doing column operations to R and then transposing.

[^1]
Example 2.5.4

Given $A=\left[\begin{array}{rrrr}1 & -1 & 1 & 2 \\ 2 & -2 & 1 & -1 \\ -1 & 1 & 0 & 3\end{array}\right]$, find invertible matrices U and V such that $U A V=\left[\begin{array}{rr}I_{r} & 0 \\ 0 & 0\end{array}\right]$, where $r=\operatorname{rank} A$.

Solution. The matrix U and the reduced row-echelon form R of A are computed by the row reduction $\left[\begin{array}{ll}A & I_{3}\end{array}\right] \rightarrow\left[\begin{array}{ll}R & U\end{array}\right]:$

$$
\left[\begin{array}{rrrr|rrr}
1 & -1 & 1 & 2 & 1 & 0 & 0 \\
2 & -2 & 1 & -1 & 0 & 1 & 0 \\
-1 & 1 & 0 & 3 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrrr|rrr}
1 & -1 & 0 & -3 & -1 & 1 & 0 \\
0 & 0 & 1 & 5 & 2 & -1 & 0 \\
0 & 0 & 0 & 0 & -1 & 1 & 1
\end{array}\right]
$$

Hence

$$
R=\left[\begin{array}{rrrr}
1 & -1 & 0 & -3 \\
0 & 0 & 1 & 5 \\
0 & 0 & 0 & 0
\end{array}\right] \quad \text { and } \quad U=\left[\begin{array}{rrr}
-1 & 1 & 0 \\
2 & -1 & 0 \\
-1 & 1 & 1
\end{array}\right]
$$

In particular, $r=\operatorname{rank} R=2$. Now row-reduce $\left[\begin{array}{ll}R^{T} & I_{4}\end{array}\right] \rightarrow\left[\left[\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right] V^{T}\right]$:

$$
\left[\begin{array}{rrr|rrrr}
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 \\
-3 & 5 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrr|rrrr}
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 3 & 0 & -5 & 1
\end{array}\right]
$$

whence

$$
V^{T}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
3 & 0 & -5 & -1
\end{array}\right] \quad \text { so } \quad V=\left[\begin{array}{rrrr}
1 & 0 & 1 & 3 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & -5 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Then $U A V=\left[\begin{array}{rr}I_{2} & 0 \\ 0 & 0\end{array}\right]$ as is easily verified.

Uniqueness of the Reduced Row-echelon Form

In this short subsection, Theorem 2.5 .1 is used to prove the following important theorem.

Theorem 2.5.4

If a matrix A is carried to reduced row-echelon matrices R and S by row operations, then $R=S$.

Proof. Observe first that $U R=S$ for some invertible matrix U (by Theorem 2.5.1 there exist invertible matrices P and Q such that $R=P A$ and $S=Q A$; take $U=Q P^{-1}$). We show that $R=S$ by induction on
the number m of rows of R and S. The case $m=1$ is left to the reader. If R_{j} and S_{j} denote column j in R and S respectively, the fact that $U R=S$ gives

$$
\begin{equation*}
U R_{j}=S_{j} \quad \text { for each } j \tag{2.11}
\end{equation*}
$$

Since U is invertible, this shows that R and S have the same zero columns. Hence, by passing to the matrices obtained by deleting the zero columns from R and S, we may assume that R and S have no zero columns.

But then the first column of R and S is the first column of I_{m} because R and S are row-echelon, so (2.11) shows that the first column of U is column 1 of I_{m}. Now write U, R, and S in block form as follows.

$$
U=\left[\begin{array}{ll}
1 & X \\
0 & V
\end{array}\right], \quad R=\left[\begin{array}{cc}
1 & X \\
0 & R^{\prime}
\end{array}\right], \quad \text { and } \quad S=\left[\begin{array}{cc}
1 & Z \\
0 & S^{\prime}
\end{array}\right]
$$

Since $U R=S$, block multiplication gives $V R^{\prime}=S^{\prime}$ so, since V is invertible (U is invertible) and both R^{\prime} and S^{\prime} are reduced row-echelon, we obtain $R^{\prime}=S^{\prime}$ by induction. Hence R and S have the same number (say r) of leading 1 s , and so both have $m-r$ zero rows.

In fact, R and S have leading ones in the same columns, say r of them. Applying (2.11) to these columns shows that the first r columns of U are the first r columns of I_{m}. Hence we can write U, R, and S in block form as follows:

$$
U=\left[\begin{array}{cc}
I_{r} & M \\
0 & W
\end{array}\right], \quad R=\left[\begin{array}{cc}
R_{1} & R_{2} \\
0 & 0
\end{array}\right], \quad \text { and } \quad S=\left[\begin{array}{cc}
S_{1} & S_{2} \\
0 & 0
\end{array}\right]
$$

where R_{1} and S_{1} are $r \times r$. Then block multiplication gives $U R=R$; that is, $S=R$. This completes the proof.

Exercises for 2.5

Exercise 2.5.1 For each of the following elementary Exercise 2.5.2 In each case find an elementary matrix matrices, describe the corresponding elementary row op- E such that $B=E A$. eration and write the inverse.
a. $E=\left[\begin{array}{lll}1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
b. $E=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$
c. $E=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1\end{array}\right]$
d. $E=\left[\begin{array}{rrr}1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
e. $E=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$
f. $E=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5\end{array}\right]$
a. $A=\left[\begin{array}{rr}2 & 1 \\ 3 & -1\end{array}\right], B=\left[\begin{array}{rr}2 & 1 \\ 1 & -2\end{array}\right]$
b. $A=\left[\begin{array}{rr}-1 & 2 \\ 0 & 1\end{array}\right], B=\left[\begin{array}{rr}1 & -2 \\ 0 & 1\end{array}\right]$
c. $A=\left[\begin{array}{rr}1 & 1 \\ -1 & 2\end{array}\right], B=\left[\begin{array}{rr}-1 & 2 \\ 1 & 1\end{array}\right]$
d. $A=\left[\begin{array}{ll}4 & 1 \\ 3 & 2\end{array}\right], B=\left[\begin{array}{rr}1 & -1 \\ 3 & 2\end{array}\right]$
e. $A=\left[\begin{array}{rr}-1 & 1 \\ 1 & -1\end{array}\right], B=\left[\begin{array}{ll}-1 & 1 \\ -1 & 1\end{array}\right]$
f. $A=\left[\begin{array}{rr}2 & 1 \\ -1 & 3\end{array}\right], B=\left[\begin{array}{rr}-1 & 3 \\ 2 & 1\end{array}\right]$

Exercise 2.5.3 Let $A=\left[\begin{array}{rr}1 & 2 \\ -1 & 1\end{array}\right]$ and $C=\left[\begin{array}{rr}-1 & 1 \\ 2 & 1\end{array}\right]$.
a. Find elementary matrices E_{1} and E_{2} such that $C=E_{2} E_{1} A$.
b. Show that there is no elementary matrix E such that $C=E A$.

Exercise 2.5.4 If E is elementary, show that A and $E A$ differ in at most two rows.

Exercise 2.5.5

a. Is I an elementary matrix? Explain.
b. Is 0 an elementary matrix? Explain.

Exercise 2.5.6 In each case find an invertible matrix U such that $U A=R$ is in reduced row-echelon form, and express U as a product of elementary matrices.
a. $A=\left[\begin{array}{rrr}1 & -1 & 2 \\ -2 & 1 & 0\end{array}\right]$
b. $A=\left[\begin{array}{rrr}1 & 2 & 1 \\ 5 & 12 & -1\end{array}\right]$
c. $A=\left[\begin{array}{rrrr}1 & 2 & -1 & 0 \\ 3 & 1 & 1 & 2 \\ 1 & -3 & 3 & 2\end{array}\right]$
d. $A=\left[\begin{array}{rrrr}2 & 1 & -1 & 0 \\ 3 & -1 & 2 & 1 \\ 1 & -2 & 3 & 1\end{array}\right]$

Exercise 2.5.7 In each case find an invertible matrix U such that $U A=B$, and express U as a product of elementary matrices.
a. $A=\left[\begin{array}{rrr}2 & 1 & 3 \\ -1 & 1 & 2\end{array}\right], B=\left[\begin{array}{rrr}1 & -1 & -2 \\ 3 & 0 & 1\end{array}\right]$
b. $A=\left[\begin{array}{rrr}2 & -1 & 0 \\ 1 & 1 & 1\end{array}\right], B=\left[\begin{array}{rrr}3 & 0 & 1 \\ 2 & -1 & 0\end{array}\right]$

Exercise 2.5.8 In each case factor A as a product of elementary matrices.
a. $A=\left[\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right]$
b. $A=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]$
c. $A=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 1 \\ 2 & 1 & 6\end{array}\right]$
d. $A=\left[\begin{array}{rrr}1 & 0 & -3 \\ 0 & 1 & 4 \\ -2 & 2 & 15\end{array}\right]$

Exercise 2.5.9 Let E be an elementary matrix.
a. Show that E^{T} is also elementary of the same type.
b. Show that $E^{T}=E$ if E is of type I or II.

Exercise 2.5.10 Show that every matrix A can be factored as $A=U R$ where U is invertible and R is in reduced row-echelon form.
Exercise 2.5.11 If $A=\left[\begin{array}{rr}1 & 2 \\ 1 & -3\end{array}\right]$ and
$B=\left[\begin{array}{rr}5 & 2 \\ -5 & -3\end{array}\right]$ find an elementary matrix F such that $A F=B$.
[Hint: See Exercise 2.5.9.]
Exercise 2.5.12 In each case find invertible U and V such that $U A V=\left[\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right]$, where $r=\operatorname{rank} A$.
a. $A=\left[\begin{array}{rrr}1 & 1 & -1 \\ -2 & -2 & 4\end{array}\right]$
b. $A=\left[\begin{array}{ll}3 & 2 \\ 2 & 1\end{array}\right]$
c. $A=\left[\begin{array}{rrrr}1 & -1 & 2 & 1 \\ 2 & -1 & 0 & 3 \\ 0 & 1 & -4 & 1\end{array}\right]$
d. $A=\left[\begin{array}{rrrr}1 & 1 & 0 & -1 \\ 3 & 2 & 1 & 1 \\ 1 & 0 & 1 & 3\end{array}\right]$

Exercise 2.5.13 Prove Lemma 2.5.1 for elementary matrices of:
a. type I;
b. type II.

Exercise 2.5.14 While trying to invert A, $\left[\begin{array}{ll}A & I\end{array}\right]$ is carried to $\left[\begin{array}{ll}P & Q\end{array}\right]$ by row operations. Show that $P=Q A$.

Exercise 2.5.15 If A and B are $n \times n$ matrices and $A B$ is a product of elementary matrices, show that the same is true of A.

Exercise 2.5.16 If U is invertible, show that the reduced row-echelon form of a matrix $\left[\begin{array}{ll}U & A\end{array}\right]$ is $\left[\begin{array}{ll}I & U^{-1} A\end{array}\right]$.
Exercise 2.5.17 Two matrices A and B are called rowequivalent (written $A \stackrel{r}{\sim} B$) if there is a sequence of elementary row operations carrying A to B.
a. Show that $A \stackrel{r}{\sim} B$ if and only if $A=U B$ for some invertible matrix U.
b. Show that:
i. $A \stackrel{r}{\sim} A$ for all matrices A.
ii. If $A \stackrel{r}{\sim} B$, then $B \stackrel{r}{\sim} A$
iii. If $A \stackrel{r}{\sim} B$ and $B \stackrel{r}{\sim} C$, then $A \stackrel{r}{\sim} C$.
c. Show that, if A and B are both row-equivalent to some third matrix, then $A \stackrel{r}{\sim} B$.
d. Show that $\left[\begin{array}{rrrr}1 & -1 & 3 & 2 \\ 0 & 1 & 4 & 1 \\ 1 & 0 & 8 & 6\end{array}\right]$ and $\left[\begin{array}{rrrr}1 & -1 & 4 & 5 \\ -2 & 1 & -11 & -8 \\ -1 & 2 & 2 & 2\end{array}\right]$ are row-equivalent.
[Hint: Consider (c) and Theorem 1.2.1.]

Exercise 2.5.18 If U and V are invertible $n \times n$ matrices, show that $U \stackrel{r}{\sim} V$. (See Exercise 2.5.17.)
Exercise 2.5.19 (See Exercise 2.5.17.) Find all matrices that are row-equivalent to:
a. $\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
b. $\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$
c. $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$
d. $\left[\begin{array}{lll}1 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]$

Exercise 2.5.20 Let A and B be $m \times n$ and $n \times m$ matrices, respectively. If $m>n$, show that $A B$ is not invertible. [Hint: Use Theorem 1.3.1 to find $\mathbf{x} \neq \mathbf{0}$ with $B \mathbf{x}=\mathbf{0}$.]

Exercise 2.5.21 Define an elementary column operation on a matrix to be one of the following: (I) Interchange two columns. (II) Multiply a column by a nonzero scalar. (III) Add a multiple of a column to another column. Show that:
a. If an elementary column operation is done to an $m \times n$ matrix A, the result is $A F$, where F is an $n \times n$ elementary matrix.
b. Given any $m \times n$ matrix A, there exist $m \times m$ elementary matrices E_{1}, \ldots, E_{k} and $n \times n$ elementary matrices F_{1}, \ldots, F_{p} such that, in block form,

$$
E_{k} \cdots E_{1} A F_{1} \cdots F_{p}=\left[\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right]
$$

Exercise 2.5.22 Suppose B is obtained from A by:
a. interchanging rows i and j;
b. multiplying row i by $k \neq 0$;
c. adding k times row i to row $j(i \neq j)$.

In each case describe how to obtain B^{-1} from A^{-1}. [Hint: See part (a) of the preceding exercise.]
Exercise 2.5.23 Two $m \times n$ matrices A and B are called equivalent (written $A \stackrel{e}{\sim} B$) if there exist invertible matrices U and V (sizes $m \times m$ and $n \times n$) such that $A=U B V$.
a. Prove the following the properties of equivalence.
i. $A \stackrel{e}{\sim} A$ for all $m \times n$ matrices A.
ii. If $A \stackrel{e}{\sim} B$, then $B \stackrel{e}{\sim} A$.
iii. If $A \stackrel{e}{\sim} B$ and $B \stackrel{e}{\sim} C$, then $A \stackrel{e}{\sim} C$.
b. Prove that two $m \times n$ matrices are equivalent if they have the same rank. [Hint: Use part (a) and Theorem 2.5.3.]

2.6 Linear Transformations

If A is an $m \times n$ matrix, recall that the transformation $T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ defined by

$$
T_{A}(\mathbf{x})=A \mathbf{x} \quad \text { for all } \mathbf{x} \text { in } \mathbb{R}^{n}
$$

is called the matrix transformation induced by A. In Section 2.2, we saw that many important geometric transformations were in fact matrix transformations. These transformations can be characterized in a different way. The new idea is that of a linear transformation, one of the basic notions in linear algebra. We define these transformations in this section, and show that they are really just the matrix transformations looked at in another way. Having these two ways to view them turns out to be useful because, in a given situation, one perspective or the other may be preferable.

Linear Transformations

Definition 2.13 Linear Transformations $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$

A transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is called a linear transformation if it satisfies the following two conditions for all vectors \boldsymbol{x} and \boldsymbol{y} in \mathbb{R}^{n} and all scalars a :

$$
\begin{array}{ll}
T 1 & T(\mathbf{x}+\mathbf{y})=T(\mathbf{x})+T(\mathbf{y}) \\
T 2 & T(a \mathbf{x})=a T(\mathbf{x})
\end{array}
$$

Of course, $\mathbf{x}+\mathbf{y}$ and $a \mathbf{x}$ here are computed in \mathbb{R}^{n}, while $T(\mathbf{x})+T(\mathbf{y})$ and $a T(\mathbf{x})$ are in \mathbb{R}^{m}. We say that T preserves addition if T 1 holds, and that T preserves scalar multiplication if T 2 holds. Moreover, taking $a=0$ and $a=-1$ in T2 gives

$$
T(\mathbf{0})=\mathbf{0} \quad \text { and } \quad T(-\mathbf{x})=-T(\mathbf{x}) \quad \text { for all } \mathbf{x}
$$

Hence T preserves the zero vector and the negative of a vector. Even more is true.
Recall that a vector \mathbf{y} in \mathbb{R}^{n} is called a linear combination of vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}$ if \mathbf{y} has the form

$$
\mathbf{y}=a_{1} \mathbf{x}_{1}+a_{2} \mathbf{x}_{2}+\cdots+a_{k} \mathbf{x}_{k}
$$

for some scalars $a_{1}, a_{2}, \ldots, a_{k}$. Conditions T1 and T2 combine to show that every linear transformation T preserves linear combinations in the sense of the following theorem. This result is used repeatedly in linear algebra.

Theorem 2.6.1: Linearity Theorem

If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation, then for each $k=1,2, \ldots$

$$
T\left(a_{1} \mathbf{x}_{1}+a_{2} \mathbf{x}_{2}+\cdots+a_{k} \mathbf{x}_{k}\right)=a_{1} T\left(\mathbf{x}_{1}\right)+a_{2} T\left(\mathbf{x}_{2}\right)+\cdots+a_{k} T\left(\mathbf{x}_{k}\right)
$$

for all scalars a_{i} and all vectors \mathbf{x}_{i} in \mathbb{R}^{n}.

[^0]: ${ }^{10} \mathrm{~A}$ lemma is an auxiliary theorem used in the proof of other theorems.

[^1]: ${ }^{11}$ Named after Henry John Stephen Smith (1826-83).

