Math 221: LINEAR ALGEBRA

Chapter 8. Orthogonality §8-6. Singular Value Decomposition

 ${\bf Le} \ {\bf Chen}^1$ ${\bf Emory} \ {\bf University, 2020 \ Fall}$

(last updated on 11/16/2020)

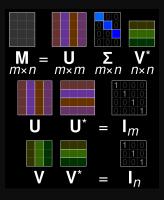
Singular Value Decomposition

Examples

Fundamental Subspaces

Applications

Singular Value Decomposition



Definition

Let A be an $m \times n$ matrix. The singular values of A are the square roots of the nonzero eigenvalues of A^TA . Singular Value Decomposition (SVD) can be thought of as a generalization of orthogonal diagonalization of a symmetric matrix to an arbitrary $m \times n$ matrix. Given an $m \times n$ matrix A, we will see how to express A as a product

$$A = U\Sigma V^{T}$$

where

- ▶ U is an m × m orthogonal matrix whose columns are eigenvectors of AA^{T} .
- ▶ V is an n × n orthogonal matrix whose columns are eigenvectors of A^TA.
- $ightharpoonup \Sigma$ is an m imes n matrix whose only nonzero values lie on its main diagonal, and are the square roots of the eigenvalues of both AA^T and A^TA .

Theorem

If A is an $m \times n$ matrix, then A^TA and AA^T have the same nonzero eigenvalues.

Proof.

Suppose A is an $m \times n$ matrix, and suppose that λ is a nonzero eigenvalue of A^TA . Then there exists a nonzero vector $\vec{x} \in \mathbb{R}^n$ such that

$$(\mathbf{A}^{\mathrm{T}}\mathbf{A})\vec{\mathbf{x}} = \lambda \vec{\mathbf{x}}.\tag{1}$$

Multiplying both sides of this equation by A:

$$A(A^{T}A)\vec{x} = A\lambda\vec{x}$$

$$(AA^{T})(A\vec{x}) = \lambda(A\vec{x}).$$

Since $\lambda \neq 0$ and $\vec{x} \neq \vec{0}_n$, $\lambda \vec{x} \neq \vec{0}_n$, and thus by equation (1), $(A^T A) \vec{x} \neq \vec{0}_n$; thus $A^T (A \vec{x}) \neq \vec{0}_n$, implying that $A \vec{x} \neq \vec{0}_m$.

Therefore $A\vec{x}$ is an eigenvector of AA^T corresponding to eigenvalue λ . An analogous argument can be used to show that every nonzero eigenvalue of AA^T is an eigenvalue of A^TA , thus completing the proof.

Examples

Example

Let
$$A = \begin{bmatrix} 1 & -1 & 3 \\ 3 & 1 & 1 \end{bmatrix}$$
. Then

$$AA^{T} = \begin{bmatrix} 1 & -1 & 3 \\ 3 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ -1 & 1 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} 11 & 5 \\ 5 & 11 \end{bmatrix}.$$

$$\mathbf{A}^{\mathrm{T}}\mathbf{A} = \left[\begin{array}{ccc} 1 & 3 \\ -1 & 1 \\ 3 & 1 \end{array} \right] \left[\begin{array}{ccc} 1 & -1 & 3 \\ 3 & 1 & 1 \end{array} \right] = \left[\begin{array}{ccc} 10 & 2 & 6 \\ 2 & 2 & -2 \\ 6 & -2 & 10 \end{array} \right].$$

Since AA^T is 2×2 while A^TA is 3×3 , and AA^T and A^TA have the same nonzero eigenvalues, compute $c_{AA^T}(x)$ (because it's easier to compute than $c_{A^TA}(x)$).

$$\begin{array}{lll} c_{AA^T}(x) & = & \det(xI - AA^T) = \left| \begin{array}{ccc} x - 11 & -5 \\ -5 & x - 11 \end{array} \right| \\ \\ & = & (x - 11)^2 - 25 \\ \\ & = & x^2 - 22x + 121 - 25 \\ \\ & = & x^2 - 22x + 96 \\ \\ & = & (x - 16)(x - 6). \end{array}$$

Therefore, the eigenvalues of AA^T are $\lambda_1 = 16$ and $\lambda_2 = 6$.

The eigenvalues of A^TA are $\lambda_1 = 16$, $\lambda_2 = 6$, and $\lambda_3 = 0$, and the singular values of A are $\sigma_1 = \sqrt{16} = 4$ and $\sigma_2 = \sqrt{6}$. By convention, we list the eigenvalues (and corresponding singular values) in nonincreasing order (i.e., from largest to smallest).

To find the matrix V, find eigenvectors for A^TA . Since the eigenvalues of AA^T are distinct, the corresponding eigenvectors are orthogonal, and we need only normalize them.

$$\lambda_1 = 16$$
: solve $(16I - A^T A)\vec{y}_1 = \vec{0}$.

$$\begin{bmatrix} 6 & -2 & -6 & 0 \\ -2 & 14 & 2 & 0 \\ -6 & 2 & 6 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \text{ so } \vec{y}_1 = \begin{bmatrix} t \\ 0 \\ t \end{bmatrix} = t \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, t \in \mathbb{R}.$$

$$\lambda_2 = 6$$
: solve $(6I - A^T A)\vec{y}_2 = \vec{0}$.

$$\begin{bmatrix} -4 & -2 & -6 & | & 0 \\ -2 & 4 & 2 & | & 0 \\ -6 & 2 & -4 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & | & 0 \\ 0 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}, \text{ so } \vec{y}_2 = \begin{bmatrix} -s \\ -s \\ s \end{bmatrix} = s \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}, s \in \mathbb{R}.$$

$$\lambda_3 = 0$$
: solve $(-\mathbf{A}^{\mathrm{T}}\mathbf{A})\vec{\mathbf{y}}_3 = \vec{\mathbf{0}}$.

$$\begin{bmatrix} -10 & -2 & -6 & 0 \\ -2 & -2 & 2 & 0 \\ -6 & 2 & -10 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \text{ so } \vec{y}_3 = \begin{bmatrix} -r \\ 2r \\ r \end{bmatrix} = r \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}, r \in \mathbb{R}.$$

Let

$$\vec{\mathrm{v}}_1 = rac{1}{\sqrt{2}} \left[egin{array}{c} 1 \\ 0 \\ 1 \end{array}
ight], \vec{\mathrm{v}}_2 = rac{1}{\sqrt{3}} \left[egin{array}{c} -1 \\ -1 \\ 1 \end{array}
ight], \vec{\mathrm{v}}_3 = rac{1}{\sqrt{6}} \left[egin{array}{c} -1 \\ 2 \\ 1 \end{array}
ight].$$

Then

$$V = \frac{1}{\sqrt{6}} \begin{bmatrix} \sqrt{3} & -\sqrt{2} & -1\\ 0 & -\sqrt{2} & 2\\ \sqrt{3} & \sqrt{2} & 1 \end{bmatrix}.$$

Also,

$$\Sigma = \left[\begin{array}{ccc} 4 & 0 & 0 \\ 0 & \sqrt{6} & 0 \end{array} \right]$$

and we use A, V^{T} , and Σ to find U.

Since V is orthogonal and $A = U\Sigma V^T$, it follows that $AV = U\Sigma$. Let $V = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \vec{v}_3 \end{bmatrix}$, and let $U = \begin{bmatrix} \vec{u}_1 & \vec{u}_2 \end{bmatrix}$, where \vec{u}_1 and \vec{u}_2 are the two columns of U. Then we have

which implies that $A\vec{v}_1 = \sigma_1\vec{u}_1 = 4\vec{u}_1$ and $A\vec{v}_2 = \sigma_2\vec{u}_2 = \sqrt{6}\vec{u}_2$. Thus,

$$\vec{u}_1 = \frac{1}{4} A \vec{v}_1 = \frac{1}{4} \begin{bmatrix} 1 & -1 & 3 \\ 3 & 1 & 1 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \frac{1}{4\sqrt{2}} \begin{bmatrix} 4 \\ 4 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix},$$

and

$$\vec{u}_2 = \frac{1}{\sqrt{6}} A \vec{v}_2 = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 & -1 & 3 \\ 3 & 1 & 1 \end{bmatrix} \frac{1}{\sqrt{3}} \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix} = \frac{1}{3\sqrt{2}} \begin{bmatrix} 3 \\ -3 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}.$$

Therefore,

$$U = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix},$$

 $= \left(\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}\right) \begin{bmatrix} 4 & 0 & 0 \\ 0 & \sqrt{6} & 0 \end{bmatrix} \left(\frac{1}{\sqrt{6}} \begin{bmatrix} \sqrt{3} & 0 & \sqrt{3} \\ -\sqrt{2} & -\sqrt{2} & \sqrt{2} \\ -1 & 2 & 1 \end{bmatrix}\right).$

Problem

Find an SVD for
$$A = \begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}$$

Solution

Since A is 3×1 , $A^{T}A$ is a 1×1 matrix whose eigenvalues are easier to find than the eigenvalues of the 3×3 matrix AA^{T} .

$$\mathbf{A}^{\mathrm{T}}\mathbf{A} = \left[egin{array}{ccc} -1 & 2 & 2 \end{array}
ight] \left[egin{array}{ccc} -1 & 2 & 2 \end{array}
ight] = \left[egin{array}{ccc} 9 \end{array}
ight].$$

Thus A^TA has eigenvalue $\lambda_1 = 9$, and the eigenvalues of AA^T are $\lambda_1 = 9$, $\lambda_2 = 0$, and $\lambda_3 = 0$. Furthermore, A has only one singular value, $\sigma_1 = 3$.

To find the matrix V, find an eigenvector for A^TA and normalize it. In this case, finding a unit eigenvector is trivial: $\vec{v}_1 = \begin{bmatrix} 1 \end{bmatrix}$, and

$$V = [1].$$

Solution (continued)

Also,
$$\Sigma = \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix}$$
, and we use A, V^T, and Σ to find U.

Now $AV = U\Sigma$, with $V = \begin{bmatrix} \vec{v}_1 \end{bmatrix}$, and $U = \begin{bmatrix} \vec{u}_1 & \vec{u}_2 & \vec{u}_3 \end{bmatrix}$, where \vec{u}_1 , \vec{u}_2 , and \vec{u}_3 are the columns of U. Thus

$$A \begin{bmatrix} \vec{\mathbf{v}}_1 \end{bmatrix} = \begin{bmatrix} \vec{\mathbf{u}}_1 & \vec{\mathbf{u}}_2 & \vec{\mathbf{u}}_3 \end{bmatrix} \Sigma
\begin{bmatrix} A\vec{\mathbf{v}}_1 \end{bmatrix} = \begin{bmatrix} \sigma_1 \vec{\mathbf{u}}_1 + 0\vec{\mathbf{u}}_2 + 0\vec{\mathbf{u}}_3 \end{bmatrix}
= \begin{bmatrix} \sigma_2 \vec{\mathbf{v}}_2 \end{bmatrix}$$

This gives us $A\vec{v}_1 = \sigma_1\vec{u}_1 = 3\vec{u}_1$, so

$$\vec{u}_1 = \frac{1}{3} A \vec{v}_1 = \frac{1}{3} \begin{bmatrix} -1\\2\\2 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} -1\\2\\2 \end{bmatrix}.$$

Solution (continued)

The vectors \vec{u}_2 and \vec{u}_3 are eigenvectors of AA^T corresponding to the eigenvalue $\lambda_2 = \lambda_3 = 0$. Instead of solving the system $(0I - AA^T)\vec{x} = \vec{0}$ and then using the Gram-Schmidt orthogonalization algorithm on the resulting set of two basic eigenvectors, the following approach may be used.

Find vectors \vec{u}_2 and \vec{u}_3 by first extending $\{\vec{u}_1\}$ to a basis of \mathbb{R}^3 , then using the Gram-Schmidt algorithm to orthogonalize the basis, and finally normalizing the vectors.

Starting with $\{3\vec{u}_1\}$ instead of $\{\vec{u}_1\}$ makes the arithmetic a bit easier. It is easy to verify that

$$\left\{ \left[\begin{array}{c} -1\\2\\2\\2 \end{array} \right], \left[\begin{array}{c} 1\\0\\0 \end{array} \right], \left[\begin{array}{c} 0\\1\\0 \end{array} \right] \right\}$$

is a basis of \mathbb{R}^3 . Set

$$\vec{f}_1 = \left[\begin{array}{c} -1 \\ 2 \\ 2 \end{array} \right], \vec{x}_2 = \left[\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right], \vec{x}_3 = \left[\begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right],$$

and apply the Gram-Schmidt orthogonalization algorithm to $\{\vec{f}_1,\vec{x}_2,\vec{x}_3\}.$

Solution (continued)

This gives us

$$ec{\mathbf{f}}_2 = \left[egin{array}{c} 4 \ 1 \ 1 \end{array}
ight] \quad ext{and} \quad ec{\mathbf{f}}_3 = \left[egin{array}{c} 0 \ 1 \ -1 \end{array}
ight]$$

Therefore,

$$\vec{\mathbf{u}}_2 = \frac{1}{\sqrt{18}} \begin{bmatrix} 4\\1\\1 \end{bmatrix}, \vec{\mathbf{u}}_3 = \frac{1}{\sqrt{2}} \begin{bmatrix} 0\\1\\-1 \end{bmatrix},$$

and

$$U = \begin{bmatrix} -\frac{1}{3} & \frac{4}{\sqrt{18}} & 0\\ \frac{2}{3} & \frac{1}{\sqrt{18}} & \frac{1}{\sqrt{2}}\\ \frac{2}{3} & \frac{1}{\sqrt{19}} & -\frac{1}{\sqrt{2}} \end{bmatrix}.$$

Finally,

$$\mathbf{A} = \begin{bmatrix} -1\\2\\2\\2 \end{bmatrix} = \begin{bmatrix} -\frac{1}{3} & \frac{4}{\sqrt{18}} & 0\\ \frac{2}{3} & \frac{1}{\sqrt{18}} & \frac{1}{\sqrt{2}}\\ \frac{2}{3} & \frac{1}{\sqrt{18}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 3\\0\\0 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}.$$

Problem

Find a singular value decomposition of $A = \begin{bmatrix} 1 & 4 \\ 2 & 8 \end{bmatrix}$

Solution

$$\left[\begin{array}{cc} 1 & 4 \\ 2 & 8 \end{array}\right] = \left(\frac{1}{\sqrt{5}} \left[\begin{array}{cc} 1 & -2 \\ 2 & 1 \end{array}\right]\right) \left[\begin{array}{cc} \sqrt{85} & 0 \\ 0 & 0 \end{array}\right] \left(\frac{1}{\sqrt{17}} \left[\begin{array}{cc} 1 & -4 \\ 4 & 1 \end{array}\right]\right).$$

Remark

Since there is only one non-zero eigenvalue, \vec{u}_2 (the second column of U) can not be found using the formula $\vec{u}_2 = \frac{1}{\sigma_2} A \vec{v}_2$. However, \vec{u}_2 can be chosen to be any unit vector orthogonal to \vec{u}_1 ; in this case, $\vec{u}_2 = \frac{1}{\sqrt{5}} \begin{bmatrix} -2 \\ 1 \end{bmatrix}$.

Problem

Find a singular value decomposition of $A = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$

Solution

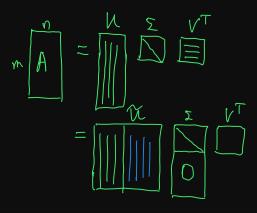
$$\begin{bmatrix} 0 & -1 & 1 \end{bmatrix}$$

$$\parallel$$

$$\left(\frac{1}{\sqrt{2}} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}\right) \begin{bmatrix} \sqrt{3} & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \left(\frac{1}{\sqrt{6}} \begin{bmatrix} 1 & -2 & 1 \\ -\sqrt{3} & 0 & \sqrt{3} \\ \sqrt{2} & \sqrt{2} & \sqrt{2} \end{bmatrix}\right)$$

Fundamental Subspaces

Full Singular Value Decomposition



Singular Value Decomposition

Full

Applications

Example (Polar Decomposition)

$$a + bi = \underbrace{\sqrt{a^2 + b^2}}_{\text{radius}} \underbrace{e^{i\theta}}_{\text{rotation}}$$

Similarly, any square matrix

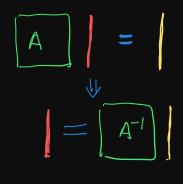
$$A = U\Sigma V^{T} = \underbrace{U\Sigma U^{T}}_{\text{nonneg. def. rotation}} \underbrace{UV^{T}}_{\text{totation}}$$

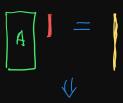
Definition

A real $n \times n$ matrix G is nonnegative definite (or positive in the book) if it is symmetric and for all $\vec{x} \in \mathbb{R}^n$

$$\vec{x}^T G \vec{x} \ge 0.$$

Example (Generalized inverse)





Example (Image of unit ball under linear transform A)

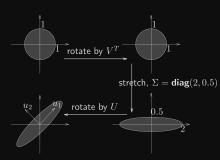
Let $A = U\Sigma V^T$ be the full SVD for an $m \times n$ matrix A. We will see how the unit ball will be mapped:

$$\{A\vec{x} \mid ||\vec{x}|| \le 1\}$$

The linear map $\vec{y} = A\vec{x}$ is trying to do the following things:

- 1. Rotate the n-vector \vec{x} by V^T
- 2. Stretch along axes by σ_i with $\sigma_i = 0$ for i > rank (A)
- 3. Zero-pad for tall matrix (i.e., m > n) or truncate for fat matrix (i.e., m < n >) to get m-vector
- 4. Rotate the m-vector by U^T

Example (Image of unit ball under linear transform A – continued)



Example (Image Compression)

Image is a A is a 300×300 matrix.

$$A \approx \sum_{i=1}^n \sigma_i \vec{u}_i \vec{v}_i^T$$

