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Preface

The first edition of this text was published in 1981. Each subsequent revision since
then has undergone more than a few changes. Topics have been added, com-
puter software and simulations introduced, and examples redone. What has not
changed over the years is our pedagogical focus. As the title indicates, this book
is an introduction to mathematical statistics and its applications. Those last three
words are not an afterthought. We continue to believe that mathematical statistics
is best learned and most effectively motivated when presented against a back-
drop of real-world examples and all the issues that those examples necessarily
raise.

We recognize that college students today have more mathematics courses to
choose from than ever before because of the new specialties and interdisciplinary
areas that continue to emerge. For students wanting a broad educational experi-
ence, an introduction to a given topic may be all that their schedules can reasonably
accommodate. Our response to that reality has been to ensure that each edition of
this text provides a more comprehensive and more usable treatment of statistics
than did its predecessors.

Traditionally, the focus of mathematical statistics has been fairly narrow—the
subject’s objective has been to provide the theoretical foundation for all of the var-
ious procedures that are used for describing and analyzing data. What it has not
spoken to at much length are the important questions of which procedure to use
in a given situation, and why. But those are precisely the concerns that every user
of statistics must inevitably confront. To that end, adding features that can create
a path from the theory of statistics to its practice has become an increasingly high
priority.

New to This Edition
• Beginning with the third edition, Chapter 8, titled “Data Models,” was added.

It discussed some of the basic principles of experimental design, as well as some
guidelines for knowing how to begin a statistical analysis. In this fifth edition, the
Data Models (“Types of Data: A Brief Overview”) chapter has been substantially
rewritten to make its main points more accessible.

• Beginning with the fourth edition, the end of each chapter except the first fea-
tured a section titled “Taking a Second Look at Statistics.” Many of these sections
describe the ways that statistical terminology is often misinterpreted in what we
see, hear, and read in our modern media. Continuing in this vein of interpre-
tation, we have added in this fifth edition comments called “About the Data.”
These sections are scattered throughout the text and are intended to encourage
the reader to think critically about a data set’s assumptions, interpretations, and
implications.

• Many examples and case studies have been updated, while some have been
deleted and others added.

• Section 3.8, “Transforming and Combining Random Variables,” has been
rewritten.

viii



Preface ix

• Section 3.9, “Further Properties of the Mean and Variance,” now includes a dis-
cussion of covariances so that sums of random variables can be dealt with in more
generality.

• Chapter 5, “Estimation,” now has an introduction to bootstrapping.
• Chapter 7, “Inferences Based on the Normal Distribution,” has new material on

the noncentral t distribution and its role in calculating Type II error probabilities.
• Chapter 9, “Two-Sample Inferences,” has a derivation of Welch’s approx-

imation for testing the differences of two means in the case of unequal
variances.

We hope that the changes in this edition will not undo the best features of the
first four. What made the task of creating the fifth edition an enjoyable experience
was the nature of the subject itself and the way that it can be beautifully elegant and
down-to-earth practical, all at the same time. Ultimately, our goal is to share with
the reader at least some small measure of the affection we feel for mathematical
statistics and its applications.

Supplements

Instructor’s Solutions Manual. This resource contains worked-out solutions to
all text exercises and is available for download from the Pearson Education
Instructor Resource Center.

Student Solutions Manual ISBN-10: 0-321-69402-3; ISBN-13: 978-0-321-
69402-7. Featuring complete solutions to selected exercises, this is a great tool
for students as they study and work through the problem material.
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Chapter

Introduction 1
1.1 An Overview
1.2 Some Examples

1.3 A Brief History
1.4 A Chapter Summary

“Until the phenomena of any branch of knowledge have been submitted to
measurement and number it cannot assume the status and dignity of a science.”

—Francis Galton

1.1 An Overview
Sir Francis Galton was a preeminent biologist of the nineteenth century. A passion-
ate advocate for the theory of evolution (his nickname was “Darwin’s bulldog”),
Galton was also an early crusader for the study of statistics and believed the subject
would play a key role in the advancement of science:

Some people hate the very name of statistics, but I find them full of beauty and inter-
est. Whenever they are not brutalized, but delicately handled by the higher methods,
and are warily interpreted, their power of dealing with complicated phenomena is
extraordinary. They are the only tools by which an opening can be cut through the
formidable thicket of difficulties that bars the path of those who pursue the Science
of man.

Did Galton’s prediction come to pass? Absolutely—try reading a biology journal
or the analysis of a psychology experiment before taking your first statistics course.
Science and statistics have become inseparable, two peas in the same pod. What the
good gentleman from London failed to anticipate, though, is the extent to which all
of us—not just scientists—have become enamored (some would say obsessed) with
numerical information. The stock market is awash in averages, indicators, trends,
and exchange rates; federal education initiatives have taken standardized testing to
new levels of specificity; Hollywood uses sophisticated demographics to see who’s
watching what, and why; and pollsters regularly tally and track our every opinion,
regardless of how irrelevant or uninformed. In short, we have come to expect every-
thing to be measured, evaluated, compared, scaled, ranked, and rated—and if the
results are deemed unacceptable for whatever reason, we demand that someone or
something be held accountable (in some appropriately quantifiable way).

To be sure, many of these efforts are carefully carried out and make perfectly
good sense; unfortunately, others are seriously flawed, and some are just plain
nonsense. What they all speak to, though, is the clear and compelling need to know
something about the subject of statistics, its uses and its misuses.

1



2 Chapter 1 Introduction

This book addresses two broad topics—the mathematics of statistics and the
practice of statistics. The two are quite different. The former refers to the probabil-
ity theory that supports and justifies the various methods used to analyze data. For
the most part, this background material is covered in Chapters 2 through 7. The key
result is the central limit theorem, which is one of the most elegant and far-reaching
results in all of mathematics. (Galton believed the ancient Greeks would have per-
sonified and deified the central limit theorem had they known of its existence.) Also
included in these chapters is a thorough introduction to combinatorics, the math-
ematics of systematic counting. Historically, this was the very topic that launched
the development of probability in the first place, back in the seventeenth century.
In addition to its connection to a variety of statistical procedures, combinatorics is
also the basis for every state lottery and every game of chance played with a roulette
wheel, a pair of dice, or a deck of cards.

The practice of statistics refers to all the issues (and there are many!) that arise
in the design, analysis, and interpretation of data. Discussions of these topics appear
in several different formats. Following most of the case studies throughout the text is
a feature entitled “About the Data.” These are additional comments about either the
particular data in the case study or some related topic suggested by those data. Then
near the end of most chapters is a Taking a Second Look at Statistics section. Several
of these deal with the misuses of statistics—specifically, inferences drawn incorrectly
and terminology used inappropriately. The most comprehensive data-related discus-
sion comes in Chapter 8, which is devoted entirely to the critical problem of knowing
how to start a statistical analysis—that is, knowing which procedure should be used,
and why.

More than a century ago, Galton described what he thought a knowledge of
statistics should entail. Understanding “the higher methods,” he said, was the key
to ensuring that data would be “delicately handled” and “warily interpreted.” The
goal of this book is to make that happen.

1.2 Some Examples
Statistical methods are often grouped into two broad categories—descriptive statis-
tics and inferential statistics. The former refers to all the various techniques for
summarizing and displaying data. These are the familiar bar graphs, pie charts, scat-
terplots, means, medians, and the like, that we see so often in the print media. The
much more mathematical inferential statistics are procedures that make generaliza-
tions and draw conclusions of various kinds based on the information contained in
a set of data; moreover, they calculate the probability of the generalizations being
correct.

Described in this section are three case studies. The first illustrates a very effec-
tive use of several descriptive techniques. The latter two illustrate the sorts of
questions that inferential procedures can help answer.

Case Study 1.2.1

Pictured at the top of Figure 1.2.1 is the kind of information routinely recorded
by a seismograph—listed chronologically are the occurrence times and Richter
magnitudes for a series of earthquakes. As raw data, the numbers are largely

(Continued on next page)



1.2 Some Examples 3

meaningless: No patterns are evident, nor is there any obvious connection
between the frequencies of tremors and their severities.
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 217 6/19 4:53 P .M. 2.7
 218 7/2 6:07 A.M. 3.1
 219 7/4 8:19 A.M. 2.0
 220 8/7 1:10 A.M. 4.1
 221 8/7 10:46 P .M. 3.6

– 1.981R

Figure 1.2.1

Shown at the bottom of the figure is the result of applying several descrip-
tive techniques to an actual set of seismograph data recorded over a period of
several years in southern California (67). Plotted above the Richter (R) value of
4.0, for example, is the average number (N) of earthquakes occurring per year
in that region having magnitudes in the range 3.75 to 4.25. Similar points are
included for R-values centered at 4.5, 5.0, 5.5, 6.0, 6.5, and 7.0. Now we can see
that earthquake frequencies and severities are clearly related: Describing the
(N, R)’s exceptionally well is the equation

N = 80,338.16e−1.981R (1.2.1)

which is found using a procedure described in Chapter 9. (Note: Geologists have
shown that the model N = β0eβ1 R describes the (N, R) relationship all over the
world. All that changes from region to region are the numerical values for β0

and β1.)
(Continued on next page)



4 Chapter 1 Introduction

(Case Study 1.2.1 continued)

Notice that Equation 1.2.1 is more than just an elegant summary of the
observed (N, R) relationship. Rather, it allows us to estimate the likelihood
of future earthquake catastrophes for large values of R that have never been
recorded. For example, many Californians worry about the “Big One,” a mon-
ster tremor—say, R = 10.0—that breaks off chunks of tourist-covered beaches
and sends them floating toward Hawaii. How often might we expect that to
happen? Setting R = 10.0 in Equation 1.2.1 gives

N = 80,338.16e−1.98(10.0)

= 0.0002 earthquake per year

which translates to a prediction of one such megaquake every five thousand
years (= 1/0.0002). (Of course, whether that estimate is alarming or reassuring
probably depends on whether you live in San Diego or Topeka. . . .)

About the Data The megaquake prediction prompted by Equation 1.2.1 raises an
obvious question: Why is the calculation that led to the model N = 80,338.16e−1.981R

not considered an example of inferential statistics even though it did yield a pre-
diction for R = 10? The answer is that Equation 1.2.1—by itself—does not tell us
anything about the “error” associated with its predictions. In Chapter 11, a more
elaborate probability method based on Equation 1.2.1 is described that does yield
error estimates and qualifies as a bona fide inference procedure.

Case Study 1.2.2

Claims of disputed authorship can be very difficult to resolve. Speculation has
persisted for several hundred years that some of William Shakespeare’s works
were written by Sir Francis Bacon (or maybe Christopher Marlowe). And
whether it was Alexander Hamilton or James Madison who wrote certain of
the Federalist Papers is still an open question. Less well known is a controversy
surrounding Mark Twain and the Civil War.

One of the most revered of all American writers, Twain was born in 1835,
which means he was twenty-six years old when hostilities between the North
and South broke out. At issue is whether he was ever a participant in the war—
and, if he was, on which side. Twain always dodged the question and took the
answer to his grave. Even had he made a full disclosure of his military record,
though, his role in the Civil War would probably still be a mystery because of
his self-proclaimed predisposition to be less than truthful. Reflecting on his life,
Twain made a confession that would give any would-be biographer pause: “I am
an old man,” he said, “and have known a great many troubles, but most of them
never happened.”

What some historians think might be the clue that solves the mystery is a set
of ten essays that appeared in 1861 in the New Orleans Daily Crescent. Signed

(Continued on next page)



1.2 Some Examples 5

“Quintus Curtius Snodgrass,” the essays purported to chronicle the author’s
adventures as a member of the Louisiana militia. Many experts believe that the
exploits described actually did happen, but Louisiana field commanders had
no record of anyone named Quintus Curtius Snodgrass. More significantly, the
pieces display the irony and humor for which Twain was so famous.

Table 1.2.1 summarizes data collected in an attempt (16) to use statistical
inference to resolve the debate over the authorship of the Snodgrass letters.
Listed are the proportions of three-letter words (1) in eight essays known to
have been written by Mark Twain and (2) in the ten Snodgrass letters.

Researchers have found that authors tend to have characteristic word-
length profiles, regardless of what the topic might be. It follows, then, that if
Twain and Snodgrass were the same person, the proportion of, say, three-letter
words that they used should be roughly the same. The bottom of Table 1.2.1
shows that, on the average, 23.2% of the words in a Twain essay were three
letters long; the corresponding average for the Snodgrass letters was 21.0%.

If Twain and Snodgrass were the same person, the difference between these
average three-letter proportions should be close to 0: for these two sets of
essays, the difference in the averages was 0.022 (= 0.232 − 0.210). How should
we interpret the difference 0.022 in this context? Two explanations need to be
considered:

1. The difference, 0.022, is sufficiently small (i.e., close to 0) that it does not
rule out the possibility that Twain and Snodgrass were the same person.

or
2. The difference, 0.022, is so large that the only reasonable conclusion is that

Twain and Snodgrass were not the same person.

Choosing between explanations 1 and 2 is an example of hypothesis testing,
which is a very frequently encountered form of statistical inference.

The principles of hypothesis testing are introduced in Chapter 6, and the
particular procedure that applies to Table 1.2.1 first appears in Chapter 9.
So as not to spoil the ending of a good mystery, we will defer unmasking
Mr. Snodgrass until then.

Table 1.2.1

Twain Proportion QCS Proportion

Sergeant Fathom letter 0.225 Letter I 0.209
Madame Caprell letter 0.262 Letter II 0.205
Mark Twain letters in Letter III 0.196

Territorial Enterprise Letter IV 0.210
First letter 0.217 Letter V 0.202
Second letter 0.240 Letter VI 0.207
Third letter 0.230 Letter VII 0.224
Fourth letter 0.229 Letter VIII 0.223

First Innocents Abroad letter Letter IX 0.220
First half 0.235 Letter X 0.201
Second half 0.217

Average: 0.232 0.210



6 Chapter 1 Introduction

Case Study 1.2.3

It may not be made into a movie anytime soon, but the way that statistical infer-
ence was used to spy on the Nazis in World War II is a pretty good tale. And it
certainly did have a surprise ending!

The story began in the early 1940s. Fighting in the European theatre was
intensifying, and Allied commanders were amassing a sizeable collection of
abandoned and surrendered German weapons. When they inspected those
weapons, the Allies noticed that each one bore a different number. Aware of
the Nazis’ reputation for detailed record keeping, the Allies surmised that each
number represented the chronological order in which the piece had been man-
ufactured. But if that was true, might it be possible to use the “captured” serial
numbers to estimate the total number of weapons the Germans had produced?

That was precisely the question posed to a group of government statisticians
working out of Washington, D.C. Wanting to estimate an adversary’s manufac-
turing capability was, of course, nothing new. Up to that point, though, the only
sources of that information had been spies and traitors; using serial numbers
was something entirely new.

The answer turned out to be a fairly straightforward application of the prin-
ciples that will be introduced in Chapter 5. If n is the total number of captured
serial numbers and xmax is the largest captured serial number, then the estimate
for the total number of items produced is given by the formula

estimated output =[(n + 1)/n]xmax − 1 (1.2.2)

Suppose, for example, that n = 5 tanks were captured and they bore the serial
numbers 92, 14, 28, 300, and 146, respectively. Then xmax =300 and the estimated
total number of tanks manufactured is 359:

estimated output =[(5 + 1)/5]300 − 1

= 359

Did Equation 1.2.2 work? Better than anyone could have expected (proba-
bly even the statisticians). When the war ended and the Third Reich’s “true”
production figures were revealed, it was found that serial number estimates
were far more accurate in every instance than all the information gleaned
from traditional espionage operations, spies, and informants. The serial num-
ber estimate for German tank production in 1942, for example, was 3400, a
figure very close to the actual output. The “official” estimate, on the other
hand, based on intelligence gathered in the usual ways, was a grossly inflated
18,000 (64).

About the Data Large discrepancies, like 3400 versus 18,000 for the tank estimates,
were not uncommon. The espionage-based estimates were consistently erring on the
high side because of the sophisticated Nazi propaganda machine that deliberately
exaggerated the country’s industrial prowess. On spies and would-be adversaries,
the Third Reich’s carefully orchestrated dissembling worked exactly as planned; on
Equation 1.2.2, though, it had no effect whatsoever!
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1.3 A Brief History
For those interested in how we managed to get to where we are (or who just want
to procrastinate a bit longer), Section 1.3 offers a brief history of probability and
statistics. The two subjects were not mathematical littermates—they began at dif-
ferent times in different places for different reasons. How and why they eventually
came together makes for an interesting story and reacquaints us with some towering
figures from the past.

Probability: The Early Years

No one knows where or when the notion of chance first arose; it fades into our
prehistory. Nevertheless, evidence linking early humans with devices for generating
random events is plentiful: Archaeological digs, for example, throughout the ancient
world consistently turn up a curious overabundance of astragali, the heel bones of
sheep and other vertebrates. Why should the frequencies of these bones be so dis-
proportionately high? One could hypothesize that our forebears were fanatical foot
fetishists, but two other explanations seem more plausible: The bones were used for
religious ceremonies and for gambling.

Astragali have six sides but are not symmetrical (see Figure 1.3.1). Those found
in excavations typically have their sides numbered or engraved. For many ancient
civilizations, astragali were the primary mechanism through which oracles solicited
the opinions of their gods. In Asia Minor, for example, it was customary in divination
rites to roll, or cast, five astragali. Each possible configuration was associated with
the name of a god and carried with it the sought-after advice. An outcome of (1, 3,
3, 4, 4), for instance, was said to be the throw of the savior Zeus, and its appearance
was taken as a sign of encouragement (34):

One one, two threes, two fours
The deed which thou meditatest, go do it boldly.
Put thy hand to it. The gods have given thee

favorable omens
Shrink not from it in thy mind, for no evil

shall befall thee.

Figure 1.3.1

Sheep astragalus

A (4, 4, 4, 6, 6), on the other hand, the throw of the child-eating Cronos, would send
everyone scurrying for cover:

Three fours and two sixes. God speaks as follows.
Abide in thy house, nor go elsewhere,
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Lest a ravening and destroying beast come nigh thee.
For I see not that this business is safe. But bide

thy time.

Gradually, over thousands of years, astragali were replaced by dice, and the
latter became the most common means for generating random events. Pottery dice
have been found in Egyptian tombs built before 2000 b.c.; by the time the Greek
civilization was in full flower, dice were everywhere. (Loaded dice have also been
found. Mastering the mathematics of probability would prove to be a formidable
task for our ancestors, but they quickly learned how to cheat!)

The lack of historical records blurs the distinction initially drawn between div-
ination ceremonies and recreational gaming. Among more recent societies, though,
gambling emerged as a distinct entity, and its popularity was irrefutable. The Greeks
and Romans were consummate gamblers, as were the early Christians (91).

Rules for many of the Greek and Roman games have been lost, but we can
recognize the lineage of certain modern diversions in what was played during the
Middle Ages. The most popular dice game of that period was called hazard, the
name deriving from the Arabic al zhar, which means “a die.” Hazard is thought
to have been brought to Europe by soldiers returning from the Crusades; its rules
are much like those of our modern-day craps. Cards were first introduced in the
fourteenth century and immediately gave rise to a game known as Primero, an early
form of poker. Board games such as backgammon were also popular during this
period.

Given this rich tapestry of games and the obsession with gambling that char-
acterized so much of the Western world, it may seem more than a little puzzling
that a formal study of probability was not undertaken sooner than it was. As we
will see shortly, the first instance of anyone conceptualizing probability in terms
of a mathematical model occurred in the sixteenth century. That means that more
than 2000 years of dice games, card games, and board games passed by before
someone finally had the insight to write down even the simplest of probabilistic
abstractions.

Historians generally agree that, as a subject, probability got off to a rocky start
because of its incompatibility with two of the most dominant forces in the evolution
of our Western culture, Greek philosophy and early Christian theology. The Greeks
were comfortable with the notion of chance (something the Christians were not),
but it went against their nature to suppose that random events could be quantified in
any useful fashion. They believed that any attempt to reconcile mathematically what
did happen with what should have happened was, in their phraseology, an improper
juxtaposition of the “earthly plane” with the “heavenly plane.”

Making matters worse was the antiempiricism that permeated Greek thinking.
Knowledge, to them, was not something that should be derived by experimentation.
It was better to reason out a question logically than to search for its explanation in a
set of numerical observations. Together, these two attitudes had a deadening effect:
The Greeks had no motivation to think about probability in any abstract sense, nor
were they faced with the problems of interpreting data that might have pointed them
in the direction of a probability calculus.

If the prospects for the study of probability were dim under the Greeks, they
became even worse when Christianity broadened its sphere of influence. The Greeks
and Romans at least accepted the existence of chance. However, they believed their
gods to be either unable or unwilling to get involved in matters so mundane as the
outcome of the roll of a die. Cicero writes:



1.3 A Brief History 9

Nothing is so uncertain as a cast of dice, and yet there is no one who plays often who
does not make a Venus-throw1 and occasionally twice and thrice in succession. Then
are we, like fools, to prefer to say that it happened by the direction of Venus rather
than by chance?

For the early Christians, though, there was no such thing as chance: Every event
that happened, no matter how trivial, was perceived to be a direct manifestation of
God’s deliberate intervention. In the words of St. Augustine:

Nos eas causas quae dicuntur fortuitae . . . non dicimus
nullas, sed latentes; easque tribuimus vel veri Dei . . .

(We say that those causes that are said to be by chance
are not non-existent but are hidden, and we attribute
them to the will of the true God . . .)

Taking Augustine’s position makes the study of probability moot, and it makes
a probabilist a heretic. Not surprisingly, nothing of significance was accomplished
in the subject for the next fifteen hundred years.

It was in the sixteenth century that probability, like a mathematical Lazarus,
arose from the dead. Orchestrating its resurrection was one of the most eccentric
figures in the entire history of mathematics, Gerolamo Cardano. By his own admis-
sion, Cardano personified the best and the worst—the Jekyll and the Hyde—of
the Renaissance man. He was born in 1501 in Pavia. Facts about his personal life
are difficult to verify. He wrote an autobiography, but his penchant for lying raises
doubts about much of what he says. Whether true or not, though, his “one-sentence”
self-assessment paints an interesting portrait (127):

Nature has made me capable in all manual work, it has given me the spirit of a
philosopher and ability in the sciences, taste and good manners, voluptuousness,
gaiety, it has made me pious, faithful, fond of wisdom, meditative, inventive, coura-
geous, fond of learning and teaching, eager to equal the best, to discover new
things and make independent progress, of modest character, a student of medicine,
interested in curiosities and discoveries, cunning, crafty, sarcastic, an initiate in the
mysterious lore, industrious, diligent, ingenious, living only from day to day, imper-
tinent, contemptuous of religion, grudging, envious, sad, treacherous, magician and
sorcerer, miserable, hateful, lascivious, obscene, lying, obsequious, fond of the prat-
tle of old men, changeable, irresolute, indecent, fond of women, quarrelsome, and
because of the conflicts between my nature and soul I am not understood even by
those with whom I associate most frequently.

Formally trained in medicine, Cardano’s interest in probability derived from his
addiction to gambling. His love of dice and cards was so all-consuming that he is
said to have once sold all his wife’s possessions just to get table stakes! Fortunately,
something positive came out of Cardano’s obsession. He began looking for a math-
ematical model that would describe, in some abstract way, the outcome of a random
event. What he eventually formalized is now called the classical definition of prob-
ability: If the total number of possible outcomes, all equally likely, associated with
some action is n, and if m of those n result in the occurrence of some given event,
then the probability of that event is m/n. If a fair die is rolled, there are n = 6 pos-
sible outcomes. If the event “Outcome is greater than or equal to 5” is the one in

1 When rolling four astragali, each of which is numbered on four sides, a Venus-throw was having each of the
four numbers appear.
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Figure 1.3.2
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which we are interested, then m = 2 (the outcomes 5 and 6) and the probability of
the event is 2

6 , or 1
3 (see Figure 1.3.2).

Cardano had tapped into the most basic principle in probability. The model
he discovered may seem trivial in retrospect, but it represented a giant step forward:
His was the first recorded instance of anyone computing a theoretical, as opposed to
an empirical, probability. Still, the actual impact of Cardano’s work was minimal.
He wrote a book in 1525, but its publication was delayed until 1663. By then, the
focus of the Renaissance, as well as interest in probability, had shifted from Italy to
France.

The date cited by many historians (those who are not Cardano supporters) as
the “beginning” of probability is 1654. In Paris a well-to-do gambler, the Chevalier
de Méré, asked several prominent mathematicians, including Blaise Pascal, a series
of questions, the best known of which is the problem of points:

Two people, A and B, agree to play a series of fair games until one person has won
six games. They each have wagered the same amount of money, the intention being
that the winner will be awarded the entire pot. But suppose, for whatever reason,
the series is prematurely terminated, at which point A has won five games and B
three. How should the stakes be divided?

[The correct answer is that A should receive seven-eighths of the total amount
wagered. (Hint: Suppose the contest were resumed. What scenarios would lead to
A’s being the first person to win six games?)]

Pascal was intrigued by de Méré’s questions and shared his thoughts with Pierre
Fermat, a Toulouse civil servant and probably the most brilliant mathematician in
Europe. Fermat graciously replied, and from the now-famous Pascal-Fermat corre-
spondence came not only the solution to the problem of points but the foundation
for more general results. More significantly, news of what Pascal and Fermat were
working on spread quickly. Others got involved, of whom the best known was the
Dutch scientist and mathematician Christiaan Huygens. The delays and the indif-
ference that had plagued Cardano a century earlier were not going to happen
again.

Best remembered for his work in optics and astronomy, Huygens, early in his
career, was intrigued by the problem of points. In 1657 he published De Ratiociniis
in Aleae Ludo (Calculations in Games of Chance), a very significant work, far more
comprehensive than anything Pascal and Fermat had done. For almost fifty years it
was the standard “textbook” in the theory of probability. Not surprisingly, Huygens
has supporters who feel that he should be credited as the founder of probability.

Almost all the mathematics of probability was still waiting to be discovered.
What Huygens wrote was only the humblest of beginnings, a set of fourteen propo-
sitions bearing little resemblance to the topics we teach today. But the foundation
was there. The mathematics of probability was finally on firm footing.
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Statistics: From Aristotle to Quetelet

Historians generally agree that the basic principles of statistical reasoning began
to coalesce in the middle of the nineteenth century. What triggered this emergence
was the union of three different “sciences,” each of which had been developing along
more or less independent lines (195).

The first of these sciences, what the Germans called Staatenkunde, involved
the collection of comparative information on the history, resources, and military
prowess of nations. Although efforts in this direction peaked in the seventeenth
and eighteenth centuries, the concept was hardly new: Aristotle had done some-
thing similar in the fourth century b.c. Of the three movements, this one had the
least influence on the development of modern statistics, but it did contribute some
terminology: The word statistics, itself, first arose in connection with studies of
this type.

The second movement, known as political arithmetic, was defined by one of
its early proponents as “the art of reasoning by figures, upon things relating to
government.” Of more recent vintage than Staatenkunde, political arithmetic’s roots
were in seventeenth-century England. Making population estimates and construct-
ing mortality tables were two of the problems it frequently dealt with. In spirit,
political arithmetic was similar to what is now called demography.

The third component was the development of a calculus of probability. As we
saw earlier, this was a movement that essentially started in seventeenth-century
France in response to certain gambling questions, but it quickly became the “engine”
for analyzing all kinds of data.

Staatenkunde: The Comparative Description of States

The need for gathering information on the customs and resources of nations has
been obvious since antiquity. Aristotle is credited with the first major effort toward
that objective: His Politeiai, written in the fourth century b.c., contained detailed
descriptions of some 158 different city-states. Unfortunately, the thirst for knowl-
edge that led to the Politeiai fell victim to the intellectual drought of the Dark Ages,
and almost two thousand years elapsed before any similar projects of like magnitude
were undertaken.

The subject resurfaced during the Renaissance, and the Germans showed the
most interest. They not only gave it a name, Staatenkunde, meaning “the compara-
tive description of states,” but they were also the first (in 1660) to incorporate the
subject into a university curriculum. A leading figure in the German movement was
Gottfried Achenwall, who taught at the University of Göttingen during the middle
of the eighteenth century. Among Achenwall’s claims to fame is that he was the first
to use the word statistics in print. It appeared in the preface of his 1749 book Abriss
der Statswissenschaft der heutigen vornehmsten europaishen Reiche und Republiken.
(The word statistics comes from the Italian root stato, meaning “state,” implying
that a statistician is someone concerned with government affairs.) As terminology,
it seems to have been well-received: For almost one hundred years the word statistics
continued to be associated with the comparative description of states. In the middle
of the nineteenth century, though, the term was redefined, and statistics became the
new name for what had previously been called political arithmetic.

How important was the work of Achenwall and his predecessors to the devel-
opment of statistics? That would be difficult to say. To be sure, their contributions
were more indirect than direct. They left no methodology and no general theory. But
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they did point out the need for collecting accurate data and, perhaps more impor-
tantly, reinforced the notion that something complex—even as complex as an entire
nation—can be effectively studied by gathering information on its component parts.
Thus, they were lending important support to the then-growing belief that induction,
rather than deduction, was a more sure-footed path to scientific truth.

Political Arithmetic

In the sixteenth century the English government began to compile records, called
bills of mortality, on a parish-to-parish basis, showing numbers of deaths and their
underlying causes. Their motivation largely stemmed from the plague epidemics that
had periodically ravaged Europe in the not-too-distant past and were threatening to
become a problem in England. Certain government officials, including the very influ-
ential Thomas Cromwell, felt that these bills would prove invaluable in helping to
control the spread of an epidemic. At first, the bills were published only occasionally,
but by the early seventeenth century they had become a weekly institution.2

Figure 1.3.3 (on the next page) shows a portion of a bill that appeared in London
in 1665. The gravity of the plague epidemic is strikingly apparent when we look at
the numbers at the top: Out of 97,306 deaths, 68,596 (over 70%) were caused by
the plague. The breakdown of certain other afflictions, though they caused fewer
deaths, raises some interesting questions. What happened, for example, to the 23
people who were “frighted” or to the 397 who suffered from “rising of the lights”?

Among the faithful subscribers to the bills was John Graunt, a London mer-
chant. Graunt not only read the bills, he studied them intently. He looked for
patterns, computed death rates, devised ways of estimating population sizes, and
even set up a primitive life table. His results were published in the 1662 treatise
Natural and Political Observations upon the Bills of Mortality. This work was a land-
mark: Graunt had launched the twin sciences of vital statistics and demography, and,
although the name came later, it also signaled the beginning of political arithmetic.
(Graunt did not have to wait long for accolades; in the year his book was published,
he was elected to the prestigious Royal Society of London.)

High on the list of innovations that made Graunt’s work unique were his objec-
tives. Not content simply to describe a situation, although he was adept at doing so,
Graunt often sought to go beyond his data and make generalizations (or, in current
statistical terminology, draw inferences). Having been blessed with this particular
turn of mind, he almost certainly qualifies as the world’s first statistician. All Graunt
really lacked was the probability theory that would have enabled him to frame his
inferences more mathematically. That theory, though, was just beginning to unfold
several hundred miles away in France (151).

Other seventeenth-century writers were quick to follow through on Graunt’s
ideas. William Petty’s Political Arithmetick was published in 1690, although it had
probably been written some fifteen years earlier. (It was Petty who gave the move-
ment its name.) Perhaps even more significant were the contributions of Edmund
Halley (of “Halley’s comet” fame). Principally an astronomer, he also dabbled in
political arithmetic, and in 1693 wrote An Estimate of the Degrees of the Mortal-
ity of Mankind, drawn from Curious Tables of the Births and Funerals at the city of
Breslaw; with an attempt to ascertain the Price of Annuities upon Lives. (Book titles

2 An interesting account of the bills of mortality is given in Daniel Defoe’s A Journal of the Plague Year, which
purportedly chronicles the London plague outbreak of 1665.
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The bill for the year—A General Bill for this present year, ending the 19 of
December, 1665, according to the Report made to the King’s most excellent
Majesty, by the Co. of Parish Clerks of Lond., & c.—gives the following sum-
mary of the results; the details of the several parishes we omit, they being made
as in 1625, except that the out-parishes were now 12:—

Buried in the 27 Parishes within the walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15,207
Whereof of the plague . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9,887
Buried in the 16 Parishes without the walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41,351
Whereof of the plague. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28,838
At the Pesthouse, total buried. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Of the plague. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Buried in the 12 out-Parishes in Middlesex and surrey . . . . . . . . . . . . . . . . . . 18,554
Whereof of the plague . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21,420
Buried in the 5 Parishes in the City and Liberties of Westminster . . . . . . . . 12,194
Whereof the plague. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8,403
The total of all the christenings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9,967
The total of all the burials this year . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97,306
Whereof of the plague . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68,596

Abortive and Stillborne . . . . . . . . . . 617 Griping in the Guts . . . . . . . . . . . . . . . . 1,288 Palsie . . . . . . . . . . . . . . . . . . . . . . 30
Aged . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,545 Hang’d & made away themselved . . 7 Plague . . . . . . . . . . . . . . . . . . . . . 68,596
Ague & Feaver . . . . . . . . . . . . . . . . . . 5,257 Headmould shot and mould fallen . . 14 Plannet . . . . . . . . . . . . . . . . . . . . 6
Appolex and Suddenly . . . . . . . . . . . 116 Jaundice . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Plurisie . . . . . . . . . . . . . . . . . . . . 15
Bedrid . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Impostume . . . . . . . . . . . . . . . . . . . . . . . . 227 Poysoned . . . . . . . . . . . . . . . . . . 1
Blasted . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Kill by several accidents . . . . . . . . . . . 46 Quinsie . . . . . . . . . . . . . . . . . . . . 35
Bleeding . . . . . . . . . . . . . . . . . . . . . . . . . 16 King’s Evill . . . . . . . . . . . . . . . . . . . . . . . . 86 Rickets . . . . . . . . . . . . . . . . . . . . 535
Cold & Cough . . . . . . . . . . . . . . . . . . . 68 Leprosie . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Rising of the Lights . . . . . . . . 397
Collick & Winde . . . . . . . . . . . . . . . . . 134 Lethargy . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Rupture . . . . . . . . . . . . . . . . . . . 34
Comsumption & Tissick . . . . . . . . . . 4,808 Livergrown . . . . . . . . . . . . . . . . . . . . . . . . 20 Scurry . . . . . . . . . . . . . . . . . . . . . 105
Convulsion & Mother . . . . . . . . . . . . 2,036 Bloody Flux, Scowring & Flux . . . . . 18 Shingles & Swine Pox . . . . . . 2
Distracted . . . . . . . . . . . . . . . . . . . . . . . 5 Burnt and Scalded . . . . . . . . . . . . . . . . . 8 Sores, Ulcers, Broken and
Dropsie & Timpany . . . . . . . . . . . . . . 1,478 Calenture . . . . . . . . . . . . . . . . . . . . . . . . . 3 Bruised Limbs . . . . . . . . . . . . . 82
Drowned . . . . . . . . . . . . . . . . . . . . . . . . 50 Cancer, Cangrene & Fistula . . . . . . . . 56 Spleen . . . . . . . . . . . . . . . . . . . . . 14
Executed . . . . . . . . . . . . . . . . . . . . . . . . 21 Canker and Thrush . . . . . . . . . . . . . . . . 111 Spotted Feaver & Purples . . 1,929
Flox & Smallpox . . . . . . . . . . . . . . . . . 655 Childbed . . . . . . . . . . . . . . . . . . . . . . . . . . 625 Stopping of the Stomach . . . 332
Found Dead in streets, fields, &c. . 20 Chrisomes and Infants . . . . . . . . . . . . . 1,258 Stone and Stranguary . . . . . . 98
French Pox . . . . . . . . . . . . . . . . . . . . . . 86 Meagrom and Headach . . . . . . . . . . . . 12 Surfe . . . . . . . . . . . . . . . . . . . . . . 1,251
Frighted . . . . . . . . . . . . . . . . . . . . . . . . . 23 Measles . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Teeth & Worms . . . . . . . . . . . . 2,614
Gout & Sciatica . . . . . . . . . . . . . . . . . . 27 Murthered & Shot . . . . . . . . . . . . . . . . . 9 Vomiting . . . . . . . . . . . . . . . . . . . 51
Grief . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Overlaid & Starved . . . . . . . . . . . . . . . . 45 Wenn . . . . . . . . . . . . . . . . . . . . . . 8

Christened-Males . . . . . . . . . . . . . . . . 5,114 Females . . . . . . . . . . . . . . . . . . . . . . . . . . . 4,853 In all . . . . . . . . . . . . . . . . . . . . . . . 9,967
Buried-Males . . . . . . . . . . . . . . . . . . . . 58,569 Females . . . . . . . . . . . . . . . . . . . . . . . . . . . 48,737 In all . . . . . . . . . . . . . . . . . . . . . . . 97,306

Of the Plague . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68,596
Increase in the Burials in the 130 Parishes and the Pesthouse this year . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79,009
Increase of the Plague in the 130 Parishes and the Pesthouse this year . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68,590

Figure 1.3.3

were longer then!) Halley shored up, mathematically, the efforts of Graunt and oth-
ers to construct an accurate mortality table. In doing so, he laid the foundation for
the important theory of annuities. Today, all life insurance companies base their pre-
mium schedules on methods similar to Halley’s. (The first company to follow his lead
was The Equitable, founded in 1765.)

For all its initial flurry of activity, political arithmetic did not fare particularly
well in the eighteenth century, at least in terms of having its methodology fine-tuned.
Still, the second half of the century did see some notable achievements in improving
the quality of the databases: Several countries, including the United States in 1790,



14 Chapter 1 Introduction

established a periodic census. To some extent, answers to the questions that inter-
ested Graunt and his followers had to be deferred until the theory of probability
could develop just a little bit more.

Quetelet: The Catalyst

With political arithmetic furnishing the data and many of the questions, and the the-
ory of probability holding out the promise of rigorous answers, the birth of statistics
was at hand. All that was needed was a catalyst—someone to bring the two together.
Several individuals served with distinction in that capacity. Carl Friedrich Gauss, the
superb German mathematician and astronomer, was especially helpful in showing
how statistical concepts could be useful in the physical sciences. Similar efforts in
France were made by Laplace. But the man who perhaps best deserves the title of
“matchmaker” was a Belgian, Adolphe Quetelet.

Quetelet was a mathematician, astronomer, physicist, sociologist, anthropolo-
gist, and poet. One of his passions was collecting data, and he was fascinated by the
regularity of social phenomena. In commenting on the nature of criminal tendencies,
he once wrote (70):

Thus we pass from one year to another with the sad perspective of seeing the same
crimes reproduced in the same order and calling down the same punishments in the
same proportions. Sad condition of humanity! . . . We might enumerate in advance
how many individuals will stain their hands in the blood of their fellows, how many
will be forgers, how many will be poisoners, almost we can enumerate in advance the
births and deaths that should occur. There is a budget which we pay with a frightful
regularity; it is that of prisons, chains and the scaffold.

Given such an orientation, it was not surprising that Quetelet would see in prob-
ability theory an elegant means for expressing human behavior. For much of the
nineteenth century he vigorously championed the cause of statistics, and as a mem-
ber of more than one hundred learned societies, his influence was enormous. When
he died in 1874, statistics had been brought to the brink of its modern era.

1.4 A Chapter Summary
The concepts of probability lie at the very heart of all statistical problems. Acknowl-
edging that fact, the next two chapters take a close look at some of those concepts.
Chapter 2 states the axioms of probability and investigates their consequences. It
also covers the basic skills for algebraically manipulating probabilities and gives an
introduction to combinatorics, the mathematics of counting. Chapter 3 reformulates
much of the material in Chapter 2 in terms of random variables, the latter being a
concept of great convenience in applying probability to statistics. Over the years,
particular measures of probability have emerged as being especially useful: The
most prominent of these are profiled in Chapter 4.

Our study of statistics proper begins with Chapter 5, which is a first look at
the theory of parameter estimation. Chapter 6 introduces the notion of hypothesis
testing, a procedure that, in one form or another, commands a major share of the
remainder of the book. From a conceptual standpoint, these are very important
chapters: Most formal applications of statistical methodology will involve either
parameter estimation or hypothesis testing, or both.
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Among the probability functions featured in Chapter 4, the normal distribu-
tion—more familiarly known as the bell-shaped curve—is sufficiently important to
merit even further scrutiny. Chapter 7 derives in some detail many of the properties
and applications of the normal distribution as well as those of several related prob-
ability functions. Much of the theory that supports the methodology appearing in
Chapters 9 through 13 comes from Chapter 7.

Chapter 8 describes some of the basic principles of experimental “design.”
Its purpose is to provide a framework for comparing and contrasting the various
statistical procedures profiled in Chapters 9 through 14.

Chapters 9, 12, and 13 continue the work of Chapter 7, but with the emphasis
on the comparison of several populations, similar to what was done in Case Study
1.2.2. Chapter 10 looks at the important problem of assessing the level of agreement
between a set of data and the values predicted by the probability model from which
those data presumably came. Linear relationships are examined in Chapter 11.

Chapter 14 is an introduction to nonparametric statistics. The objective there is
to develop procedures for answering some of the same sorts of questions raised in
Chapters 7, 9, 12, and 13, but with fewer initial assumptions.

As a general format, each chapter contains numerous examples and case stud-
ies, the latter including actual experimental data taken from a variety of sources,
primarily newspapers, magazines, and technical journals. We hope that these appli-
cations will make it abundantly clear that, while the general orientation of this text
is theoretical, the consequences of that theory are never too far from having direct
relevance to the “real world.”
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One of the most influential of seventeenth-century mathematicians, Fermat earned his
living as a lawyer and administrator in Toulouse. He shares credit with Descartes for
the invention of analytic geometry, but his most important work may have been in
number theory. Fermat did not write for publication, preferring instead to send letters
and papers to friends. His correspondence with Pascal was the starting point for the
development of a mathematical theory of probability.

—Pierre de Fermat (1601–1665)

Pascal was the son of a nobleman. A prodigy of sorts, he had already published a
treatise on conic sections by the age of sixteen. He also invented one of the early
calculating machines to help his father with accounting work. Pascal’s contributions
to probability were stimulated by his correspondence, in 1654, with Fermat. Later
that year he retired to a life of religious meditation.

—Blaise Pascal (1623–1662)

2.1 Introduction
Experts have estimated that the likelihood of any given UFO sighting being genuine
is on the order of one in one hundred thousand. Since the early 1950s, some ten
thousand sightings have been reported to civil authorities. What is the probability
that at least one of those objects was, in fact, an alien spacecraft? In 1978, Pete Rose
of the Cincinnati Reds set a National League record by batting safely in forty-four
consecutive games. How unlikely was that event, given that Rose was a lifetime
.303 hitter? By definition, the mean free path is the average distance a molecule in a
gas travels before colliding with another molecule. How likely is it that the distance a
molecule travels between collisions will be at least twice its mean free path? Suppose
a boy’s mother and father both have genetic markers for sickle cell anemia, but
neither parent exhibits any of the disease’s symptoms. What are the chances that
their son will also be asymptomatic? What are the odds that a poker player is dealt

16
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a full house or that a craps-shooter makes his “point”? If a woman has lived to
age seventy, how likely is it that she will die before her ninetieth birthday? In 1994,
Tom Foley was Speaker of the House and running for re-election. The day after the
election, his race had still not been “called” by any of the networks: he trailed his
Republican challenger by 2174 votes, but 14,000 absentee ballots remained to be
counted. Foley, however, conceded. Should he have waited for the absentee ballots
to be counted, or was his defeat at that point a virtual certainty?

As the nature and variety of these questions would suggest, probability is a sub-
ject with an extraordinary range of real-world, everyday applications. What began
as an exercise in understanding games of chance has proven to be useful every-
where. Maybe even more remarkable is the fact that the solutions to all of these
diverse questions are rooted in just a handful of definitions and theorems. Those
results, together with the problem-solving techniques they empower, are the sum
and substance of Chapter 2. We begin, though, with a bit of history.

The Evolution of the Definition of Probability

Over the years, the definition of probability has undergone several revisions. There
is nothing contradictory in the multiple definitions—the changes primarily reflected
the need for greater generality and more mathematical rigor. The first formulation
(often referred to as the classical definition of probability) is credited to Gerolamo
Cardano (recall Section 1.3). It applies only to situations where (1) the number of
possible outcomes is finite and (2) all outcomes are equally likely. Under those con-
ditions, the probability of an event comprised of m outcomes is the ratio m/n, where
n is the total number of (equally likely) outcomes. Tossing a fair, six-sided die, for
example, gives m/n = 3

6 as the probability of rolling an even number (that is, either
2, 4, or 6).

While Cardano’s model was well-suited to gambling scenarios (for which it was
intended), it was obviously inadequate for more general problems, where outcomes
are not equally likely and/or the number of outcomes is not finite. Richard von
Mises, a twentieth-century German mathematician, is often credited with avoid-
ing the weaknesses in Cardano’s model by defining “empirical” probabilities. In the
von Mises approach, we imagine an experiment being repeated over and over again
under presumably identical conditions. Theoretically, a running tally could be kept
of the number of times (m) the outcome belongs to a given event divided by n, the
total number of times the experiment is performed. According to von Mises, the
probability of the given event is the limit (as n goes to infinity) of the ratio m/n.
Figure 2.1.1 illustrates the empirical probability of getting a head by tossing a fair
coin: as the number of tosses continues to increase, the ratio m/n converges to 1

2 .

Figure 2.1.1 1
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The von Mises approach definitely shores up some of the inadequacies seen in
the Cardano model, but it is not without shortcomings of its own. There is some
conceptual inconsistency, for example, in extolling the limit of m/n as a way of defin-
ing a probability empirically, when the very act of repeating an experiment under
identical conditions an infinite number of times is physically impossible. And left
unanswered is the question of how large n must be in order for m/n to be a good
approximation for lim m/n.

Andrei Kolmogorov, the great Russian probabilist, took a different approach.
Aware that many twentieth-century mathematicians were having success developing
subjects axiomatically, Kolmogorov wondered whether probability might similarly
be defined operationally, rather than as a ratio (like the Cardano model) or as a
limit (like the von Mises model). His efforts culminated in a masterpiece of mathe-
matical elegance when he published Grundbegriffe der Wahrscheinlichkeitsrechnung
(Foundations of the Theory of Probability) in 1933. In essence, Kolmogorov was able
to show that a maximum of four simple axioms is necessary and sufficient to define
the way any and all probabilities must behave. (These will be our starting point in
Section 2.3.)

We begin Chapter 2 with some basic (and, presumably, familiar) definitions
from set theory. These are important because probability will eventually be defined
as a set function—that is, a mapping from a set to a number. Then, with the help
of Kolmogorov’s axioms in Section 2.3, we will learn how to calculate and manipu-
late probabilities. The chapter concludes with an introduction to combinatorics—the
mathematics of systematic counting—and its application to probability.

2.2 Sample Spaces and the Algebra of Sets
The starting point for studying probability is the definition of four key terms: exper-
iment, sample outcome, sample space, and event. The latter three, all carryovers
from classical set theory, give us a familiar mathematical framework within which to
work; the former is what provides the conceptual mechanism for casting real-world
phenomena into probabilistic terms.

By an experiment we will mean any procedure that (1) can be repeated, the-
oretically, an infinite number of times; and (2) has a well-defined set of possible
outcomes. Thus, rolling a pair of dice qualifies as an experiment; so does measuring
a hypertensive’s blood pressure or doing a spectrographic analysis to determine the
carbon content of moon rocks. Asking a would-be psychic to draw a picture of an
image presumably transmitted by another would-be psychic does not qualify as an
experiment, because the set of possible outcomes cannot be listed, characterized, or
otherwise defined.

Each of the potential eventualities of an experiment is referred to as a sample
outcome, s, and their totality is called the sample space, S. To signify the membership
of s in S, we write s ∈ S. Any designated collection of sample outcomes, including
individual outcomes, the entire sample space, and the null set, constitutes an event.
The latter is said to occur if the outcome of the experiment is one of the members
of the event.

Example
2.2.1

Consider the experiment of flipping a coin three times. What is the sample space?
Which sample outcomes make up the event A: Majority of coins show heads?

Think of each sample outcome here as an ordered triple, its components repre-
senting the outcomes of the first, second, and third tosses, respectively. Altogether,
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there are eight different triples, so those eight comprise the sample space:

S ={HHH,HHT,HTH,THH,HTT,THT,TTH,TTT}
By inspection, we see that four of the sample outcomes in S constitute the event A:

A ={HHH,HHT,HTH,THH}

Example
2.2.2

Imagine rolling two dice, the first one red, the second one green. Each sample out-
come is an ordered pair (face showing on red die, face showing on green die), and
the entire sample space can be represented as a 6 × 6 matrix (see Figure 2.2.1).

A

Face showing on green die
F
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sh
ow
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on
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ed
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ie
   1 2 3 4 5 6

 1 (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)

 2 (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)

 3 (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)

 4 (4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)

 5 (5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)

 6 (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)

Figure 2.2.1

Gamblers are often interested in the event A that the sum of the faces showing
is a 7. Notice in Figure 2.2.1 that the sample outcomes contained in A are the six
diagonal entries, (1,6), (2,5), (3,4), (4,3), (5,2), and (6,1).

Example
2.2.3

A local TV station advertises two newscasting positions. If three women (W1, W2,

W3) and two men (M1, M2) apply, the “experiment” of hiring two coanchors
generates a sample space of ten outcomes:

S ={(W1, W2), (W1, W3), (W2, W3), (W1, M1), (W1, M2), (W2, M1),

(W2, M2), (W3, M1), (W3, M2), (M1, M2)}
Does it matter here that the two positions being filled are equivalent? Yes. If the
station were seeking to hire, say, a sports announcer and a weather forecaster,
the number of possible outcomes would be twenty: (W2, M1), for example, would
represent a different staffing assignment than (M1, W2).

Example
2.2.4

The number of sample outcomes associated with an experiment need not be
finite. Suppose that a coin is tossed until the first tail appears. If the first toss is
itself a tail, the outcome of the experiment is T; if the first tail occurs on the second
toss, the outcome is HT; and so on. Theoretically, of course, the first tail may never
occur, and the infinite nature of S is readily apparent:

S ={T,HT,HHT,HHHT, . . .}
Example

2.2.5
There are three ways to indicate an experiment’s sample space. If the number of pos-
sible outcomes is small, we can simply list them, as we did in Examples 2.2.1 through
2.2.3. In some cases it may be possible to characterize a sample space by showing the
structure its outcomes necessarily possess. This is what we did in Example 2.2.4.
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A third option is to state a mathematical formula that the sample outcomes must
satisfy.

A computer programmer is running a subroutine that solves a general
quadratic equation, ax2 + bx + c = 0. Her “experiment” consists of choosing val-
ues for the three coefficients a,b, and c. Define (1) S and (2) the event A: Equation
has two equal roots.

First, we must determine the sample space. Since presumably no combinations
of finite a, b, and c are inadmissible, we can characterize S by writing a series of
inequalities:

S ={(a,b, c) : −∞< a <∞,−∞< b <∞,−∞< c <∞}
Defining A requires the well-known result from algebra that a quadratic equation
has equal roots if and only if its discriminant, b2 − 4ac, vanishes. Membership in A,
then, is contingent on a,b, and c satisfying an equation:

A ={(a,b, c) : b2 − 4ac = 0}

Questions

2.2.1. A graduating engineer has signed up for three job
interviews. She intends to categorize each one as being
either a “success” or a “failure” depending on whether
it leads to a plant trip. Write out the appropriate sam-
ple space. What outcomes are in the event A: Second
success occurs on third interview? In B: First success
never occurs? (Hint: Notice the similarity between this
situation and the coin-tossing experiment described in
Example 2.2.1.)

2.2.2. Three dice are tossed, one red, one blue, and one
green. What outcomes make up the event A that the sum
of the three faces showing equals 5?

2.2.3. An urn contains six chips numbered 1 through 6.
Three are drawn out. What outcomes are in the event
“Second smallest chip is a 3”? Assume that the order of
the chips is irrelevant.

2.2.4. Suppose that two cards are dealt from a standard
52-card poker deck. Let A be the event that the sum of
the two cards is 8 (assume that aces have a numerical value
of 1). How many outcomes are in A?

2.2.5. In the lingo of craps-shooters (where two dice are
tossed and the underlying sample space is the matrix pic-
tured in Figure 2.2.1) is the phrase “making a hard eight.”
What might that mean?

2.2.6. A poker deck consists of fifty-two cards, represent-
ing thirteen denominations (2 through ace) and four suits
(diamonds, hearts, clubs, and spades). A five-card hand is
called a flush if all five cards are in the same suit but not all
five denominations are consecutive. Pictured in the next
column is a flush in hearts. Let N be the set of five cards in
hearts that are not flushes. How many outcomes are in N?

[Note: In poker, the denominations (A, 2, 3, 4, 5) are con-
sidered to be consecutive (in addition to sequences such
as (8, 9, 10, J, Q)).]

Denominations

2 3 4 5 6 7 8 9 10 J Q K A

D
H X X X X XSuits C
S

2.2.7. Let P be the set of right triangles with a 5′′

hypotenuse and whose height and length are a and b,
respectively. Characterize the outcomes in P .

2.2.8. Suppose a baseball player steps to the plate with
the intention of trying to “coax” a base on balls by never
swinging at a pitch. The umpire, of course, will necessar-
ily call each pitch either a ball (B) or a strike (S). What
outcomes make up the event A, that a batter walks on the
sixth pitch? (Note: A batter “walks” if the fourth ball is
called before the third strike.)

2.2.9. A telemarketer is planning to set up a phone
bank to bilk widows with a Ponzi scheme. His past expe-
rience (prior to his most recent incarceration) suggests
that each phone will be in use half the time. For a given
phone at a given time, let 0 indicate that the phone is
available and let 1 indicate that a caller is on the line. Sup-
pose that the telemarketer’s “bank” is comprised of four
telephones.
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(a) Write out the outcomes in the sample space.
(b) What outcomes would make up the event that

exactly two phones are being used?
(c) Suppose the telemarketer had k phones. How many

outcomes would allow for the possibility that at most
one more call could be received? (Hint: How many
lines would have to be busy?)

2.2.10. Two darts are thrown at the following target:

2 4

1

(a) Let (u, v) denote the outcome that the first dart lands
in region u and the second dart, in region v. List the
sample space of (u, v)’s.

(b) List the outcomes in the sample space of sums, u + v.

2.2.11. A woman has her purse snatched by two
teenagers. She is subsequently shown a police lineup con-
sisting of five suspects, including the two perpetrators.
What is the sample space associated with the experiment
“Woman picks two suspects out of lineup”? Which out-
comes are in the event A: She makes at least one incorrect
identification?

2.2.12. Consider the experiment of choosing coefficients
for the quadratic equation ax2 + bx + c = 0. Characterize
the values of a,b, and c associated with the event A:
Equation has complex roots.

2.2.13. In the game of craps, the person rolling the dice
(the shooter) wins outright if his first toss is a 7 or an 11.
If his first toss is a 2, 3, or 12, he loses outright. If his first
roll is something else, say, a 9, that number becomes his
“point” and he keeps rolling the dice until he either rolls
another 9, in which case he wins, or a 7, in which case he
loses. Characterize the sample outcomes contained in the
event “Shooter wins with a point of 9.”

2.2.14. A probability-minded despot offers a convicted
murderer a final chance to gain his release. The prisoner
is given twenty chips, ten white and ten black. All twenty
are to be placed into two urns, according to any allo-
cation scheme the prisoner wishes, with the one proviso
being that each urn contain at least one chip. The execu-
tioner will then pick one of the two urns at random and
from that urn, one chip at random. If the chip selected is
white, the prisoner will be set free; if it is black, he “buys
the farm.” Characterize the sample space describing the
prisoner’s possible allocation options. (Intuitively, which
allocation affords the prisoner the greatest chance of
survival?)

2.2.15. Suppose that ten chips, numbered 1 through 10,
are put into an urn at one minute to midnight, and chip
number 1 is quickly removed. At one-half minute to mid-
night, chips numbered 11 through 20 are added to the urn,
and chip number 2 is quickly removed. Then at one-fourth
minute to midnight, chips numbered 21 to 30 are added to
the urn, and chip number 3 is quickly removed. If that pro-
cedure for adding chips to the urn continues, how many
chips will be in the urn at midnight (148)?

Unions, Intersections, and Complements

Associated with events defined on a sample space are several operations collectively
referred to as the algebra of sets. These are the rules that govern the ways in which
one event can be combined with another. Consider, for example, the game of craps
described in Question 2.2.13. The shooter wins on his initial roll if he throws either
a 7 or an 11. In the language of the algebra of sets, the event “Shooter rolls a 7 or
an 11” is the union of two simpler events, “Shooter rolls a 7” and “Shooter rolls
an 11.” If E denotes the union and if A and B denote the two events making up the
union, we write E = A ∪ B. The next several definitions and examples illustrate those
portions of the algebra of sets that we will find particularly useful in the chapters
ahead.

Definition 2.2.1. Let A and B be any two events defined over the same sample
space S. Then

a. The intersection of A and B, written A ∩ B, is the event whose outcomes
belong to both A and B.

b. The union of A and B, written A ∪ B, is the event whose outcomes belong
to either A or B or both.
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Example
2.2.6

A single card is drawn from a poker deck. Let A be the event that an ace is selected:

A ={ace of hearts, ace of diamonds, ace of clubs, ace of spades}
Let B be the event “Heart is drawn”:

B ={2 of hearts,3 of hearts, . . . , ace of hearts}
Then

A ∩ B ={ace of hearts}
and

A ∪ B = {2 of hearts, 3 of hearts, . . . , ace of hearts, ace of diamonds,
ace of clubs, ace of spades}

(Let C be the event “Club is drawn.” Which cards are in B ∪ C? In B ∩ C?)

Example
2.2.7

Let A be the set of x ’s for which x2 + 2x = 8; let B be the set for which x2 + x = 6.
Find A ∩ B and A ∪ B.

Since the first equation factors into (x + 4)(x − 2) = 0, its solution set is A =
{−4,2}. Similarly, the second equation can be written (x + 3)(x − 2) = 0, making
B ={−3,2}. Therefore,

A ∩ B ={2}
and

A ∪ B ={−4,−3,2}

Example
2.2.8

Consider the electrical circuit pictured in Figure 2.2.2. Let Ai denote the event that
switch i fails to close, i = 1,2,3,4. Let A be the event “Circuit is not completed.”
Express A in terms of the Ai ’s.

1 3

2 4

Figure 2.2.2

Call the ① and ② switches line a; call the ③ and ④ switches line b. By inspection,
the circuit fails only if both line a and line b fail. But line a fails only if either ① or
② (or both) fail. That is, the event that line a fails is the union A1 ∪ A2. Similarly,
the failure of line b is the union A3 ∪ A4. The event that the circuit fails, then, is an
intersection:

A = (A1 ∪ A2)∩ (A3 ∪ A4)

Definition 2.2.2. Events A and B defined over the same sample space are said
to be mutually exclusive if they have no outcomes in common—that is, if A ∩ B =
∅, where ∅ is the null set.
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Example
2.2.9

Consider a single throw of two dice. Define A to be the event that the sum of the
faces showing is odd. Let B be the event that the two faces themselves are odd. Then
clearly, the intersection is empty, the sum of two odd numbers necessarily being
even. In symbols, A ∩ B =∅. (Recall the event B ∩ C asked for in Example 2.2.6.)

Definition 2.2.3. Let A be any event defined on a sample space S. The com-
plement of A, written AC , is the event consisting of all the outcomes in S other
than those contained in A.

Example
2.2.10

Let A be the set of (x, y)’s for which x2 + y2 < 1. Sketch the region in the xy-plane
corresponding to AC .

From analytic geometry, we recognize that x2 + y2 < 1 describes the interior of
a circle of radius 1 centered at the origin. Figure 2.2.3 shows the complement—the
points on the circumference of the circle and the points outside the circle.

AC  : x2  +y2   ≥ 1

y

A x

Figure 2.2.3

The notions of union and intersection can easily be extended to more than
two events. For example, the expression A1 ∪ A2 ∪ · · · ∪ Ak defines the set of out-
comes belonging to any of the Ai ’s (or to any combination of the Ai ’s). Similarly,
A1 ∩ A2 ∩ · · · ∩ Ak is the set of outcomes belonging to all of the Ai ’s.

Example
2.2.11

Suppose the events A1, A2, . . . , Ak are intervals of real numbers such that

Ai ={x : 0 ≤ x < 1/ i}, i = 1,2, . . . , k

Describe the sets A1 ∪ A2 ∪ · · · ∪ Ak =∪k
i=1 Ai and A1 ∩ A2 ∩ · · · ∩ Ak =∩k

i=1 Ai .
Notice that the Ai ’s are telescoping sets. That is, A1 is the interval 0 ≤ x < 1, A2

is the interval 0 ≤ x < 1
2 , and so on. It follows, then, that the union of the k Ai ’s is

simply A1 while the intersection of the Ai ’s (that is, their overlap) is Ak .

Questions

2.2.16. Sketch the regions in the xy-plane corresponding
to A ∪ B and A ∩ B if

A ={(x, y): 0 < x < 3,0 < y < 3}
and

B ={(x, y): 2 < x < 4,2 < y < 4}

2.2.17. Referring to Example 2.2.7, find A ∩ B and A ∪ B if
the two equations were replaced by inequalities: x2 + 2x ≤
8 and x2 + x ≤ 6.

2.2.18. Find A ∩ B ∩ C if A = {x : 0 ≤ x ≤ 4}, B = {x : 2 ≤
x ≤ 6}, and C ={x : x = 0,1,2, . . .}.
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2.2.19. An electronic system has four components
divided into two pairs. The two components of each pair
are wired in parallel; the two pairs are wired in series. Let
Ai j denote the event “ith component in jth pair fails,”
i = 1,2; j = 1,2. Let A be the event “System fails.” Write
A in terms of the Ai j ’s.

j = 1 j = 2

2.2.20. Define A = {x : 0 ≤ x ≤ 1}, B = {x : 0 ≤ x ≤ 3}, and
C = {x : −1 ≤ x ≤ 2}. Draw diagrams showing each of the
following sets of points:

(a) AC ∩ B ∩ C
(b) AC ∪ (B ∩ C)

(c) A ∩ B ∩ CC

(d) [(A ∪ B)∩ CC ]C

2.2.21. Let A be the set of five-card hands dealt from a
52-card poker deck, where the denominations of the five
cards are all consecutive—for example, (7 of hearts, 8 of
spades, 9 of spades, 10 of hearts, jack of diamonds). Let B
be the set of five-card hands where the suits of the five
cards are all the same. How many outcomes are in the
event A ∩ B?

2.2.22. Suppose that each of the twelve letters in the
word

T E S S E L L A T I O N

is written on a chip. Define the events F, R, and C as
follows:

F : letters in first half of alphabet
R: letters that are repeated
V : letters that are vowels

Which chips make up the following events?

(a) F ∩ R ∩ V
(b) FC ∩ R ∩ V C

(c) F ∩ RC ∩ V

2.2.23. Let A, B, and C be any three events defined on a
sample space S. Show that

(a) the outcomes in A ∪ (B ∩ C) are the same as the
outcomes in (A ∪ B)∩ (A ∪ C).

(b) the outcomes in A ∩ (B ∪ C) are the same as the
outcomes in (A ∩ B)∪ (A ∩ C).

2.2.24. Let A1, A2, . . . , Ak be any set of events defined on
a sample space S. What outcomes belong to the event

(A1 ∪ A2 ∪ · · · ∪ Ak)∪ (AC
1 ∩ AC

2 ∩ · · · ∩ AC
k

)
2.2.25. Let A, B, and C be any three events defined on
a sample space S. Show that the operations of union and
intersection are associative by proving that

(a) A ∪ (B ∪ C)= (A ∪ B)∪ C = A ∪ B ∪ C
(b) A ∩ (B ∩ C)= (A ∩ B)∩ C = A ∩ B ∩ C

2.2.26. Suppose that three events—A, B, and C—are
defined on a sample space S. Use the union, intersec-
tion, and complement operations to represent each of the
following events:

(a) none of the three events occurs
(b) all three of the events occur
(c) only event A occurs
(d) exactly one event occurs
(e) exactly two events occur

2.2.27. What must be true of events A and B if

(a) A ∪ B = B
(b) A ∩ B = A

2.2.28. Let events A and B and sample space S be defined
as the following intervals:

S ={x : 0 ≤ x ≤ 10}
A ={x : 0 < x < 5}
B ={x : 3 ≤ x ≤ 7}

Characterize the following events:

(a) AC

(b) A ∩ B
(c) A ∪ B
(d) A ∩ BC

(e) AC ∪ B
(f) AC ∩ BC

2.2.29. A coin is tossed four times and the resulting
sequence of heads and/or tails is recorded. Define the
events A, B, and C as follows:

A: exactly two heads appear
B: heads and tails alternate
C : first two tosses are heads

(a) Which events, if any, are mutually exclusive?
(b) Which events, if any, are subsets of other sets?

2.2.30. Pictured on the next page are two organizational
charts describing the way upper management vets new
proposals. For both models, three vice presidents—1, 2,
and 3—each voice an opinion.
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1

1

2

2

3

3

(a)

(b)

For (a), all three must concur if the proposal is to pass;
if any one of the three favors the proposal in (b), it
passes. Let Ai denote the event that vice president i
favors the proposal, i = 1,2,3, and let A denote the
event that the proposal passes. Express A in terms of
the Ai ’s for the two office protocols. Under what sorts
of situations might one system be preferable to the
other?

Expressing Events Graphically: Venn Diagrams

Relationships based on two or more events can sometimes be difficult to express
using only equations or verbal descriptions. An alternative approach that can be
highly effective is to represent the underlying events graphically in a format known
as a Venn diagram. Figure 2.2.4 shows Venn diagrams for an intersection, a union,
a complement, and two events that are mutually exclusive. In each case, the shaded
interior of a region corresponds to the desired event.

Figure 2.2.4 Venn diagrams

A
A ∩  B

B
S

A
A ∪ B

B
S

S

A

A ∩ B = ø

B
S

AC

A

Example
2.2.12

When two events A and B are defined on a sample space, we will frequently need
to consider

a. the event that exactly one (of the two) occurs.
b. the event that at most one (of the two) occurs.

Getting expressions for each of these is easy if we visualize the corresponding Venn
diagrams.

The shaded area in Figure 2.2.5 represents the event E that either A or B, but
not both, occurs (that is, exactly one occurs).

S

A B

Figure 2.2.5
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Just by looking at the diagram we can formulate an expression for E . The por-
tion of A, for example, included in E is A ∩ BC . Similarly, the portion of B included
in E is B ∩ AC . It follows that E can be written as a union:

E = (A ∩ BC )∪ (B ∩ AC)

(Convince yourself that an equivalent expression for E is (A ∩ B)C ∩ (A ∪ B).)
Figure 2.2.6 shows the event F that at most one (of the two events) occurs. Since

the latter includes every outcome except those belonging to both A and B, we can
write

F = (A ∩ B)C

A B

S

Figure 2.2.6

Questions

2.2.31. During orientation week, the latest Spiderman
movie was shown twice at State University. Among the
entering class of 6000 freshmen, 850 went to see it the first
time, 690 the second time, while 4700 failed to see it either
time. How many saw it twice?

2.2.32. Let A and B be any two events. Use Venn dia-
grams to show that

(a) the complement of their intersection is the union of
their complements:

(A ∩ B)C = AC ∪ BC

(b) the complement of their union is the intersection of
their complements:

(A ∪ B)C = AC ∩ BC

(These two results are known as DeMorgan’s laws.)

2.2.33. Let A, B, and C be any three events. Use Venn
diagrams to show that

(a) A ∩ (B ∪ C)= (A ∩ B)∪ (A ∩ C)

(b) A ∪ (B ∩ C)= (A ∪ B)∩ (A ∪ C)

2.2.34. Let A, B, and C be any three events. Use Venn
diagrams to show that

(a) A ∪ (B ∪ C)= (A ∪ B)∪ C
(b) A ∩ (B ∩ C)= (A ∩ B)∩ C

2.2.35. Let A and B be any two events defined on a sam-
ple space S. Which of the following sets are necessarily
subsets of which other sets?

A B A ∪ B A ∩ B AC ∩ B

A ∩ BC (AC ∪ BC)C

2.2.36. Use Venn diagrams to suggest an equivalent way
of representing the following events:

(a) (A ∩ BC)C

(b) B ∪ (A ∪ B)C

(c) A ∩ (A ∩ B)C

2.2.37. A total of twelve hundred graduates of State
Tech have gotten into medical school in the past sev-
eral years. Of that number, one thousand earned scores
of twenty-seven or higher on the MCAT and four hun-
dred had GPAs that were 3.5 or higher. Moreover, three
hundred had MCATs that were twenty-seven or higher
and GPAs that were 3.5 or higher. What proportion of
those twelve hundred graduates got into medical school
with an MCAT lower than twenty-seven and a GPA
below 3.5?

2.2.38. Let A, B, and C be any three events defined
on a sample space S. Let N (A), N (B), N (C), N (A ∩
B), N (A ∩ C), N (B ∩ C), and N (A ∩ B ∩ C) denote the
numbers of outcomes in all the different intersections in
which A, B, and C are involved. Use a Venn diagram to
suggest a formula for N (A ∪ B ∪ C). [Hint: Start with the
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sum N (A) + N (B) + N (C) and use the Venn diagram to
identify the “adjustments” that need to be made to that
sum before it can equal N (A ∪ B ∪ C).] As a precedent,
note that N (A ∪ B) = N (A) + N (B) − N (A ∩ B). There,
in the case of two events, subtracting N (A ∩ B) is the
“adjustment.”

2.2.39. A poll conducted by a potential presidential
candidate asked two questions: (1) Do you support the
candidate’s position on taxes? and (2) Do you support
the candidate’s position on homeland security? A total of

twelve hundred responses were received; six hundred said
“yes” to the first question and four hundred said “yes” to
the second. If three hundred respondents said “no” to the
taxes question and “yes” to the homeland security ques-
tion, how many said “yes” to the taxes question but “no”
to the homeland security question?

2.2.40. For two events A and B defined on a sample space
S, N (A ∩ BC) = 15, N (AC ∩ B) = 50, and N (A ∩ B) = 2.
Given that N (S) = 120, how many outcomes belong to
neither A nor B?

2.3 The Probability Function
Having introduced in Section 2.2 the twin concepts of “experiment” and “sample
space,” we are now ready to pursue in a formal way the all-important problem
of assigning a probability to an experiment’s outcome—and, more generally, to an
event. Specifically, if A is any event defined on a sample space S, the symbol P(A)

will denote the probability of A, and we will refer to P as the probability function.
It is, in effect, a mapping from a set (i.e., an event) to a number. The backdrop for
our discussion will be the unions, intersections, and complements of set theory; the
starting point will be the axioms referred to in Section 2.1 that were originally set
forth by Kolmogorov.

If S has a finite number of members, Kolmogorov showed that as few as three
axioms are necessary and sufficient for characterizing the probability function P :

Axiom 1. Let A be any event defined over S. Then P(A)≥ 0.

Axiom 2. P(S)= 1.

Axiom 3. Let A and B be any two mutually exclusive events defined over S. Then

P(A ∪ B)= P(A)+ P(B)

When S has an infinite number of members, a fourth axiom is needed:

Axiom 4. Let A1, A2, . . . , be events defined over S. If Ai ∩ A j =∅ for each i �= j , then

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Ai )

From these simple statements come the general rules for manipulating the probabil-
ity function that apply no matter what specific mathematical form the function may
take in a particular context.

Some Basic Properties of P

Some of the immediate consequences of Kolmogorov’s axioms are the results
given in Theorems 2.3.1 through 2.3.6. Despite their simplicity, several of these
properties—as we will soon see—prove to be immensely useful in solving all sorts
of problems.
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Theorem
2.3.1

P(AC)= 1 − P(A).

Proof By Axiom 2 and Definition 2.2.3,

P(S)= 1 = P(A ∪ AC )

But A and AC are mutually exclusive, so

P(A ∪ AC )= P(A)+ P(AC )

and the result follows. �

Theorem
2.3.2

P(∅)= 0.

Proof Since ∅= SC , P(∅)= P(SC )= 1 − P(S)= 0. �

Theorem
2.3.3

If A ⊂ B, then P(A)≤ P(B).

Proof Note that the event B may be written in the form

B = A ∪ (B ∩ AC )

where A and (B ∩ AC) are mutually exclusive. Therefore,

P(B)= P(A)+ P(B ∩ AC)

which implies that P(B)≥ P(A) since P(B ∩ AC)≥ 0. �

Theorem
2.3.4

For any event A, P(A)≤ 1.

Proof The proof follows immediately from Theorem 2.3.3 because A ⊂ S and
P(S)= 1. �

Theorem
2.3.5

Let A1, A2, . . . , An be events defined over S. If Ai ∩ A j =∅ for i �= j , then

P

(
n⋃

i=1

Ai

)
=

n∑
i=1

P(Ai )

Proof The proof is a straightforward induction argument with Axiom 3 being the
starting point. �

Theorem
2.3.6

P(A ∪ B)= P(A)+ P(B)− P(A ∩ B).

Proof The Venn diagram for A ∪ B certainly suggests that the statement of the
theorem is true (recall Figure 2.2.4). More formally, we have from Axiom 3 that

P(A)= P(A ∩ BC )+ P(A ∩ B)

and

P(B)= P(B ∩ AC)+ P(A ∩ B)

Adding these two equations gives

P(A)+ P(B)=[P(A ∩ BC )+ P(B ∩ AC )+ P(A ∩ B)] + P(A ∩ B)

By Theorem 2.3.5, the sum in the brackets is P(A ∪ B). If we subtract P(A ∩ B) from
both sides of the equation, the result follows. �
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Example
2.3.1

Let A and B be two events defined on a sample space S such that P(A)=0.3, P(B)=
0.5, and P(A ∪ B)= 0.7. Find (a) P(A ∩ B), (b) P(AC ∪ BC ), and (c) P(AC ∩ B).

a. Transposing the terms in Theorem 2.3.6 yields a general formula for the
probability of an intersection:

P(A ∩ B)= P(A)+ P(B)− P(A ∪ B)

Here

P(A ∩ B) = 0.3 + 0.5 − 0.7

= 0.1

b. The two cross-hatched regions in Figure 2.3.1 correspond to AC and BC . The
union of AC and BC consists of those regions that have cross-hatching in either
or both directions. By inspection, the only portion of S not included in AC ∪ BC

is the intersection, A ∩ B. By Theorem 2.3.1, then,

P(AC ∪ BC ) = 1 − P(A ∩ B)

= 1 − 0.1

= 0.9

S

AC

BC

A

B

Figure 2.3.1

S

AC

B

A

B

Figure 2.3.2

c. The event AC ∩ B corresponds to the region in Figure 2.3.2 where the cross-
hatching extends in both directions—that is, everywhere in B except the
intersection with A. Therefore,

P(AC ∩ B) = P(B)− P(A ∩ B)

= 0.5 − 0.1

= 0.4
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Example
2.3.2

Show that

P(A ∩ B)≥ 1 − P(AC )− P(BC )

for any two events A and B defined on a sample space S.
From Example 2.3.1a and Theorem 2.3.1,

P(A ∩ B) = P(A)+ P(B)− P(A ∪ B)

= 1 − P(AC )+ 1 − P(BC )− P(A ∪ B)

But P(A ∪ B)≤ 1 from Theorem 2.3.4, so

P(A ∩ B)≥ 1 − P(AC )− P(BC )

Example
2.3.3

Two cards are drawn from a poker deck without replacement. What is the probabil-
ity that the second is higher in rank than the first?

Let A1, A2, and A3 be the events “First card is lower in rank,” “First card is
higher in rank,” and “Both cards have same rank,” respectively. Clearly, the three
Ai ’s are mutually exclusive and they account for all possible outcomes, so from
Theorem 2.3.5,

P(A1 ∪ A2 ∪ A3)= P(A1)+ P(A2)+ P(A3)= P(S)= 1

Once the first card is drawn, there are three choices for the second that would have
the same rank—that is, P(A3) = 3

51 . Moreover, symmetry demands that P(A1) =
P(A2), so

2P(A2)+ 3

51
= 1

implying that P(A2)= 8
17 .

Example
2.3.4

In a newly released martial arts film, the actress playing the lead role has a stunt
double who handles all of the physically dangerous action scenes. According to the
script, the actress appears in 40% of the film’s scenes, her double appears in 30%,
and the two of them are together 5% of the time. What is the probability that in a
given scene, (a) only the stunt double appears and (b) neither the lead actress nor
the double appears?

a. If L is the event “Lead actress appears in scene” and D is the event “Double
appears in scene,” we are given that P(L) = 0.40, P(D) = 0.30, and P(L ∩ D) =
0.05. It follows that

P(Only double appears) = P(D)− P(L ∩ D)

= 0.30 − 0.05

= 0.25

(recall Example 2.3.1c).
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b. The event “Neither appears” is the complement of the event “At least one
appears.” But P(At least one appears) = P(L ∪ D). From Theorems 2.3.1 and
2.3.6, then,

P(Neither appears) = 1 − P(L ∪ D)

= 1 −[P(L)+ P(D)− P(L ∩ D)]
= 1 −[0.40 + 0.30 − 0.05]
= 0.35

Example
2.3.5

Having endured (and survived) the mental trauma that comes from taking two years
of chemistry, a year of physics, and a year of biology, Biff decides to test the med-
ical school waters and sends his MCATs to two colleges, X and Y . Based on how
his friends have fared, he estimates that his probability of being accepted at X is
0.7, and at Y is 0.4. He also suspects there is a 75% chance that at least one of
his applications will be rejected. What is the probability that he gets at least one
acceptance?

Let A be the event “School X accepts him” and B the event “School Y accepts
him.” We are given that P(A)=0.7, P(B)=0.4, and P(AC ∪ BC)=0.75. The question
is asking for P(A ∪ B).

From Theorem 2.3.6,

P(A ∪ B)= P(A)+ P(B)− P(A ∩ B)

Recall from Question 2.2.32 that AC ∪ BC = (A ∩ B)C , so

P(A ∩ B)= 1 − P[(A ∩ B)C ] = 1 − 0.75 = 0.25

It follows that Biff’s prospects are not all that bleak—he has an 85% chance of
getting in somewhere:

P(A ∪ B) = 0.7 + 0.4 − 0.25

= 0.85

Comment Notice that P(A ∪ B) varies directly with P(AC ∪ BC ):

P(A ∪ B) = P(A)+ P(B)−[1 − P(AC ∪ BC)]
= P(A)+ P(B)− 1 + P(AC ∪ BC )

If P(A) and P(B), then, are fixed, we get the curious result that Biff’s chances of get-
ting at least one acceptance increase if his chances of at least one rejection increase.

Questions

2.3.1. According to a family-oriented lobbying group,
there is too much crude language and violence on tele-
vision. Forty-two percent of the programs they screened
had language they found offensive, 27% were too violent,
and 10% were considered excessive in both language and
violence. What percentage of programs did comply with
the group’s standards?

2.3.2. Let A and B be any two events defined on S.
Suppose that P(A) = 0.4, P(B) = 0.5, and P(A ∩ B) =
0.1. What is the probability that A or B but not both
occur?

2.3.3. Express the following probabilities in terms of
P(A), P(B), and P(A ∩ B).
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(a) P(AC ∪ BC)

(b) P(AC ∩ (A ∪ B))

2.3.4. Let A and B be two events defined on S. If the
probability that at least one of them occurs is 0.3 and the
probability that A occurs but B does not occur is 0.1, what
is P(B)?

2.3.5. Suppose that three fair dice are tossed. Let Ai be
the event that a 6 shows on the ith die, i = 1,2,3. Does
P(A1 ∪ A2 ∪ A3)= 1

2
? Explain.

2.3.6. Events A and B are defined on a sample space S
such that P((A ∪ B)C) = 0.5 and P(A ∩ B) = 0.2. What is
the probability that either A or B but not both will occur?

2.3.7. Let A1, A2, . . . , An be a series of events for which
Ai ∩ A j = ∅ if i �= j and A1 ∪ A2 ∪ · · · ∪ An = S. Let B
be any event defined on S. Express B as a union of
intersections.

2.3.8. Draw the Venn diagrams that would correspond to
the equations (a) P(A ∩ B) = P(B) and (b) P(A ∪ B) =
P(B).

2.3.9. In the game of “odd man out” each player tosses
a fair coin. If all the coins turn up the same except for
one, the player tossing the different coin is declared the
odd man out and is eliminated from the contest. Suppose
that three people are playing. What is the probability that
someone will be eliminated on the first toss? (Hint: Use
Theorem 2.3.1.)

2.3.10. An urn contains twenty-four chips, numbered 1
through 24. One is drawn at random. Let A be the event
that the number is divisible by 2 and let B be the event
that the number is divisible by 3. Find P(A ∪ B).

2.3.11. If State’s football team has a 10% chance of win-
ning Saturday’s game, a 30% chance of winning two weeks
from now, and a 65% chance of losing both games, what
are their chances of winning exactly once?

2.3.12. Events A1 and A2 are such that A1 ∪ A2 = S and
A1 ∩ A2 = ∅. Find p2 if P(A1) = p1, P(A2) = p2, and 3p1 −
p2 = 1

2
.

2.3.13. Consolidated Industries has come under consid-
erable pressure to eliminate its seemingly discriminatory

hiring practices. Company officials have agreed that dur-
ing the next five years, 60% of their new employees will be
females and 30% will be minorities. One out of four new
employees, though, will be a white male. What percentage
of their new hires will be minority females?

2.3.14. Three events—A, B, and C—are defined on a
sample space, S. Given that P(A) = 0.2, P(B) = 0.1, and
P(C) = 0.3, what is the smallest possible value for P[(A ∪
B ∪ C)C ]?
2.3.15. A coin is to be tossed four times. Define events X
and Y such that

X : first and last coins have opposite faces
Y : exactly two heads appear

Assume that each of the sixteen head/tail sequences has
the same probability. Evaluate

(a) P(XC ∩ Y )

(b) P(X ∩ Y C)

2.3.16. Two dice are tossed. Assume that each possible
outcome has a 1

36
probability. Let A be the event that the

sum of the faces showing is 6, and let B be the event that
the face showing on one die is twice the face showing on
the other. Calculate P(A ∩ BC).

2.3.17. Let A, B, and C be three events defined on a sam-
ple space, S. Arrange the probabilities of the following
events from smallest to largest:

(a) A ∪ B
(b) A ∩ B
(c) A
(d) S
(e) (A ∩ B)∪ (A ∩ C)

2.3.18. Lucy is currently running two dot-com scams out
of a bogus chatroom. She estimates that the chances of
the first one leading to her arrest are one in ten; the “risk”
associated with the second is more on the order of one
in thirty. She considers the likelihood that she gets busted
for both to be 0.0025. What are Lucy’s chances of avoiding
incarceration?

2.4 Conditional Probability
In Section 2.3, we calculated probabilities of certain events by manipulating other
probabilities whose values we were given. Knowing P(A), P(B), and P(A ∩ B), for
example, allows us to calculate P(A ∪ B) (recall Theorem 2.3.6). For many real-
world situations, though, the “given” in a probability problem goes beyond simply
knowing a set of other probabilities. Sometimes, we know for a fact that certain
events have already occurred, and those occurrences may have a bearing on the
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probability we are trying to find. In short, the probability of an event A may have to
be “adjusted” if we know for certain that some related event B has already occurred.
Any probability that is revised to take into account the (known) occurrence of other
events is said to be a conditional probability.

Consider a fair die being tossed, with A defined as the event “6 appears.” Clearly,
P(A) = 1

6 . But suppose that the die has already been tossed—by someone who
refuses to tell us whether or not A occurred but does enlighten us to the extent
of confirming that B occurred, where B is the event “Even number appears.” What
are the chances of A now? Here, common sense can help us: There are three equally
likely even numbers making up the event B—one of which satisfies the event A, so
the “updated” probability is 1

3 .
Notice that the effect of additional information, such as the knowledge that

B has occurred, is to revise—indeed, to shrink—the original sample space S to a
new set of outcomes S′. In this example, the original S contained six outcomes, the
conditional sample space, three (see Figure 2.4.1).

Figure 2.4.1
1

B

P (6, relative to S) = 1/6

3

5

6
4

2

S
S' (= B)

P (6, relative to S') = 1/3

6
4

2

The symbol P(A|B)—read “the probability of A given B”—is used to denote
a conditional probability. Specifically, P(A|B) refers to the probability that A will
occur given that B has already occurred.

It will be convenient to have a formula for P(A|B) that can be evaluated in
terms of the original S, rather than the revised S′. Suppose that S is a finite sample
space with n outcomes, all equally likely. Assume that A and B are two events con-
taining a and b outcomes, respectively, and let c denote the number of outcomes in
the intersection of A and B (see Figure 2.4.2). Based on the argument suggested in
Figure 2.4.1, the conditional probability of A given B is the ratio of c to b. But c/b
can be written as the quotient of two other ratios,

Figure 2.4.2

S
BA

ca b

c

b
= c/n

b/n

so, for this particular case,

P(A|B)= P(A ∩ B)

P(B)
(2.4.1)

The same underlying reasoning that leads to Equation 2.4.1, though, holds true even
when the outcomes are not equally likely or when S is uncountably infinite.
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Definition 2.4.1. Let A and B be any two events defined on S such that
P(B)> 0. The conditional probability of A, assuming that B has already
occurred, is written P(A|B) and is given by

P(A|B)= P(A ∩ B)

P(B)

Comment Definition 2.4.1 can be cross-multiplied to give a frequently useful
expression for the probability of an intersection. If P(A|B) = P(A ∩ B)/P(B),
then

P(A ∩ B)= P(A|B)P(B) (2.4.2)

Example
2.4.1

A card is drawn from a poker deck. What is the probability that the card is a club,
given that the card is a king?

Intuitively, the answer is 1
4 : The king is equally likely to be a heart, diamond,

club, or spade. More formally, let C be the event “Card is a club”; let K be the event
“Card is a king.” By Definition 2.4.1,

P(C |K )= P(C ∩ K )

P(K )

But P(K )= 4
52 and P(C ∩ K )= P(Card is a king of clubs)= 1

52 . Therefore, confirming
our intuition,

P(C |K )= 1/52

4/52
= 1

4

[Notice in this example that the conditional probability P(C |K ) is numerically
the same as the unconditional probability P(C)—they both equal 1

4 . This means
that our knowledge that K has occurred gives us no additional insight about the
chances of C occurring. Two events having this property are said to be indepen-
dent. We will examine the notion of independence and its consequences in detail in
Section 2.5.]

Example
2.4.2

Our intuitions can often be fooled by probability problems, even ones that appear to
be simple and straightforward. The “two boys” problem described here is an often-
cited case in point.

Consider the set of families having two children. Assume that the four possible
birth sequences—(younger child is a boy, older child is a boy), (younger child is a
boy, older child is a girl), and so on—are equally likely. What is the probability that
both children are boys given that at least one is a boy?

The answer is not 1
2 . The correct answer can be deduced from Definition 2.4.1.

By assumption, each of the four possible birth sequences—(b,b), (b, g), (g,b), and
(g, g)—has a 1

4 probability of occurring. Let A be the event that both children are
boys, and let B be the event that at least one child is a boy. Then

P(A|B)= P(A ∩ B)/P(B)= P(A)/P(B)
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since A is a subset of B (so the overlap between A and B is just A). But A
has one outcome {(b,b)} and B has three outcomes {(b, g), (g,b), (b,b)}. Applying
Definition 2.4.1, then, gives

P(A|B)= (1/4)/(3/4)= 1

3

Another correct approach is to go back to the sample space and deduce the
value of P(A|B) from first principles. Figure 2.4.3 shows events A and B defined
on the four family types that comprise the sample space S. Knowing that B has
occurred redefines the sample space to include three outcomes, each now having a
1
3 probability. Of those three possible outcomes, one—namely, (b,b)—satisfies the
event A. It follows that P(A|B)= 1

3 .

A

B

(b, b)

(g, b)

(b, g)

(g, g)

S = sample space of two-child families
[outcomes written as (first born, second born)]

Figure 2.4.3

Example
2.4.3

Two events A and B are defined such that (1) the probability that A occurs but B
does not occur is 0.2, (2) the probability that B occurs but A does not occur is 0.1,
and (3) the probability that neither occurs is 0.6. What is P(A|B)?

The three events whose probabilities are given are indicated on the Venn
diagram shown in Figure 2.4.4. Since

P(Neither occurs)= 0.6 = P((A ∪ B)C )

it follows that

P(A ∪ B)= 1 − 0.6 = 0.4 = P(A ∩ BC )+ P(A ∩ B)+ P(B ∩ AC )

so

P(A ∩ B) = 0.4 − 0.2 − 0.1

= 0.1

S

A

B

Neither A nor B

B     ACA    BC

Figure 2.4.4
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From Definition 2.4.1, then,

P(A|B)= P(A ∩ B)

P(B)
= P(A ∩ B)

P(A ∩ B)+ P(B ∩ AC)

= 0.1

0.1 + 0.1

= 0.5

Example
2.4.4

The possibility of importing liquified natural gas (LNG) from Algeria has been sug-
gested as one way of coping with a future energy crunch. Complicating matters,
though, is the fact that LNG is highly volatile and poses an enormous safety hazard.
Any major spill occurring near a U.S. port could result in a fire of catastrophic pro-
portions. The question, therefore, of the likelihood of a spill becomes critical input
for future policymakers who may have to decide whether or not to implement the
proposal.

Two numbers need to be taken into account: (1) the probability that a tanker will
have an accident near a port, and (2) the probability that a major spill will develop
given that an accident has happened. Although no significant spills of LNG have
yet occurred anywhere in the world, these probabilities can be approximated from
records kept on similar tankers transporting less dangerous cargo. On the basis of
such data, it has been estimated (42) that the probability is 8/50,000 that an LNG
tanker will have an accident on any one trip. Given that an accident has occurred, it
is suspected that only three times in fifteen thousand will the damage be sufficiently
severe that a major spill would develop. What are the chances that a given LNG
shipment would precipitate a catastrophic disaster?

Let A denote the event “Spill develops” and let B denote the event “Accident
occurs.” Past experience is suggesting that P(B)= 8/50,000 and P(A|B)= 3/15,000.
Of primary concern is the probability that an accident will occur and a spill will
ensue—that is, P(A ∩ B). Using Equation 2.4.2, we find that the chances of a
catastrophic accident are on the order of three in one hundred million:

P(Accident occurs and spill develops)= P(A ∩ B)

= P(A|B)P(B)

= 3

15,000
· 8

50,000

= 0.000000032

Example
2.4.5

Max and Muffy are two myopic deer hunters who shoot simultaneously at a nearby
sheepdog that they have mistaken for a 10-point buck. Based on years of well-
documented ineptitude, it can be assumed that Max has a 20% chance of hitting
a stationary target at close range, Muffy has a 30% chance, and the probability is
0.06 that they will both be on target. Suppose that the sheepdog is hit and killed by
exactly one bullet. What is the probability that Muffy fired the fatal shot?

Let A be the event that Max hit the dog, and let B be the event that Muffy hit
the dog. Then P(A)= 0.2, P(B)= 0.3, and P(A ∩ B)= 0.06. We are trying to find

P(B|(AC ∩ B)∪ (A ∩ BC ))

where the event (AC ∩ B)∪ (A ∩ BC) is the union of A and B minus the intersection—
that is, it represents the event that either A or B but not both occur (recall
Figure 2.4.4).
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Notice, also, from Figure 2.4.4 that the intersection of B and (AC ∩ B)∪ (A ∩ BC )

is the event AC ∩ B. Therefore, from Definition 2.4.1,

P(B|(AC ∩ B)∪ (A ∩ BC ))=[P(AC ∩ B)]/[P{(AC ∩ B)∪ (A ∩ BC )}]
= [P(B)− P(A ∩ B)]/[P(A ∪ B)− P(A ∩ B)]
= [0.3 − 0.06]/[0.2 + 0.3 − 0.06 − 0.06]
= 0.63

Example
2.4.6

The highways connecting two resort areas at A and B are shown in Figure 2.4.5.
There is a direct route through the mountains and a more circuitous route going
through a third resort area at C in the foothills. Travel between A and B during the
winter months is not always possible, the roads sometimes being closed due to snow
and ice. Suppose we let E1, E2, and E3 denote the events that highways AB, AC ,
and BC are passable, respectively, and we know from past years that on a typical
winter day,

C

A
B

E3

E1

E2

Figure 2.4.5

P(E1)= 2

5
, P(E2)= 3

4
, P(E3)= 2

3

and

P(E3|E2)= 4

5
, P(E1|E2 ∩ E3)= 1

2

What is the probability that a traveler will be able to get from A to B?
If E denotes the event that we can get from A to B, then

E = E1 ∪ (E2 ∩ E3)

It follows that

P(E)= P(E1)+ P(E2 ∩ E3)− P[E1 ∩ (E2 ∩ E3)]

Applying Equation 2.4.2 three times gives

P(E) = P(E1)+ P(E3|E2)P(E2)− P[E1|(E2 ∩ E3)]P(E2 ∩ E3)

= P(E1)+ P(E3|E2)P(E2)− P[E1|(E2 ∩ E3)]P(E3|E2)P(E2)

= 2

5
+
(

4

5

)(
3

4

)
−
(

1

2

)(
4

5

)(
3

4

)
= 0.7

(Which route should a traveler starting from A try first to maximize the chances of
getting to B?)
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Case Study 2.4.1

Several years ago, a television program (inadvertently) spawned a conditional
probability problem that led to more than a few heated discussions, even in the
national media. The show was Let’s Make a Deal, and the question involved
the strategy that contestants should take to maximize their chances of winning
prizes.

On the program, a contestant would be presented with three doors, behind
one of which was the prize. After the contestant had selected a door, the host,
Monty Hall, would open one of the other two doors, showing that the prize
was not there. Then he would give the contestant a choice—either stay with
the door initially selected or switch to the “third” door, which had not been
opened.

For many viewers, common sense seemed to suggest that switching doors
would make no difference. By assumption, the prize had a one-third chance
of being behind each of the doors when the game began. Once a door was
opened, it was argued that each of the remaining doors now had a one-half
probability of hiding the prize, so contestants gained nothing by switching their
bets.

Not so. An application of Definition 2.4.1 shows that it did make a
difference—contestants, in fact, doubled their chances of winning by switching
doors. To see why, consider a specific (but typical) case: the contestant has bet
on Door #2 and Monty Hall has opened Door #3. Given that sequence of events,
we need to calculate and compare the conditional probability of the prize being
behind Door #1 and Door #2, respectively. If the former is larger (and we will
prove that it is), the contestant should switch doors.

Table 2.4.1 shows the sample space associated with the scenario just
described. If the prize is actually behind Door #1, the host has no choice but
to open Door #3; similarly, if the prize is behind Door #3, the host has no choice
but to open Door #1. In the event that the prize is behind Door #2, though,
the host would (theoretically) open Door #1 half the time and Door #3 half the
time.

Table 2.4.1

(Prize Location, Door Opened) Probability

(1, 3) 1/3
(2, 1) 1/6
(2, 3) 1/6
(3, 1) 1/3

Notice that the four outcomes in S are not equally likely. There is neces-
sarily a one-third probability that the prize is behind each of the three doors.
However, the two choices that the host has when the prize is behind Door #2
necessitate that the two outcomes (2, 1) and (2, 3) share the one-third probabil-
ity that represents the chances of the prize being behind Door #2. Each, then,
has the one-sixth probability listed in Table 2.4.1.

(Continued on next page)
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Let A be the event that the prize is behind Door #2, and let B be the event
that the host opened Door #3. Then

P(A|B)= P(Contestant wins by not switching) =[P(A ∩ B)]/P(B)

= [ 1
6

]/[
1
3 + 1

6

]
= 1

3

Now, let A∗ be the event that the prize is behind Door #1, and let B (as before)
be the event that the host opens Door #3. In this case,

P(A∗|B)= P(Contestant wins by switching) =[P(A∗ ∩ B)]/P(B)

= [ 1
3

]/[
1
3 + 1

6

]
= 2

3

Common sense would have led us astray again! If given the choice, contestants
should have always switched doors. Doing so upped their chances of winning
from one-third to two-thirds.

Questions

2.4.1. Suppose that two fair dice are tossed. What is the
probability that the sum equals 10 given that it exceeds 8?

2.4.2. Find P(A ∩ B) if P(A) = 0.2, P(B) = 0.4, and
P(A|B)+ P(B|A)= 0.75.

2.4.3. If P(A|B)< P(A), show that P(B|A)< P(B).

2.4.4. Let A and B be two events such that P((A ∪ B)C)=
0.6 and P(A ∩ B)=0.1. Let E be the event that either A or
B but not both will occur. Find P(E |A ∪ B).

2.4.5. Suppose that in Example 2.4.2 we ignored the ages
of the children and distinguished only three family types:
(boy, boy), (girl, boy), and (girl, girl). Would the condi-
tional probability of both children being boys given that
at least one is a boy be different from the answer found on
p. 35? Explain.

2.4.6. Two events, A and B, are defined on a sample space
S such that P(A|B) = 0.6, P(At least one of the events
occurs) = 0.8, and P(Exactly one of the events occurs)
= 0.6. Find P(A) and P(B).

2.4.7. An urn contains one red chip and one white chip.
One chip is drawn at random. If the chip selected is red,
that chip together with two additional red chips are put
back into the urn. If a white chip is drawn, the chip is
returned to the urn. Then a second chip is drawn. What
is the probability that both selections are red?

2.4.8. Given that P(A)= a and P(B)= b, show that

P(A|B)≥ a + b − 1

b

2.4.9. An urn contains one white chip and a second chip
that is equally likely to be white or black. A chip is drawn
at random and returned to the urn. Then a second chip is
drawn. What is the probability that a white appears on the
second draw given that a white appeared on the first draw?
(Hint: Let Wi be the event that a white chip is selected
on the ith draw, i = 1, 2. Then P(W2|W1) = P(W1∩W2)

P(W1)
. If

both chips in the urn are white, P(W1) = 1; otherwise,
P(W1)= 1

2
.)

2.4.10. Suppose events A and B are such that P(A ∩ B)=
0.1 and P((A ∪ B)C)=0.3. If P(A)=0.2, what does P[(A ∩
B)|(A ∪ B)C ] equal? (Hint: Draw the Venn diagram.)

2.4.11. One hundred voters were asked their opinions
of two candidates, A and B, running for mayor. Their
responses to three questions are summarized below:

Number Saying “Yes”

Do you like A? 65
Do you like B? 55
Do you like both? 25

(a) What is the probability that someone likes neither?
(b) What is the probability that someone likes exactly

one?
(c) What is the probability that someone likes at least

one?
(d) What is the probability that someone likes at most

one?
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(e) What is the probability that someone likes exactly
one given that he or she likes at least one?

(f) Of those who like at least one, what proportion like
both?

(g) Of those who do not like A, what proportion like B?

2.4.12. A fair coin is tossed three times. What is the prob-
ability that at least two heads will occur given that at most
two heads have occurred?

2.4.13. Two fair dice are rolled. What is the probability
that the number on the first die was at least as large as 4
given that the sum of the two dice was 8?

2.4.14. Four cards are dealt from a standard 52-card
poker deck. What is the probability that all four are aces
given that at least three are aces? (Note: There are 270,725
different sets of four cards that can be dealt. Assume
that the probability associated with each of those hands
is 1/270,725.)

2.4.15. Given that P(A ∩ BC)=0.3, P((A ∪ B)C)=0.2, and
P(A ∩ B)= 0.1, find P(A|B).

2.4.16. Given that P(A) + P(B) = 0.9, P(A|B) = 0.5, and
P(B|A)= 0.4, find P(A).

2.4.17. Let A and B be two events defined on a sample
space S such that P(A ∩ BC) = 0.1, P(AC ∩ B) = 0.3, and
P((A ∪ B)C)= 0.2. Find the probability that at least one of
the two events occurs given that at most one occurs.

2.4.18. Suppose two dice are rolled. Assume that each
possible outcome has probability 1/36. Let A be the event
that the sum of the two dice is greater than or equal to 8,
and let B be the event that at least one of the dice shows a
5. Find P(A|B).

2.4.19. According to your neighborhood bookie, five
horses are scheduled to run in the third race at the local
track, and handicappers have assigned them the following
probabilities of winning:

Horse Probability of Winning

Scorpion 0.10
Starry Avenger 0.25
Australian Doll 0.15
Dusty Stake 0.30
Outandout 0.20

Suppose that Australian Doll and Dusty Stake are
scratched from the race at the last minute. What are the
chances that Outandout will prevail over the reduced
field?

2.4.20. Andy, Bob, and Charley have all been serving
time for grand theft auto. According to prison scuttle-
butt, the warden plans to release two of the three next
week. They all have identical records, so the two to be
released will be chosen at random, meaning that each has
a two-thirds probability of being included in the two to
be set free. Andy, however, is friends with a guard who
will know ahead of time which two will leave. He offers
to tell Andy the name of one prisoner other than him-
self who will be released. Andy, however, declines the
offer, believing that if he learns the name of one pris-
oner scheduled to be released, then his chances of being
the other person set free will drop to one-half (since only
two prisoners will be left at that point). Is his concern
justified?

Applying Conditional Probability to Higher-Order Intersections

We have seen that conditional probabilities can be useful in evaluating intersec-
tion probabilities—that is, P(A ∩ B)= P(A|B)P(B)= P(B|A)P(A). A similar result
holds for higher-order intersections. Consider P(A ∩ B ∩ C). By thinking of A ∩ B as
a single event—say, D—we can write

P(A ∩ B ∩ C) = P(D ∩ C)

= P(C |D)P(D)

= P(C |A ∩ B)P(A ∩ B)

= P(C |A ∩ B)P(B|A)P(A)

Repeating this same argument for n events, A1, A2, . . . , An , gives a formula for the
general case:

P(A1 ∩ A2 ∩ · · · ∩ An)= P(An|A1 ∩ A2 ∩ · · · ∩ An−1)

· P(An−1|A1 ∩ A2 ∩ · · · ∩ An−2) · · · · · P(A2|A1) · P(A1)

(2.4.3)
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Example
2.4.7

An urn contains five white chips, four black chips, and three red chips. Four chips are
drawn sequentially and without replacement. What is the probability of obtaining
the sequence (white, red, white, black)?

Figure 2.4.6. shows the evolution of the urn’s composition as the desired
sequence is assembled. Define the following four events:

W5 W

4 B

3 R

R4 W

4 B

3 R

W4 W

4 B

2 R

3 W

3 B

2 R

B3 W

4 B

2 R

Figure 2.4.6

A: white chip is drawn on first selection
B: red chip is drawn on second selection
C : white chip is drawn on third selection
D: black chip is drawn on fourth selection

Our objective is to find P(A ∩ B ∩ C ∩ D).
From Equation 2.4.3,

P(A ∩ B ∩ C ∩ D)= P(D|A ∩ B ∩ C) · P(C |A ∩ B) · P(B|A) · P(A)

Each of the probabilities on the right-hand side of the equation here can be gotten
by just looking at the urns pictured in Figure 2.4.6: P(D|A∩ B ∩C)= 4

9 , P(C |A∩ B)=
4

10 , P(B|A)= 3
11 , and P(A)= 5

12 . Therefore, the probability of drawing a (white, red,
white, black) sequence is 0.02:

P(A ∩ B ∩ C ∩ D) = 4

9
· 4

10
· 3

11
· 5

12

= 240

11,880

= 0.02

Case Study 2.4.2

Since the late 1940s, tens of thousands of eyewitness accounts of strange lights
in the skies, unidentified flying objects, and even alleged abductions by little
green men have made headlines. None of these incidents, though, has produced
any hard evidence, any irrefutable proof that Earth has been visited by a race
of extraterrestrials. Still, the haunting question remains—are we alone in the
universe? Or are there other civilizations, more advanced than ours, making
the occasional flyby?

Until, or unless, a flying saucer plops down on the White House lawn and a
strange-looking creature emerges with the proverbial “Take me to your leader”
demand, we may never know whether we have any cosmic neighbors. Equa-
tion 2.4.3, though, can help us speculate on the probability of our not being
alone.

(Continued on next page)
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(Case Study 2.4.2 continued)

Recent discoveries suggest that planetary systems much like our own may
be quite common. If so, there are likely to be many planets whose chemical
makeups, temperatures, pressures, and so on, are suitable for life. Let those
planets be the points in our sample space. Relative to them, we can define three
events:

A: life arises
B: technical civilization arises (one capable of interstellar communication)
C : technical civilization is flourishing now

In terms of A, B, and C , the probability that a habitable planet is presently sup-
porting a technical civilization is the probability of an intersection—specifically,
P(A ∩ B ∩ C). Associating a number with P(A ∩ B ∩ C) is highly problematic,
but the task is simplified considerably if we work instead with the equivalent
conditional formula, P(C |B ∩ A) · P(B|A) · P(A).

Scientists speculate (153) that life of some kind may arise on one-third of
all planets having a suitable environment and that life on maybe 1% of all those
planets will evolve into a technical civilization. In our notation, P(A) = 1

3 and
P(B|A)= 1

100 .
More difficult to estimate is P(C |A ∩ B). On Earth, we have had the capa-

bility of interstellar communication (that is, radio astronomy) for only a few
decades, so P(C |A ∩ B), empirically, is on the order of 1 × 10−8. But that may
be an overly pessimistic estimate of a technical civilization’s ability to endure. It
may be true that if a civilization can avoid annihilating itself when it first devel-
ops nuclear weapons, its prospects for longevity are fairly good. If that were the
case, P(C |A ∩ B) might be as large as 1 × 10−2.

Putting these estimates into the computing formula for P(A ∩ B ∩ C) yields
a range for the probability of a habitable planet currently supporting a technical
civilization. The chances may be as small as 3.3 × 10−11 or as “large” as 3.3 ×
10−5:

(1 × 10−8)

(
1

100

)(
1

3

)
< P(A ∩ B ∩ C)< (1 × 10−2)

(
1

100

)(
1

3

)
or

0.000000000033 < P(A ∩ B ∩ C)< 0.000033

A better way to put these figures in some kind of perspective is to think
in terms of numbers rather than probabilities. Astronomers estimate there are
3 × 1011 habitable planets in our Milky Way galaxy. Multiplying that total by
the two limits for P(A ∩ B ∩ C) gives an indication of how many cosmic neigh-
bors we are likely to have. Specifically, 3 × 1011 · 0.000000000033

.= 10, while
3 × 1011 · 0.000033

.= 10,000,000. So, on the one hand, we may be a galactic rar-
ity. At the same time, the probabilities do not preclude the very real possibility
that the Milky Way is abuzz with activity and that our neighbors number in the
millions.
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Questions

2.4.21. An urn contains six white chips, four black chips,
and five red chips. Five chips are drawn out, one at a
time and without replacement. What is the probability
of getting the sequence (black, black, red, white, white)?
Suppose that the chips are numbered 1 through 15. What
is the probability of getting a specific sequence—say, (2, 6,
4, 9, 13)?

2.4.22. A man has n keys on a key ring, one of which
opens the door to his apartment. Having celebrated a bit
too much one evening, he returns home only to find him-
self unable to distinguish one key from another. Resource-
ful, he works out a fiendishly clever plan: He will choose
a key at random and try it. If it fails to open the door, he
will discard it and choose at random one of the remaining
n − 1 keys, and so on. Clearly, the probability that he gains
entrance with the first key he selects is 1/n. Show that the

probability the door opens with the third key he tries is
also 1/n. (Hint: What has to happen before he even gets
to the third key?)

2.4.23. Suppose that four cards are drawn from a stan-
dard 52-card poker deck. What is the probability of draw-
ing, in order, a 7 of diamonds, a jack of spades, a 10 of
diamonds, and a 5 of hearts?

2.4.24. One chip is drawn at random from an urn that
contains one white chip and one black chip. If the white
chip is selected, we simply return it to the urn; if the black
chip is drawn, that chip—together with another black—
are returned to the urn. Then a second chip is drawn,
with the same rules for returning it to the urn. Calculate
the probability of drawing two whites followed by three
blacks.

Calculating “Unconditional” and “Inverse” Probabilities

We conclude this section with two very useful theorems that apply to partitioned
sample spaces. By definition, a set of events A1, A2, . . . , An “partition” S if every
outcome in the sample space belongs to one and only one of the Ai ’s—that is, the
Ai ’s are mutually exclusive and their union is S (see Figure 2.4.7).

S

A2

A1

An

B

Figure 2.4.7

Let B, as pictured, denote any event defined on S. The first result, Theo-
rem 2.4.1, gives a formula for the “unconditional” probability of B (in terms of the
Ai ’s). Then Theorem 2.4.2 calculates the set of conditional probabilities, P(A j |B),
j = 1,2, . . . ,n.

Theorem
2.4.1

Let {Ai }n
i=1 be a set of events defined over S such that S =⋃n

i=1 Ai , Ai ∩ A j = ∅ for
i �= j , and P(Ai )> 0 for i = 1,2, . . . ,n. For any event B,

P(B)=
n∑

i=1

P(B|Ai )P(Ai )

Proof By the conditions imposed on the Ai ’s,

B = (B ∩ A1)∪ (B ∩ A2)∪ · · · ∪ (B ∩ An)

and

P(B)= P(B ∩ A1)+ P(B ∩ A2)+ · · · + P(B ∩ An)
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But each P(B ∩ Ai ) can be written as the product P(B|Ai )P(Ai ), and the result
follows. �

Example
2.4.8

Urn I contains two red chips and four white chips; urn II, three red and one white. A
chip is drawn at random from urn I and transferred to urn II. Then a chip is drawn
from urn II. What is the probability that the chip drawn from urn II is red?

Let B be the event “Chip drawn from urn II is red”; let A1 and A2 be the events
“Chip transferred from urn I is red” and “Chip transferred from urn I is white,”
respectively. By inspection (see Figure 2.4.8), we can deduce all the probabilities
appearing in the right-hand side of the formula in Theorem 2.4.1:

Red

Transfer
one

Urn I Urn II

White Draw one

Figure 2.4.8

P(B|A1)= 4

5
P(B|A2)= 3

5

P(A1)= 2

6
P(A2)= 4

6
Putting all this information together, we see that the chances are two out of three
that a red chip will be drawn from urn II:

P(B) = P(B|A1)P(A1)+ P(B|A2)P(A2)

= 4

5
· 2

6
+ 3

5
· 4

6

= 2

3

Example
2.4.9

A standard poker deck is shuffled and the card on top is removed. What is the
probability that the second card is an ace?

Define the following events:

B: second card is an ace
A1: top card was an ace
A2: top card was not an ace

Then P(B|A1) = 3
51 , P(B|A2) = 4

51 , P(A1) = 4
52 , and P(A2) = 48

52 . Since the Ai ’s par-
tition the sample space of two-card selections, Theorem 2.4.1 applies. Substituting
into the expression for P(B) shows that 4

52 is the probability that the second card is
an ace:

P(B) = P(B|A1)P(A1)+ P(B|A2)P(A2)

= 3

51
· 4

52
+ 4

51
· 48

52

= 4

52
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Comment Notice that P(B) = P(2nd card is an ace) is numerically the same as
P(A1)= P(first card is an ace). The analysis in Example 2.4.9 illustrates a basic prin-
ciple in probability that says, in effect, “What you don’t know, doesn’t matter.” Here,
removal of the top card is irrelevant to any subsequent probability calculations if the
identity of that card remains unknown.

Example
2.4.10

Ashley is hoping to land a summer internship with a public relations firm. If her
interview goes well, she has a 70% chance of getting an offer. If the interview is
a bust, though, her chances of getting the position drop to 20%. Unfortunately,
Ashley tends to babble incoherently when she is under stress, so the likelihood of
the interview going well is only 0.10. What is the probability that Ashley gets the
internship?

Let B be the event “Ashley is offered internship,” let A1 be the event “Interview
goes well,” and let A2 be the event “Interview does not go well.” By assumption,

P(B|A1) = 0.70 P(B|A2) = 0.20
P(A1) = 0.10 P(A2) = 1 − P(A1)= 1 − 0.10 = 0.90

According to Theorem 2.4.1, Ashley has a 25% chance of landing the internship:

P(B) = P(B|A1)P(A1)+ P(B|A2)P(A2)

= (0.70)(0.10)+ (0.20)(0.90)

= 0.25

Example
2.4.11

In an upstate congressional race, the incumbent Republican (R) is running against
a field of three Democrats (D1, D2, and D3) seeking the nomination. Political pun-
dits estimate that the probabilities of D1, D2, or D3 winning the primary are 0.35,
0.40, and 0.25, respectively. Furthermore, results from a variety of polls are sug-
gesting that R would have a 40% chance of defeating D1 in the general election, a
35% chance of defeating D2, and a 60% chance of defeating D3. Assuming all these
estimates to be accurate, what are the chances that the Republican will retain his
seat?

Let B denote the event that “R wins general election,” and let Ai denote the
event “Di wins Democratic primary,” i = 1,2,3. Then

P(A1)= 0.35 P(A2)= 0.40 P(A3)= 0.25

and

P(B|A1)= 0.40 P(B|A2)= 0.35 P(B|A3)= 0.60

so

P(B) = P(Republican wins general election)

= P(B|A1)P(A1)+ P(B|A2)P(A2)+ P(B|A3)P(A3)

= (0.40)(0.35)+ (0.35)(0.40)+ (0.60)(0.25)

= 0.43
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Example
2.4.12

Three chips are placed in an urn. One is red on both sides, a second is blue on both
sides, and the third is red on one side and blue on the other. One chip is selected at
random and placed on a table. Suppose that the color showing on that chip is red.
What is the probability that the color underneath is also red (see Figure 2.4.9)?
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Draw one

Red

Figure 2.4.9

At first glance, it may seem that the answer is one-half: We know that the
blue/blue chip has not been drawn, and only one of the remaining two—the red/red
chip—satisfies the event that the color underneath is red. If this game were played
over and over, though, and records were kept of the outcomes, it would be found
that the proportion of times that a red top has a red bottom is two-thirds, not
the one-half that our intuition might suggest. The correct answer follows from an
application of Theorem 2.4.1.

Define the following events:

A: bottom side of chip drawn is red
B: top side of chip drawn is red
A1: red/red chip is drawn
A2: blue/blue chip is drawn
A3: red/blue chip is drawn

From the definition of conditional probability,

P(A|B)= P(A ∩ B)

P(B)

But P(A ∩ B) = P(Both sides are red) = P(red/red chip) = 1
3 . Theorem 2.4.1 can be

used to find the denominator, P(B):

P(B) = P(B|A1)P(A1)+ P(B|A2)P(A2)+ P(B|A3)P(A3)

= 1 · 1

3
+ 0 · 1

3
+ 1

2
· 1

3

= 1

2

Therefore,

P(A|B)= 1/3

1/2
= 2

3

Comment The question posed in Example 2.4.12 gives rise to a simple but effective
con game. The trick is to convince a “mark” that the initial analysis given above is
correct, meaning that the bottom has a fifty-fifty chance of being the same color as
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the top. Under that incorrect presumption that the game is “fair,” both participants
put up the same amount of money, but the gambler (knowing the correct analysis)
always bets that the bottom is the same color as the top. In the long run, then, the
con artist will be winning an even-money bet two-thirds of the time!

Questions

2.4.25. A toy manufacturer buys ball bearings from three
different suppliers—50% of her total order comes from
supplier 1, 30% from supplier 2, and the rest from sup-
plier 3. Past experience has shown that the quality-control
standards of the three suppliers are not all the same. Two
percent of the ball bearings produced by supplier 1 are
defective, while suppliers 2 and 3 produce defective bear-
ings 3% and 4% of the time, respectively. What proportion
of the ball bearings in the toy manufacturer’s inventory
are defective?

2.4.26. A fair coin is tossed. If a head turns up, a fair die
is tossed; if a tail turns up, two fair dice are tossed. What
is the probability that the face (or the sum of the faces)
showing on the die (or the dice) is equal to 6?

2.4.27. Foreign policy experts estimate that the probabil-
ity is 0.65 that war will break out next year between two
Middle East countries if either side significantly escalates
its terrorist activities. Otherwise, the likelihood of war is
estimated to be 0.05. Based on what has happened this
year, the chances of terrorism reaching a critical level in
the next twelve months are thought to be three in ten.
What is the probability that the two countries will go
to war?

2.4.28. A telephone solicitor is responsible for canvassing
three suburbs. In the past, 60% of the completed calls to
Belle Meade have resulted in contributions, compared to
55% for Oak Hill and 35% for Antioch. Her list of tele-
phone numbers includes one thousand households from
Belle Meade, one thousand from Oak Hill, and two thou-
sand from Antioch. Suppose that she picks a number at
random from the list and places the call. What is the
probability that she gets a donation?

2.4.29. If men constitute 47% of the population and tell
the truth 78% of the time, while women tell the truth 63%
of the time, what is the probability that a person selected
at random will answer a question truthfully?

2.4.30. Urn I contains three red chips and one white
chip. Urn II contains two red chips and two white chips.
One chip is drawn from each urn and transferred to the
other urn. Then a chip is drawn from the first urn. What is
the probability that the chip ultimately drawn from urn I
is red?

2.4.31. Medical records show that 0.01% of the general
adult population not belonging to a high-risk group (for

example, intravenous drug users) are HIV-positive. Blood
tests for the virus are 99.9% accurate when given to some-
one infected and 99.99% accurate when given to someone
not infected. What is the probability that a random adult
not in a high-risk group will test positive for the HIV
virus?

2.4.32. Recall the “survival” lottery described in Ques-
tion 2.2.14. What is the probability of release associated
with the prisoner’s optimal strategy?

2.4.33. State College is playing Backwater A&M for the
conference football championship. If Backwater’s first-
string quarterback is healthy, A&M has a 75% chance of
winning. If they have to start their backup quarterback,
their chances of winning drop to 40%. The team physician
says that there is a 70% chance that the first-string quar-
terback will play. What is the probability that Backwater
wins the game?

2.4.34. An urn contains forty red chips and sixty white
chips. Six chips are drawn out and discarded, and a seventh
chip is drawn. What is the probability that the seventh chip
is red?

2.4.35. A study has shown that seven out of ten people
will say “heads” if asked to call a coin toss. Given that
the coin is fair, though, a head occurs, on the average,
only five times out of ten. Does it follow that you have
the advantage if you let the other person call the toss?
Explain.

2.4.36. Based on pretrial speculation, the probability that
a jury returns a guilty verdict in a certain high-profile
murder case is thought to be 15% if the defense can
discredit the police department and 80% if they cannot.
Veteran court observers believe that the skilled defense
attorneys have a 70% chance of convincing the jury that
the police either contaminated or planted some of the key
evidence. What is the probability that the jury returns a
guilty verdict?

2.4.37. As an incoming freshman, Marcus believes that he
has a 25% chance of earning a GPA in the 3.5 to 4.0 range,
a 35% chance of graduating with a 3.0 to 3.5 GPA, and a
40% chance of finishing with a GPA less than 3.0. From
what the pre-med advisor has told him, Marcus has an 8
in 10 chance of getting into medical school if his GPA is
above 3.5, a 5 in 10 chance if his GPA is in the 3.0 to 3.5
range, and only a 1 in 10 chance if his GPA falls below
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3.0. Based on those estimates, what is the probability that
Marcus gets into medical school?

2.4.38. The governor of a certain state has decided to
come out strongly for prison reform and is preparing a
new early release program. Its guidelines are simple: pris-
oners related to members of the governor’s staff would
have a 90% chance of being released early; the probability
of early release for inmates not related to the governor’s
staff would be 0.01. Suppose that 40% of all inmates are
related to someone on the governor’s staff. What is the
probability that a prisoner selected at random would be
eligible for early release?

2.4.39. Following are the percentages of students of State
College enrolled in each of the school’s main divisions.

Also listed are the proportions of students in each division
who are women.

Division % % Women

Humanities 40 60
Natural science 10 15
History 30 45
Social science 20 75

100

Suppose the registrar selects one person at random. What
is the probability that the student selected will be a male?

Bayes’ Theorem

The second result in this section that is set against the backdrop of a partitioned sam-
ple space has a curious history. The first explicit statement of Theorem 2.4.2, coming
in 1812, was due to Laplace, but it was named after the Reverend Thomas Bayes,
whose 1763 paper (published posthumously) had already outlined the result. On
one level, the theorem is a relatively minor extension of the definition of conditional
probability. When viewed from a loftier perspective, though, it takes on some rather
profound philosophical implications. The latter, in fact, have precipitated a schism
among practicing statisticians: “Bayesians” analyze data one way; “non-Bayesians”
often take a fundamentally different approach (see Section 5.8).

Our use of the result here will have nothing to do with its statistical interpre-
tation. We will apply it simply as the Reverend Bayes originally intended, as a
formula for evaluating a certain kind of “inverse” probability. If we know P(B|Ai )

for all i , the theorem enables us to compute conditional probabilities “in the other
direction”—that is, we can deduce P(A j |B) from the P(B|Ai )’s.

Theorem
2.4.2

(Bayes’) Let {Ai }n
i=1 be a set of n events, each with positive probability, that partition S

in such a way that ∪n
i=1 Ai = S and Ai ∩ A j =∅ for i �= j . For any event B (also defined

on S), where P(B)> 0,

P(A j |B)= P(B|A j )P(A j )
n∑

i=1
P(B|Ai )P(Ai )

for any 1 ≤ j ≤ n.

Proof From Definition 2.4.1,

P(A j |B)= P(A j ∩ B)

P(B)
= P(B|A j )P(A j )

P(B)

But Theorem 2.4.1 allows the denominator to be written as
n∑

i=1
P(B|Ai )P(Ai ), and

the result follows. �
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Problem-Solving Hints

(Working with Partitioned Sample Spaces)
Students sometimes have difficulty setting up problems that involve partitioned
sample spaces—in particular, ones whose solution requires an application of
either Theorem 2.4.1 or 2.4.2—because of the nature and amount of informa-
tion that need to be incorporated into the answers. The “trick” is learning to
identify which part of the “given” corresponds to B and which parts correspond
to the Ai ’s. The following hints may help.

1. As you read the question, pay particular attention to the last one or two
sentences. Is the problem asking for an unconditional probability (in which
case Theorem 2.4.1 applies) or a conditional probability (in which case
Theorem 2.4.2 applies)?

2. If the question is asking for an unconditional probability, let B denote the
event whose probability you are trying to find; if the question is asking for
a conditional probability, let B denote the event that has already happened.

3. Once event B has been identified, reread the beginning of the question and
assign the Ai ’s.

Example
2.4.13

A biased coin, twice as likely to come up heads as tails, is tossed once. If it shows
heads, a chip is drawn from urn I, which contains three white chips and four red
chips; if it shows tails, a chip is drawn from urn II, which contains six white chips and
three red chips. Given that a white chip was drawn, what is the probability that the
coin came up tails (see Figure 2.4.10)?

Urn I

White
is drawn

3 W

4 R

Heads Tails

Urn II

6 W

3 R

Figure 2.4.10

Since P(heads) = 2P(tails), it must be true that P(heads) = 2
3 and P(tails) = 1

3 .
Define the events

B: white chip is drawn
A1: coin came up heads (i.e., chip came from urn I)
A2: coin came up tails (i.e., chip came from urn II)

Our objective is to find P(A2|B). From Figure 2.4.10,

P(B|A1)= 3

7
P(B|A2)= 6

9

P(A1)= 2

3
P(A2)= 1

3
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so

P(A2|B)= P(B|A2)P(A2)

P(B|A1)P(A1)+ P(B|A2)P(A2)

= (6/9)(1/3)

(3/7)(2/3)+ (6/9)(1/3)

= 7

16

Example
2.4.14

During a power blackout, one hundred persons are arrested on suspicion of looting.
Each is given a polygraph test. From past experience it is known that the poly-
graph is 90% reliable when administered to a guilty suspect and 98% reliable when
given to someone who is innocent. Suppose that of the one hundred persons taken
into custody, only twelve were actually involved in any wrongdoing. What is the
probability that a given suspect is innocent given that the polygraph says he is guilty?

Let B be the event “Polygraph says suspect is guilty,” and let A1 and A2 be
the events “Suspect is guilty” and “Suspect is not guilty,” respectively. To say that
the polygraph is “90% reliable when administered to a guilty suspect” means that
P(B|A1) = 0.90. Similarly, the 98% reliability for innocent suspects implies that
P(BC |A2)= 0.98, or, equivalently, P(B|A2)= 0.02.

We also know that P(A1)= 12
100 and P(A2)= 88

100 . Substituting into Theorem 2.4.2,
then, shows that the probability a suspect is innocent given that the polygraph says
he is guilty is 0.14:

P(A2|B)= P(B|A2)P(A2)

P(B|A1)P(A1)+ P(B|A2)P(A2)

= (0.02)(88/100)

(0.90)(12/100)+ (0.02)(88/100)

= 0.14

Example
2.4.15

As medical technology advances and adults become more health conscious, the
demand for diagnostic screening tests inevitably increases. Looking for problems,
though, when no symptoms are present can have undesirable consequences that
may outweigh the intended benefits.

Suppose, for example, a woman has a medical procedure performed to see
whether she has a certain type of cancer. Let B denote the event that the test says she
has cancer, and let A1 denote the event that she actually does (and A2, the event that
she does not). Furthermore, suppose the prevalence of the disease and the precision
of the diagnostic test are such that

P(A1)= 0.0001 [and P(A2)= 0.9999]
P(B|A1)= 0.90 = P(Test says woman has cancer when, in fact, she does)

P(B|A2)= P
(
B|AC

1

)= 0.001 = P(false positive)= P(Test says woman has cancer
when, in fact, she does not)

What is the probability that she does have cancer, given that the diagnostic
procedure says she does? That is, calculate P(A1|B).
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Although the method of solution here is straightforward, the actual numerical
answer is not what we would expect. From Theorem 2.4.2,

P(A1|B)= P(B|A1)P(A1)

P(B|A1)P(A1)+ P
(
B|AC

1

)
P
(

AC
1

)
= (0.9)(0.0001)

(0.9)(0.0001)+ (0.001)(0.9999)

= 0.08

So, only 8% of those women identified as having cancer actually do! Table 2.4.2
shows the strong dependence of P(A1|B) on P(A1) and P(B|AC

1 ).

Table 2.4.2

P(A1) P(B|AC
1 ) P(A1|B)

0.0001 0.001 0.08
0.0001 0.47

0.001 0.001 0.47
0.0001 0.90

0.01 0.001 0.90
0.0001 0.99

In light of these probabilities, the practicality of screening programs directed at
diseases having a low prevalence is open to question, especially when the diagnostic
procedure, itself, poses a nontrivial health risk. (For precisely those two reasons, the
use of chest X-rays to screen for tuberculosis is no longer advocated by the medical
community.)

Example
2.4.16

According to the manufacturer’s specifications, your home burglar alarm has a 95%
chance of going off if someone breaks into your house. During the two years you
have lived there, the alarm has gone off on five different nights, each time for no
apparent reason. Suppose the alarm goes off tomorrow night. What is the proba-
bility that someone is trying to break into your house? (Note: Police statistics show
that the chances of any particular house in your neighborhood being burglarized on
any given night are two in ten thousand.)

Let B be the event “Alarm goes off tomorrow night,” and let A1 and A2 be
the events “House is being burglarized” and “House is not being burglarized,”
respectively. Then

P(B|A1)= 0.95

P(B|A2)= 5/730 (i.e., five nights in two years)

P(A1)= 2/10,000

P(A2)= 1 − P(A1)= 9998/10,000

The probability in question is P(A1|B).
Intuitively, it might seem that P(A1|B) should be close to 1 because the alarm’s

“performance” probabilities look good—P(B|A1) is close to 1 (as it should be)
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and P(B|A2) is close to 0 (as it should be). Nevertheless, P(A1|B) turns out to
be surprisingly small:

P(A1|B)= P(B|A1)P(A1)

P(B|A1)P(A1)+ P(B|A2)P(A2)

= (0.95)(2/10,000)

(0.95)(2/10,000)+ (5/730)(9998/10,000)

= 0.027

That is, if you hear the alarm going off, the probability is only 0.027 that your house
is being burglarized.

Computationally, the reason P(A1|B) is so small is that P(A2) is so large. The
latter makes the denominator of P(A1|B) large and, in effect, “washes out” the
numerator. Even if P(B|A1) were substantially increased (by installing a more
expensive alarm), P(A1|B) would remain largely unchanged (see Table 2.4.3).

Table 2.4.3

P(B|A1)

0.95 0.97 0.99 0.999
P(A1|B)

0.027 0.028 0.028 0.028

Questions

2.4.40. Urn I contains two white chips and one red chip;
urn II has one white chip and two red chips. One chip is
drawn at random from urn I and transferred to urn II.
Then one chip is drawn from urn II. Suppose that a red
chip is selected from urn II. What is the probability that
the chip transferred was white?

2.4.41. Urn I contains three red chips and five white chips;
urn II contains four reds and four whites; urn III contains
five reds and three whites. One urn is chosen at random
and one chip is drawn from that urn. Given that the chip
drawn was red, what is the probability that III was the urn
sampled?

2.4.42. A dashboard warning light is supposed to flash red
if a car’s oil pressure is too low. On a certain model, the
probability of the light flashing when it should is 0.99; 2%
of the time, though, it flashes for no apparent reason. If
there is a 10% chance that the oil pressure really is low,
what is the probability that a driver needs to be concerned
if the warning light goes on?

2.4.43. Building permits were issued last year to three
contractors starting up a new subdivision: Tara Construc-
tion built two houses; Westview, three houses; and Hearth-
stone, six houses. Tara’s houses have a 60% probability of
developing leaky basements; homes built by Westview and

Hearthstone have that same problem 50% of the time and
40% of the time, respectively. Yesterday, the Better Busi-
ness Bureau received a complaint from one of the new
homeowners that his basement is leaking. Who is most
likely to have been the contractor?

2.4.44. Two sections of a senior probability course are
being taught. From what she has heard about the two
instructors listed, Francesca estimates that her chances of
passing the course are 0.85 if she gets Professor X and 0.60
if she gets Professor Y . The section into which she is put
is determined by the registrar. Suppose that her chances
of being assigned to Professor X are four out of ten. Fif-
teen weeks later we learn that Francesca did, indeed, pass
the course. What is the probability she was enrolled in
Professor X ’s section?

2.4.45. A liquor store owner is willing to cash per-
sonal checks for amounts up to $50, but she has become
wary of customers who wear sunglasses. Fifty percent
of checks written by persons wearing sunglasses bounce.
In contrast, 98% of the checks written by persons not
wearing sunglasses clear the bank. She estimates that
10% of her customers wear sunglasses. If the bank
returns a check and marks it “insufficient funds,” what
is the probability it was written by someone wearing
sunglasses?
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2.4.46. Brett and Margo have each thought about mur-
dering their rich Uncle Basil in hopes of claiming their
inheritance a bit early. Hoping to take advantage of Basil’s
predilection for immoderate desserts, Brett has put rat
poison into the cherries flambé; Margo, unaware of Brett’s
activities, has laced the chocolate mousse with cyanide.
Given the amounts likely to be eaten, the probability
of the rat poison being fatal is 0.60; the cyanide, 0.90.
Based on other dinners where Basil was presented with
the same dessert options, we can assume that he has a 50%
chance of asking for the cherries flambé, a 40% chance of
ordering the chocolate mousse, and a 10% chance of skip-
ping dessert altogether. No sooner are the dishes cleared
away than Basil drops dead. In the absence of any other
evidence, who should be considered the prime suspect?

2.4.47. Josh takes a twenty-question multiple-choice
exam where each question has five possible answers. Some
of the answers he knows, while others he gets right just by
making lucky guesses. Suppose that the conditional prob-
ability of his knowing the answer to a randomly selected
question given that he got it right is 0.92. How many of the
twenty questions was he prepared for?

2.4.48. Recently the U.S. Senate Committee on Labor
and Public Welfare investigated the feasibility of setting
up a national screening program to detect child abuse.
A team of consultants estimated the following probabil-
ities: (1) one child in ninety is abused, (2) a screening
program can detect an abused child 90% of the time, and
(3) a screening program would incorrectly label 3% of all
nonabused children as abused. What is the probability that
a child is actually abused given that the screening program
makes that diagnosis? How does the probability change if
the incidence of abuse is one in one thousand? Or one in
fifty?

2.4.49. At State University, 30% of the students are
majoring in humanities, 50% in history and culture,
and 20% in science. Moreover, according to figures
released by the registrar, the percentages of women

majoring in humanities, history and culture, and science
are 75%, 45%, and 30%, respectively. Suppose Justin
meets Anna at a fraternity party. What is the probability
that Anna is a history and culture major?

2.4.50. An “eyes-only” diplomatic message is to be trans-
mitted as a binary code of 0’s and 1’s. Past experience with
the equipment being used suggests that if a 0 is sent, it will
be (correctly) received as a 0 90% of the time (and mis-
takenly decoded as a 1 10% of the time). If a 1 is sent, it
will be received as a 1 95% of the time (and as a 0 5% of
the time). The text being sent is thought to be 70% 1’s and
30% 0’s. Suppose the next signal sent is received as a 1.
What is the probability that it was sent as a 0?

2.4.51. When Zach wants to contact his girlfriend and he
knows she is not at home, he is twice as likely to send her
an e-mail as he is to leave a message on her answering
machine. The probability that she responds to his e-mail
within three hours is 80%; her chances of being similarly
prompt in answering a phone message increase to 90%.
Suppose she responded within two hours to the message
he left this morning. What is the probability that Zach was
communicating with her via e-mail?

2.4.52. A dot-com company ships products from three
different warehouses (A, B, and C). Based on customer
complaints, it appears that 3% of the shipments coming
from A are somehow faulty, as are 5% of the shipments
coming from B, and 2% coming from C . Suppose a cus-
tomer is mailed an order and calls in a complaint the next
day. What is the probability the item came from Ware-
house C? Assume that Warehouses A, B, and C ship 30%,
20%, and 50% of the dot-com’s sales, respectively.

2.4.53. A desk has three drawers. The first contains two
gold coins, the second has two silver coins, and the third
has one gold coin and one silver coin. A coin is drawn from
a drawer selected at random. Suppose the coin selected
was silver. What is the probability that the other coin in
that drawer is gold?

2.5 Independence
Section 2.4 dealt with the problem of reevaluating the probability of a given event
in light of the additional information that some other event has already occurred. It
often is the case, though, that the probability of the given event remains unchanged,
regardless of the outcome of the second event—that is, P(A|B) = P(A) = P(A|BC).
Events sharing this property are said to be independent. Definition 2.5.1 gives a
necessary and sufficient condition for two events to be independent.

Definition 2.5.1. Two events A and B are said to be independent if P(A ∩ B)=
P(A) · P(B).



54 Chapter 2 Probability

Comment The fact that the probability of the intersection of two independent
events is equal to the product of their individual probabilities follows immediately
from our first definition of independence, that P(A|B) = P(A). Recall that the def-
inition of conditional probability holds true for any two events A and B [provided
that P(B > 0)]:

P(A|B)= P(A ∩ B)

P(B)

But P(A|B) can equal P(A) only if P(A ∩ B) factors into P(A) times P(B).

Example
2.5.1

Let A be the event of drawing a king from a standard poker deck and B, the
event of drawing a diamond. Then, by Definition 2.5.1, A and B are independent
because the probability of their intersection—drawing a king of diamonds—is equal
to P(A) · P(B):

P(A ∩ B)= 1

52
= 1

4
· 1

13
= P(A) · P(B)

Example
2.5.2

Suppose that A and B are independent events. Does it follow that AC and BC are
also independent? That is, does P(A ∩ B) = P(A) · P(B) guarantee that P(AC ∩
BC)= P(AC ) · P(BC )?

Yes. The proof is accomplished by equating two different expressions for
P(AC ∪ BC). First, by Theorem 2.3.6,

P(AC ∪ BC )= P(AC )+ P(BC )− P(AC ∩ BC) (2.5.1)

But the union of two complements is the complement of their intersection (recall
Question 2.2.32). Therefore,

P(AC ∪ BC )= 1 − P(A ∩ B) (2.5.2)

Combining Equations 2.5.1 and 2.5.2, we get

1 − P(A ∩ B)= 1 − P(A)+ 1 − P(B)− P(AC ∩ BC )

Since A and B are independent, P(A ∩ B)= P(A) · P(B), so

P(AC ∩ BC) = 1 − P(A)+ 1 − P(B)−[1 − P(A) · P(B)]
= [1 − P(A)][1 − P(B)]
= P(AC ) · P(BC)

the latter factorization implying that AC and BC are, themselves, independent. (If A
and B are independent, are A and BC independent?)

Example
2.5.3

Electronics Warehouse is responding to affirmative-action litigation by establishing
hiring goals by race and sex for its office staff. So far they have agreed to employ
the 120 people characterized in Table 2.5.1. How many black women do they need
in order for the events A: Employee is female and B: Employee is black to be
independent?

Let x denote the number of black women necessary for A and B to be
independent. Then

P(A ∩ B)= P(black female)= x/(120 + x)
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must equal

P(A)P(B)= P(female)P(black)=[(40 + x)/(120 + x)] · [(30 + x)/(120 + x)]
Setting x/(120 + x) = [(40 + x)/(120 + x)] · [(30 + x)/(120 + x)] implies that x = 24
black women need to be on the staff in order for A and B to be independent.

Table 2.5.1

White Black

Male 50 30
Female 40

Comment Having shown that “Employee is female” and “Employee is black” are
independent, does it follow that, say, “Employee is male” and “Employee is white”
are independent? Yes. By virtue of the derivation in Example 2.5.2, the indepen-
dence of events A and B implies the independence of events AC and BC (as well as
A and BC and AC and B). It follows, then, that the x = 24 black women not only
makes A and B independent, it also implies, more generally, that “race” and “sex”
are independent.

Example
2.5.4

Suppose that two events, A and B, each having nonzero probability, are mutually
exclusive. Are they also independent?

No. If A and B are mutually exclusive, then P(A ∩ B) = 0. But P(A) · P(B) > 0
(by assumption), so the equality spelled out in Definition 2.5.1 that characterizes
independence is not met.

Deducing Independence

Sometimes the physical circumstances surrounding two events make it obvious that
the occurrence (or nonoccurrence) of one has absolutely no influence or effect on
the occurrence (or nonoccurrence) of the other. If that should be the case, then the
two events will necessarily be independent in the sense of Definition 2.5.1.

Suppose a coin is tossed twice. Clearly, whatever happens on the first toss has
no physical connection or influence on the outcome of the second. If A and B, then,
are events defined on the second and first tosses, respectively, it would have to be
the case that P(A|B) = P(A|BC) = P(A). For example, let A be the event that the
second toss of a fair coin is a head, and let B be the event that the first toss of that
coin is a tail. Then

P(A|B)=P(head on second toss | tail on first toss)

= P(head on second toss)= 1

2
Being able to infer that certain events are independent proves to be of enor-

mous help in solving certain problems. The reason is that many events of interest
are, in fact, intersections. If those events are independent, then the probability of
that intersection reduces to a simple product (because of Definition 2.5.1)—that is,
P(A ∩ B)= P(A) · P(B). For the coin tosses just described,
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P(A ∩ B) = P(head on second toss ∩ tail on first toss)

= P(A) · P(B)

= P(head on second toss) · P(tail on first toss)

= 1

2
· 1

2

= 1

4

Example
2.5.5

Myra and Carlos are summer interns working as proofreaders for a local newspaper.
Based on aptitude tests, Myra has a 50% chance of spotting a hyphenation error,
while Carlos picks up on that same kind of mistake 80% of the time. Suppose the
copy they are proofing contains a hyphenation error. What is the probability it goes
undetected?

Let A and B be the events that Myra and Carlos, respectively, catch the mis-
take. By assumption, P(A) = 0.50 and P(B) = 0.80. What we are looking for is the
probability of the complement of a union. That is,

P(Error goes undetected)= 1 − P(Error is detected)

= 1 − P(Myra or Carlos or both see the mistake)

= 1 − P(A ∪ B)

= 1 −{P(A)+ P(B)− P(A ∩ B)} (from Theorem 2.3.6)

Since proofreaders invariably work by themselves, events A and B are necessarily
independent, so P(A ∩ B) would reduce to the product P(A) · P(B). It follows that
such an error would go unnoticed 10% of the time:

P(Error goes undetected)= 1 −{0.50 + 0.80 − (0.50)(0.80)} = 1 − 0.90

= 0.10

Example
2.5.6

Suppose that one of the genes associated with the control of carbohydrate
metabolism exhibits two alleles—a dominant W and a recessive w. If the proba-
bilities of the WW, Ww, and ww genotypes in the present generation are p, q, and r ,
respectively, for both males and females, what are the chances that an individual in
the next generation will be a ww?

Let A denote the event that an offspring receives a w allele from her father; let
B denote the event that she receives the recessive allele from her mother. What we
are looking for is P(A ∩ B).

According to the information given,

p = P(Parent has genotype WW)= P(WW)

q = P(Parent has genotype Ww)= P(Ww)

r = P(Parent has genotype ww)= P(ww)

If an offspring is equally likely to receive either of her parent’s alleles, the
probabilities of A and B can be computed using Theorem 2.4.1:
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P(A) = P(A | WW)P(WW)+ P(A | Ww)P(Ww)+ P(A | ww)P(ww)

= 0 · p + 1

2
· q + 1 · r

= r + q

2
= P(B)

Lacking any evidence to the contrary, there is every reason here to assume that A
and B are independent events, in which case

P(A ∩ B) = P(Offspring has genotype ww)

= P(A) · P(B)

=
(

r + q

2

)2

(This particular model for allele segregation, together with the independence
assumption, is called random Mendelian mating.)

Example
2.5.7

Emma and Josh have just gotten engaged. What is the probability that they have
different blood types? Assume that blood types for both men and women are
distributed in the general population according to the following proportions:

Blood Type Proportion

A 40%
B 10%

AB 5%
O 45%

First, note that the event “Emma and Josh have different blood types” includes
more possibilities than does the event “Emma and Josh have the same blood type.”
That being the case, the complement will be easier to work with than the question
originally posed. We can start, then, by writing

P(Emma and Josh have different blood types)

= 1 − P(Emma and Josh have the same blood type)

Now, if we let EX and JX represent the events that Emma and Josh, respectively,
have blood type X , then the event “Emma and Josh have the same blood type” is a
union of intersections, and we can write

P(Emma and Josh have the same blood type)= P{(E A ∩ JA)∪ (EB ∩ JB)

∪ (E AB ∩ JAB)∪ (EO ∩ JO)}
Since the four intersections here are mutually exclusive, the probability of their
union becomes the sum of their probabilities. Moreover, “blood type” is not a
factor in the selection of a spouse, so EX and JX are independent events and
P(EX ∩ JX ) = P(EX )P(JX ). It follows, then, that Emma and Josh have a 62.5%
chance of having different blood types:
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P(Emma and Josh have different blood types)= 1 −{P(E A)P(JA)+ P(EB)P(JB)

+ P(E AB)P(JAB)+ P(EO)P(JO)}
= 1 −{(0.40)(0.40)+ (0.10)(0.10)

+ (0.05)(0.05)+ (0.45)(0.45)}
= 0.625

Questions

2.5.1. Suppose that P(A ∩ B) = 0.2, P(A) = 0.6, and
P(B)= 0.5.

(a) Are A and B mutually exclusive?
(b) Are A and B independent?
(c) Find P(AC ∪ BC).

2.5.2. Spike is not a terribly bright student. His chances
of passing chemistry are 0.35; mathematics, 0.40; and both,
0.12. Are the events “Spike passes chemistry” and “Spike
passes mathematics” independent? What is the probabil-
ity that he fails both subjects?

2.5.3. Two fair dice are rolled. What is the probability
that the number showing on one will be twice the number
appearing on the other?

2.5.4. Urn I has three red chips, two black chips, and five
white chips; urn II has two red, four black, and three white.
One chip is drawn at random from each urn. What is the
probability that both chips are the same color?

2.5.5. Dana and Cathy are playing tennis. The probability
that Dana wins at least one out of two games is 0.3. What
is the probability that Dana wins at least one out of four?

2.5.6. Three points, X1, X2, and X3, are chosen at random
in the interval (0,a). A second set of three points, Y1, Y2,
and Y3, are chosen at random in the interval (0,b). Let A
be the event that X2 is between X1 and X3. Let B be the
event that Y1 < Y2 < Y3. Find P(A ∩ B).

2.5.7. Suppose that P(A)= 1
4

and P(B)= 1
8
.

(a) What does P(A ∪ B) equal if
1. A and B are mutually exclusive?
2. A and B are independent?

(b) What does P(A | B) equal if
1. A and B are mutually exclusive?
2. A and B are independent?

2.5.8. Suppose that events A, B, and C are independent.

(a) Use a Venn diagram to find an expression for P(A ∪
B ∪ C) that does not make use of a complement.

(b) Find an expression for P(A ∪ B ∪ C) that does make
use of a complement.

2.5.9. A fair coin is tossed four times. What is the proba-
bility that the number of heads appearing on the first two
tosses is equal to the number of heads appearing on the
second two tosses?

2.5.10. Suppose that two cards are drawn simultaneously
from a standard 52-card poker deck. Let A be the event
that both are either a jack, queen, king, or ace of hearts,
and let B be the event that both are aces. Are A and B
independent? (Note: There are 1326 equally likely ways to
draw two cards from a poker deck.)

Defining the Independence of More Than Two Events

It is not immediately obvious how to extend Definition 2.5.1 to, say, three events. To
call A, B, and C independent, should we require that the probability of the three-way
intersection factors into the product of the three original probabilities,

P(A ∩ B ∩ C)= P(A) · P(B) · P(C) (2.5.3)
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or should we impose the definition we already have on the three pairs of events:

P(A ∩ B) = P(A) · P(B)

P(B ∩ C) = P(B) · P(C) (2.5.4)

P(A ∩ C) = P(A) · P(C)

Actually, neither condition by itself is sufficient. If three events satisfy Equa-
tions 2.5.3 and 2.5.4, we will call them independent (or mutually independent),
but Equation 2.5.3 does not imply Equation 2.5.4, nor does Equation 2.5.4 imply
Equation 2.5.3 (see Questions 2.5.11 and 2.5.12).

More generally, the independence of n events requires that the probabilities
of all possible intersections equal the products of all the corresponding individual
probabilities. Definition 2.5.2 states the result formally. Analogous to what was true
in the case of two events, the practical applications of Definition 2.5.2 arise when
n events are mutually independent, and we can calculate P(A1 ∩ A2 ∩ · · · ∩ An) by
computing the product P(A1) · P(A2) · · · P(An).

Definition 2.5.2. Events A1, A2, . . ., An are said to be independent if for every
set of indices i1, i2, . . ., ik between 1 and n, inclusive,

P(Ai1 ∩ Ai2 ∩ · · · ∩ Aik )= P(Ai1) · P(Ai2) · · · · · P(Aik )

Example
2.5.8

An insurance company plans to assess its future liabilities by sampling the records
of its current policyholders. A pilot study has turned up three clients—one living in
Alaska, one in Missouri, and one in Vermont—whose estimated chances of surviving
to the year 2015 are 0.7, 0.9, and 0.3, respectively. What is the probability that by the
end of 2014 the company will have had to pay death benefits to exactly one of the
three?

Let A1 be the event “Alaska client survives through 2014.” Define A2 and A3

analogously for the Missouri client and Vermont client, respectively. Then the event
E : “Exactly one dies” can be written as the union of three intersections:

E = (A1 ∩ A2 ∩ AC
3

)∪ (A1 ∩ AC
2 ∩ A3

)∪ (AC
1 ∩ A2 ∩ A3

)
Since each of the intersections is mutually exclusive of the other two,

P(E)= P
(

A1 ∩ A2 ∩ AC
3

)+ P
(

A1 ∩ AC
2 ∩ A3

)+ P
(

AC
1 ∩ A2 ∩ A3

)
Furthermore, there is no reason to believe that for all practical purposes the fates
of the three are not independent. That being the case, each of the intersection
probabilities reduces to a product, and we can write

P(E) = P(A1) · P(A2)·P
(

AC
3

)+ P(A1)·P
(

AC
2

)·P(A3)+ P
(

AC
1

)·P(A2)·P(A3)

= (0.7)(0.9)(0.7)+ (0.7)(0.1)(0.3)+ (0.3)(0.9)(0.3)

= 0.543

Comment “Declaring” events independent for reasons other than those prescribed
in Definition 2.5.2 is a necessarily subjective endeavor. Here we might feel fairly
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certain that a “random” person dying in Alaska will not affect the survival chances
of a “random” person residing in Missouri (or Vermont). But there may be special
circumstances that invalidate that sort of argument. For example, what if the three
individuals in question were mercenaries fighting in an African border war and were
all crew members assigned to the same helicopter? In practice, all we can do is look
at each situation on an individual basis and try to make a reasonable judgment as to
whether the occurrence of one event is likely to influence the outcome of another
event.

Example
2.5.9

Protocol for making financial decisions in a certain corporation follows the “circuit”
pictured in Figure 2.5.1. Any budget is first screened by 1. If he approves it, the plan
is forwarded to 2, 3, and 5. If either 2 or 3 concurs, it goes to 4. If either 4 or 5
says “yes,” it moves on to 6 for a final reading. Only if 6 is also in agreement does
the proposal pass. Suppose that 1, 5, and 6 each has a 50% chance of saying “yes,”
whereas 2, 3, and 4 will each concur with a probability of 0.70. If everyone comes to
a decision independently, what is the probability that a budget will pass?

2

3

4

6

5

1

Figure 2.5.1

Probabilities of this sort are calculated by reducing the circuit to its component
unions and intersections. Moreover, if all decisions are made independently, which
is the case here, then every intersection becomes a product.

Let Ai be the event that person i approves the budget, i = 1,2, . . . ,6. Looking
at Figure 2.5.1, we see that

P(Budget passes)= P(A1 ∩ {[(A2 ∪ A3)∩ A4] ∪ A5} ∩ A6)

= P(A1)P{[(A2 ∪ A3)∩ A4] ∪ A5}P(A6)

By assumption, P(A1)= 0.5, P(A2)= 0.7, P(A3)= 0.7, P(A4)= 0.7, P(A5)= 0.5, and
P(A6)= 0.5, so

P{[(A2 ∪ A3)∩ A4]} = [P(A2)+ P(A3)− P(A2)P(A3)]P(A4)

=[0.7 + 0.7 − (0.7)(0.7)](0.7)

= 0.637
Therefore,

P(Budget passes) = (0.5){0.637 + 0.5 − (0.637)(0.5)}(0.5)

= 0.205
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Repeated Independent Events

We have already seen several examples where the event of interest was actually
an intersection of independent simpler events (in which case the probability of the
intersection reduced to a product). There is a special case of that basic scenario that
deserves special mention because it applies to numerous real-world situations. If the
events making up the intersection all arise from the same physical circumstances
and assumptions (i.e., they represent repetitions of the same experiment), they are
referred to as repeated independent trials. The number of such trials may be finite or
infinite.

Example
2.5.10

Suppose the string of Christmas tree lights you just bought has twenty-four bulbs
wired in series. If each bulb has a 99.9% chance of “working” the first time current
is applied, what is the probability that the string itself will not work?

Let Ai be the event that the ith bulb fails, i = 1,2, . . . ,24. Then

P(String fails) = P(At least one bulb fails)

= P(A1 ∪ A2 ∪ · · · ∪ A24)

= 1 − P(String works)

= 1 − P(All twenty-four bulbs work)

= 1 − P
(

AC
1 ∩ AC

2 ∩ · · · ∩ AC
24

)
If we assume that bulb failures are independent events,

P(String fails)= 1 − P
(

AC
1

)
P
(

AC
2

) · · · P
(

AC
24

)
Moreover, since all the bulbs are presumably manufactured the same way, P(AC

i ) is
the same for all i , so

P(String fails) = 1 − {P(AC
i

)}24

= 1 − (0.999)24

= 1 − 0.98

= 0.02

The chances are one in fifty, in other words, that the string will not work the first
time current is applied.

Example
2.5.11

During the 1978 baseball season, Pete Rose of the Cincinnati Reds set a National
League record by hitting safely in forty-four consecutive games. Assume that Rose
was a .300 hitter and that he came to bat four times each game. If each at-bat
is assumed to be an independent event, what probability might reasonably be
associated with a hitting streak of that length?

For this problem we need to invoke the repeated independent trials model
twice—once for the four at-bats making up a game and a second time for the forty-
four games making up the streak. Let Ai denote the event “Rose hit safely in ith
game,” i = 1,2, . . . ,44. Then

P(Rose hit safely in forty-four consecutive games) = P(A1 ∩ A2 ∩ · · · ∩ A44)

= P(A1) · P(A2) · · · · · P(A44)

(2.5.5)
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Since all the P(Ai )’s are equal, we can further simplify Equation 2.5.5 by writing

P(Rose hit safely in forty-four consecutive games)=[P(A1)]44

To calculate P(A1) we should focus on the complement of A1. Specifically,

P(A1)= 1 − P
(

AC
1

)
= 1 − P(Rose did not hit safely in Game 1)

= 1 − P(Rose made four outs)

= 1 − (0.700)4 (Why?)

= 0.76

Therefore, the probability of a .300 hitter putting together a forty-four-game streak
(during a given set of forty-four games) is 0.0000057:

P(Rose hit safely in forty-four consecutive games)= (0.76)44

= 0.0000057

Comment The analysis described here has the basic “structure” of a repeated inde-
pendent trials problem, but the assumptions that the latter makes are not entirely
satisfied by the data. Each at-bat, for example, is not really a repetition of the same
experiment, nor is P(Ai ) the same for all i . Rose would obviously have had different
probabilities of getting a hit against different pitchers. Moreover, although “four”
was probably the typical number of official at-bats that he had during a game, there
would certainly have been many instances where he had either fewer or more. Mod-
est deviations from game to game, though, would not have had a major effect on the
probability associated with Rose’s forty-four-game streak.

Example
2.5.12

In the game of craps, one of the ways a player can win is by rolling (with two dice)
one of the sums 4, 5, 6, 8, 9, or 10, and then rolling that sum again before rolling a
sum of 7. For example, the sequence of sums 6, 5, 8, 8, 6 would result in the player
winning on his fifth roll. In gambling parlance, “6” is the player’s “point,” and he
“made his point.” On the other hand, the sequence of sums 8, 4, 10, 7 would result
in the player losing on his fourth roll: his point was an 8, but he rolled a sum of 7
before he rolled a second 8. What is the probability that a player wins with a point
of 10?

Table 2.5.2

Sequence of Rolls Probability

(10, 10) (3/36)(3/36)
(10, no 10 or 7, 10) (3/36)(27/36)(3/36)

(10, no 10 or 7, no 10 or 7, 10) (3/36)(27/36)(27/36)(3/36)
...

...

Table 2.5.2 shows some of the ways a player can make a point of 10. Each
sequence, of course, is an intersection of independent events, so its probability
becomes a product. The event “Player wins with a point of 10” is then the union
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of all the sequences that could have been listed in the first column. Since all those
sequences are mutually exclusive, the probability of winning with a point of 10
reduces to the sum of an infinite number of products:

P(Player wins with a point of 10) = 3

36
· 3

36
+ 3

36
· 27

36
· 3

36

+ 3

36
· 27

36
· 27

36
· 3

36
+ · · ·

= 3

36
· 3

36

∞∑
k=0

(
27

36

)k

(2.5.6)

Recall from algebra that if 0 < r < 1,

∞∑
k=0

rk = 1/(1 − r)

Applying the formula for the sum of a geometric series to Equation 2.5.6 shows that
the probability of winning at craps with a point of 10 is 1

36 :

P(Player wins with a point of 10)= 3

36
· 3

36
· 1(

1 − 27
36

)
= 1

36

Table 2.5.3

Point P (makes point)

4 1/36
5 16/360
6 25/396
8 25/396
9 16/360

10 1/36

Table 2.5.3 shows the probabilities of a person “making” each of the possible six
points—4, 5, 6, 8, 9, and 10. According to the rules of craps, a player wins by either
(1) getting a sum of 7 or 11 on the first roll or (2) getting a 4, 5, 6 , 8 , 9, or 10 on the
first roll and making the point. But P(sum = 7)= 6/36 and P(sum = 11)= 2/36, so

P(Player wins) = 6

36
+ 2

36
+ 1

36
+ 16

360
+ 25

396
+ 25

396
+ 16

360
+ 1

36

= 0.493

As even-money games go, craps is relatively fair—the probability of the shooter
winning is not much less than 0.500.

Example
2.5.13

A transmitter is sending a binary code (+ and − signals) that must pass through
three relay signals before being sent on to the receiver (see Figure 2.5.2). At each
relay station, there is a 25% chance that the signal will be reversed—that is
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P(+ is sent by relay i |− is received by relay i)

= P(− is sent by relay i |+ is received by relay i)

= 1/4, i = 1,2,3

Suppose + symbols make up 60% of the message being sent. If the signal + is
received, what is the probability a + was sent?

1 2 3
(+ ?) (+)

Receiver

Figure 2.5.2

This is basically a Bayes’ Theorem (Theorem 2.4.2) problem, but the three relay
stations introduce a more complex mechanism for transmission error. Let A be the
event “+ is transmitted from tower” and B be the event “+ is received from relay 3.”
Then

P(A|B)= P(B|A)P(A)

P(B|A)P(A)+ P(B|AC )P(AC)

Notice that a + can be received from relay 3 given that a + was initially sent from
the tower if either (1) all relay stations function properly or (2) any two of the sta-
tions make transmission errors. Table 2.5.4 shows the four mutually exclusive ways
(1) and (2) can happen. The probabilities associated with the message transmissions
at each relay station are shown in parentheses. Assuming the relay station outputs
are independent events, the probability of an entire transmission sequence is sim-
ply the product of the probabilities in parentheses in any given row. These overall
probabilities are listed in the last column; their sum, 36/64, is P(B|A). By a similar
analysis, we can show that

P(B|AC)= P(+ is received from relay 3|− is transmitted from tower)= 28/64

Finally, since P(A) = 0.6 and then P(AC) = 0.4, the conditional probability we
are looking for is 0.66:

P(A|B)=
(

36
64

)
(0.6)(

36
64

)
(0.6)+ ( 28

64

)
(0.4)

= 0.66

Table 2.5.4

Signal transmitted by

Tower Relay 1 Relay 2 Relay 3 Probability

+ +(3/4) −(1/4) +(1/4) 3/64
+ −(1/4) −(3/4) +(1/4) 3/64
+ −(1/4) +(1/4) +(3/4) 3/64
+ +(3/4) +(3/4) +(3/4) 27/64

36/64
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Example
2.5.14

Andy, Bob, and Charley have gotten into a disagreement over a female acquain-
tance, Donna, and decide to settle their dispute with a three-cornered pistol duel.
Of the three, Andy is the worst shot, hitting his target only 30% of the time. Charley,
a little better, is on-target 50% of the time, while Bob never misses (see Figure 2.5.3).
The rules they agree to are simple: They are to fire at the targets of their choice in
succession, and cyclically, in the order Andy, Bob, Charley, and so on, until only one
of them is left standing. On each “turn,” they get only one shot. If a combatant is
hit, he no longer participates, either as a target or as a shooter.

Andy

P (hits target) 0.3

CharleyBob

P (hits target) 1.0 P (hits target) 0.5

Figure 2.5.3

As Andy loads his revolver, he mulls over his options (his objective is clear—to max-
imize his probability of survival). According to the rule he can shoot either Bob or
Charley, but he quickly rules out shooting at the latter because it would be counter-
productive to his future well-being: If he shot at Charley and had the misfortune of
hitting him, it would be Bob’s turn, and Bob would have no recourse but to shoot
at Andy. From Andy’s point of view, this would be a decidedly grim turn of events,
since Bob never misses. Clearly, Andy’s only option is to shoot at Bob. This leaves
two scenarios: (1) He shoots at Bob and hits him, or (2) he shoots at Bob and misses.

Consider the first possibility. If Andy hits Bob, Charley will proceed to shoot
at Andy, Andy will shoot back at Charley, and so on, until one of them hits the
other. Let C Hi and C Mi denote the events “Charley hits Andy with the ith shot”
and “Charley misses Andy with the ith shot,” respectively. Define AHi and AMi

analogously. Then Andy’s chances of survival (given that he has killed Bob) reduce
to a countably infinite union of intersections:

P(Andy survives)=P[(C M1 ∩ AH1)∪ (C M1 ∩ AM1 ∩ C M2 ∩ AH2)

∪ (C M1 ∩ AM1 ∩ C M2 ∩ AM2 ∩ C M3 ∩ AH3)∪ · · · ]

Note that each intersection is mutually exclusive of all of the others and that its
component events are independent. Therefore,

P(Andy survives) = P(C M1)P(AH1)+ P(C M1)P(AM1)P(C M2)P(AH2)

+ P(C M1)P(AM1)P(C M2)P(AM2)P(C M3)P(AH3)+ · · ·
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= (0.5)(0.3)+ (0.5)(0.7)(0.5)(0.3)+ (0.5)(0.7)(0.5)(0.7)(0.5)(0.3)+ · · ·

= (0.5)(0.3)

∞∑
k=0

(0.35)k

= (0.15)

(
1

1 − 0.35

)
= 3

13

Now consider the second scenario. If Andy shoots at Bob and misses, Bob will
undoubtedly shoot and hit Charley, since Charley is the more dangerous adversary.
Then it will be Andy’s turn again. Whether he would see another tomorrow would
depend on his ability to make that very next shot count. Specifically,

P(Andy survives)= P(Andy hits Bob on second turn)= 3/10

But 3
10 > 3

13 , so Andy is better off not hitting Bob with his first shot. And because
we have already argued that it would be foolhardy for Andy to shoot at Charley,
Andy’s optimal strategy is clear—deliberately miss both Bob and Charley with the
first shot.

Questions

2.5.11. Suppose that two fair dice (one red and one green)
are rolled. Define the events

A: a 1 or a 2 shows on the red die
B: a 3, 4, or 5 shows on the green die
C : the dice total is 4, 11, or 12

Show that these events satisfy Equation 2.5.3 but not
Equation 2.5.4.

2.5.12. A roulette wheel has thirty-six numbers colored
red or black according to the pattern indicated below:

Roulette wheel pattern
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
R R R R R B B B B R R R R B B B B B
36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19

Define the events

A: red number appears
B: even number appears
C : number is less than or equal to 18

Show that these events satisfy Equation 2.5.4 but not
Equation 2.5.3.

2.5.13. How many probability equations need to be veri-
fied to establish the mutual independence of four events?

2.5.14. In a roll of a pair of fair dice (one red and one
green), let A be the event the red die shows a 3, 4, or 5; let
B be the event the green die shows a 1 or a 2; and let C
be the event the dice total is 7. Show that A, B, and C are
independent.

2.5.15. In a roll of a pair of fair dice (one red and one
green), let A be the event of an odd number on the red
die, let B be the event of an odd number on the green die,
and let C be the event that the sum is odd. Show that any
pair of these events is independent but that A, B, and C
are not mutually independent.

2.5.16. On her way to work, a commuter encounters four
traffic signals. Assume that the distance between each of
the four is sufficiently great that her probability of getting
a green light at any intersection is independent of what
happened at any previous intersection. The first two lights
are green for forty seconds of each minute; the last two,
for thirty seconds of each minute. What is the probability
that the commuter has to stop at least three times?

2.5.17. School board officials are debating whether to
require all high school seniors to take a proficiency exam
before graduating. A student passing all three parts (math-
ematics, language skills, and general knowledge) would be
awarded a diploma; otherwise, he or she would receive
only a certificate of attendance. A practice test given
to this year’s ninety-five hundred seniors resulted in the
following numbers of failures:

Subject Area Number of Students Failing

Mathematics 3325
Language skills 1900
General knowledge 1425

If “Student fails mathematics,” “Student fails language
skills,” and “Student fails general knowledge” are inde-
pendent events, what proportion of next year’s seniors can
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be expected to fail to qualify for a diploma? Does inde-
pendence seem a reasonable assumption in this situation?

2.5.18. Consider the following four-switch circuit:
A

In

1 A2

A3 A4

Out

If all switches operate independently and P(Switch closes)=
p, what is the probability the circuit is completed?

2.5.19. A fast-food chain is running a new promotion. For
each purchase, a customer is given a game card that may
win $10. The company claims that the probability of a per-
son winning at least once in five tries is 0.32. What is the
probability that a customer wins $10 on his or her first
purchase?

2.5.20. Players A, B, and C toss a fair coin in order.
The first to throw a head wins. What are their respective
chances of winning?

2.5.21. In a certain third world nation, statistics show
that only two out of ten children born in the early 1980s
reached the age of twenty-one. If the same mortality rate
is operative over the next generation, how many children
does a woman need to bear if she wants to have at least a
75% probability that at least one of her offspring survives
to adulthood?

2.5.22. According to an advertising study, 15% of tele-
vision viewers who have seen a certain automobile
commercial can correctly identify the actor who does the
voice-over. Suppose that ten such people are watching TV
and the commercial comes on. What is the probability that
at least one of them will be able to name the actor? What
is the probability that exactly one will be able to name the
actor?

2.5.23. A fair die is rolled and then n fair coins are tossed,
where n is the number showing on the die. What is the
probability that no heads appear?

2.5.24. Each of m urns contains three red chips and four
white chips. A total of r samples with replacement are

taken from each urn. What is the probability that at least
one red chip is drawn from at least one urn?

2.5.25. If two fair dice are tossed, what is the smallest
number of throws, n, for which the probability of getting
at least one double 6 exceeds 0.5? (Note: This was one of
the first problems that de Méré communicated to Pascal
in 1654.)

2.5.26. A pair of fair dice are rolled until the first sum of
8 appears. What is the probability that a sum of 7 does not
precede that first sum of 8?

2.5.27. An urn contains w white chips, b black chips, and
r red chips. The chips are drawn out at random, one at
a time, with replacement. What is the probability that a
white appears before a red?

2.5.28. A Coast Guard dispatcher receives an SOS from
a ship that has run aground off the shore of a small island.
Before the captain can relay her exact position, though,
her radio goes dead. The dispatcher has n helicopter crews
he can send out to conduct a search. He suspects the ship
is somewhere either south in area I (with probability p)
or north in area II (with probability 1 − p). Each of the
n rescue parties is equally competent and has probabil-
ity r of locating the ship given it has run aground in the
sector being searched. How should the dispatcher deploy
the helicopter crews to maximize the probability that one
of them will find the missing ship? (Hint: Assume that m
search crews are sent to area I and n − m are sent to area
II. Let B denote the event that the ship is found, let A1 be
the event that the ship is in area I, and let A2 be the event
that the ship is in area II. Use Theorem 2.4.1 to get an
expression for P(B); then differentiate with respect to m.)

2.5.29. A computer is instructed to generate a random
sequence using the digits 0 through 9; repetitions are per-
missible. What is the shortest length the sequence can be
and still have at least a 70% probability of containing at
least one 4?

2.5.30. A box contains a two-headed coin and eight fair
coins. One coin is drawn at random and tossed n times.
Suppose all n tosses come up heads. Show that the limit of
the probability that the coin is fair is 0 as n goes to infinity.

2.6 Combinatorics
Combinatorics is a time-honored branch of mathematics concerned with count-
ing, arranging, and ordering. While blessed with a wealth of early contributors
(there are references to combinatorial problems in the Old Testament), its emer-
gence as a separate discipline is often credited to the German mathematician
and philosopher Gottfried Wilhelm Leibniz (1646–1716), whose 1666 treatise, Dis-
sertatio de arte combinatoria, was perhaps the first monograph written on the
subject (107).
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Applications of combinatorics are rich in both diversity and number. Users
range from the molecular biologist trying to determine how many ways genes can be
positioned along a chromosome, to a computer scientist studying queuing priorities,
to a psychologist modeling the way we learn, to a weekend poker player wonder-
ing whether he should draw to a straight, or a flush, or a full house. Surprisingly
enough, despite the considerable differences that seem to distinguish one question
from another, solutions to all of these questions are rooted in the same set of four
basic theorems and rules.

Counting Ordered Sequences: The Multiplication Rule

More often than not, the relevant “outcomes” in a combinatorial problem are
ordered sequences. If two dice are rolled, for example, the outcome (4, 5)—that is,
the first die comes up 4 and the second die comes up 5—is an ordered sequence
of length two. The number of such sequences is calculated by using the most
fundamental result in combinatorics, the multiplication rule.

Multiplication Rule If operation A can be performed in m different ways and opera-
tion B in n different ways, the sequence (operation A, operation B) can be performed
in m · n different ways.

Proof At the risk of belaboring the obvious, we can verify the multiplication rule by
considering a tree diagram (see Figure 2.6.1). Since each version of A can be followed
by any of n versions of B, and there are m of the former, the total number of “A, B”
sequences that can be pieced together is obviously the product m · n. �

1

1

Operation BOperation A

2

1
2

n

2
n

1

m
2

n

Figure 2.6.1

Corollary
2.6.1

If operation Ai , i = 1,2, . . . , k, can be performed in ni ways, i = 1,2, . . . , k, respec-
tively, then the ordered sequence (operation A1, operation A2, . . ., operation Ak) can
be performed in n1 · n2 · · · · · nk ways. �

Example
2.6.1

The combination lock on a briefcase has two dials, each marked off with sixteen
notches (see Figure 2.6.2). To open the case, a person first turns the left dial in a
certain direction for two revolutions and then stops on a particular mark. The right
dial is set in a similar fashion, after having been turned in a certain direction for two
revolutions. How many different settings are possible?
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A

C

D B

A

C

D B

Figure 2.6.2

In the terminology of the multiplication rule, opening the briefcase corresponds
to the four-step sequence (A1, A2, A3, A4) detailed in Table 2.6.1. Applying the
previous corollary, we see that 1024 different settings are possible:

number of different settings = n1 · n2 · n3 · n4

= 2 · 16 · 2 · 16

= 1024

Table 2.6.1

Operation Purpose Number of Options

A1 Rotating the left dial in a
particular direction 2

A2 Choosing an endpoint for the
left dial 16

A3 Rotating the right dial in a
particular direction 2

A4 Choosing an endpoint for the
right dial 16

Comment Designers of locks should be aware that the number of dials, as opposed
to the number of notches on each dial, is the critical factor in determining how
many different settings are possible. A two-dial lock, for example, where each dial
has twenty notches, gives rise to only 2 · 20 · 2 · 20 = 1600 settings. If those forty
notches, though, are distributed among four dials (ten to each dial), the num-
ber of different settings increases a hundredfold to 160,000 (= 2 · 10 · 2 · 10 · 2 ·
10 · 2 · 10).

Example
2.6.2

Alphonse Bertillon, a nineteenth-century French criminologist, developed an identi-
fication system based on eleven anatomical variables (height, head width, ear length,
etc.) that presumably remain essentially unchanged during an individual’s adult life.
The range of each variable was divided into three subintervals: small, medium, and
large. A person’s Bertillon configuration is an ordered sequence of eleven letters, say,

s, s,m,m, l, s, l, s, s,m, s

where a letter indicates the individual’s “size” relative to a particular variable. How
populated does a city have to be before it can be guaranteed that at least two citizens
will have the same Bertillon configuration?

Viewed as an ordered sequence, a Bertillon configuration is an eleven-step
classification system, where three options are available at each step. By the multipli-
cation rule, a total of 311, or 177,147, distinct sequences are possible. Therefore, any
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city with at least 177,148 adults would necessarily have at least two residents with the
same pattern. (The limited number of possibilities generated by the configuration’s
variables proved to be one of its major weaknesses. Still, it was widely used in
Europe for criminal identification before the development of fingerprinting.)

Example
2.6.3

In 1824 Louis Braille invented what would eventually become the standard alpha-
bet for the blind. Based on an earlier form of “night writing” used by the French
army for reading battlefield communiqués in the dark, Braille’s system replaced
each written character with a six-dot matrix:

• •
• •
• •

where certain dots were raised, the choice depending on the character being
transcribed. The letter e, for example, has two raised dots and is written

• •
• •
• •

Punctuation marks, common words, suffixes, and so on, also have specified dot
patterns. In all, how many different characters can be enciphered in Braille?

1 • 4 •

2 • 5 •

3 • 6 •

2   Sequences
(2)
1

(2)
2

(2)
3

(2)
4

(2)
5

(2)
6

Options

Dot number

6

Figure 2.6.3

Think of the dots as six distinct operations, numbered 1 to 6 (see Figure 2.6.3). In
forming a Braille letter, we have two options for each dot: We can raise it or not raise
it. The letter e, for example, corresponds to the six-step sequence (raise, do not raise,
do not raise, do not raise, raise, do not raise). The number of such sequences, with
k = 6 and n1 = n2 = · · · = n6 = 2, is 26, or 64. One of those sixty-four configurations,
though, has no raised dots, making it of no use to a blind person. Figure 2.6.4 shows
the entire sixty-three-character Braille alphabet.

Example
2.6.4

The annual NCAA (“March Madness”) basketball tournament starts with a field
of sixty-four teams. After six rounds of play, the squad that remains unbeaten is
declared the national champion. How many different configurations of winners and
losers are possible, starting with the first round? Assume that the initial pairing of
the sixty-four invited teams into thirty-two first-round matches has already been
done.

Counting the number of ways a tournament of this sort can play out is an
exercise in applying the multiplication rule twice. Notice, first, that the thirty-two
first-round games can be decided in 232 ways. Similarly, the resulting sixteen second-
round games can generate 216 different winners, and so on. Overall, the tournament
can be pictured as a six-step sequence, where the number of possible outcomes at
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Figure 2.6.4

the six steps are 232,216,28,24,22, and 21, respectively. It follows that the number of
possible tournaments (not all of which, of course, would be equally likely!) is the
product 232 · 216 · 28 · 24 · 22 · 21, or 2 63.

Example
2.6.5

In a famous science fiction story by Arthur C. Clarke, “The Nine Billion Names
of God,” a computer firm is hired by the lamas in a Tibetan monastery to write a
program to generate all possible names of God. For reasons never divulged, the
lamas believe that all such names can be written using no more than nine letters. If
no letter combinations are ruled inadmissible, is the “nine billion” in the story’s title
a large enough number to accommodate all possibilities?

No. The lamas are in for a fleecing. The total number of names, N , would be the
sum of all one-letter names, two-letter names, and so on. By the multiplication rule,
the number of k-letter names is 26k , so
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N = 261 + 262 + · · ·+ 269 = 5,646,683,826,134

The proposed list of nine billion, then, would be more than 5.6 trillion names short!
(Note: The discrepancy between the story’s title and the N we just computed is more
a language difference than anything else. Clarke was British, and the British have
different names for certain numbers than we have in the United States. Specifically,
an American trillion is the English’s billion, which means that the American editions
of Mr. Clarke’s story would be more properly entitled “The Nine Trillion Names of
God.” A more puzzling question, of course, is why “nine” appears in the title as
opposed to “six.”)

Example
2.6.6

Proteins are chains of molecules chosen (with repetition) from some twenty differ-
ent amino acids. In a living cell, proteins are synthesized through the genetic code, a
mechanism whereby ordered sequences of nucleotides in the messenger RNA dic-
tate the formation of a particular amino acid. The four key nucleotides are adenine,
guanine, cytosine, and uracil (A, G, C, and U). Assuming A, G, C, or U can appear
any number of times in a nucleotide chain and that all sequences are physically pos-
sible, what is the minimum length the nucleotides must have if they are to be able to
encode the amino acids?

The answer derives from a trial-and-error application of the multiplication rule.
Given a length r , the number of different nucleotide sequences would be 4r . We are
looking, then, for the smallest r such that 4r ≥ 20. Clearly, r = 3.

The entire genetic code for the amino acids is shown in Figure 2.6.5. For
a discussion of the duplication and the significance of the three missing triplets,
see (194).

Alanine GCU, GCC, GCA, GCG Leucine UUA, UUG, CUU, CUC, CUA, CUG
Arginine CGU, CGC, CGA,CGG,AGA, AGG Lysine AAA, AAG
Asparagine AAU, AAC Methionine AUG
Aspartic acid GAU, GAC Phynylalanine UUU, UUC
Cysteine UGU, UGC Proline CCU,CCC, CCA, CCG
Glutamic acid GAA, GAG Serine UCU, UCC, UCA, UCG, AGU, AGC
Glutamine CAA, CAG Threonine ACU, ACC, ACA, ACG
Glycine GGU, GGC, GGA, GGG Tryptophan UGG

Histidine CAU, CAC Tyrosine UAU, UAC

Isoleucine AUU, AUC, AUA Valine GUU, GUC,GUA,GUG

Figure 2.6.5

Problem-Solving Hints

(Doing combinatorial problems)
Combinatorial questions sometimes call for problem-solving techniques

that are not routinely used in other areas of mathematics. The three listed below
are especially helpful.

1. Draw a diagram that shows the structure of the outcomes that are being
counted. Be sure to include (or indicate) all relevant variations. A case in
point is Figure 2.6.3. Almost invariably, diagrams such as these will suggest
the formula, or combination of formulas, that should be applied.

2. Use enumerations to “test” the appropriateness of a formula. Typically,
the answer to a combinatorial problem—that is, the number of ways to
do something—will be so large that listing all possible outcomes is not
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feasible. It often is feasible, though, to construct a simple, but analo-
gous, problem for which the entire set of outcomes can be identified (and
counted). If the proposed formula does not agree with the simple-case enu-
meration, we know that our analysis of the original question is incorrect.

3. If the outcomes to be counted fall into structurally different categories, the
total number of outcomes will be the sum (not the product) of the number
of outcomes in each category. Recall Example 2.6.5. The categories there
are the nine different name lengths.

Questions

2.6.1. A chemical engineer wishes to observe the effects
of temperature, pressure, and catalyst concentration on
the yield resulting from a certain reaction. If she intends
to include two different temperatures, three pressures,
and two levels of catalyst, how many different runs must
she make in order to observe each temperature-pressure-
catalyst combination exactly twice?

2.6.2. A coded message from a CIA operative to his Rus-
sian KGB counterpart is to be sent in the form Q4ET,
where the first and last entries must be consonants; the
second, an integer 1 through 9; and the third, one of the six
vowels. How many different ciphers can be transmitted?

2.6.3. How many terms will be included in the expansion
of

(a + b + c)(d + e + f )(x + y + u + v +w)

Which of the following will be included in that number:
aeu, cdx, bef, xvw?

2.6.4. Suppose that the format for license plates in a
certain state is two letters followed by four numbers.

(a) How many different plates can be made?
(b) How many different plates are there if the letters can

be repeated but no two numbers can be the same?
(c) How many different plates can be made if repeti-

tions of numbers and letters are allowed except that
no plate can have four zeros?

2.6.5. How many integers between 100 and 999 have
distinct digits, and how many of those are odd numbers?

2.6.6. A fast-food restaurant offers customers a choice
of eight toppings that can be added to a hamburger. How
many different hamburgers can be ordered?

2.6.7. In baseball there are twenty-four different “base-
out” configurations (runner on first—two outs, bases
loaded—none out, and so on). Suppose that a new game,
sleazeball, is played where there are seven bases (exclud-
ing home plate) and each team gets five outs an inning.
How many base-out configurations would be possible in
sleazeball?

2.6.8. When they were first introduced, postal zip codes
were five-digit numbers, theoretically ranging from 00000
to 99999. (In reality, the lowest zip code was 00601 for San
Juan, Puerto Rico; the highest was 99950 for Ketchikan,
Alaska.) An additional four digits have been added, so
each zip code is now a nine-digit number. How many
zip codes are at least as large as 60000–0000, are even
numbers, and have a 7 as their third digit?

2.6.9. A restaurant offers a choice of four appetizers,
fourteen entrees, six desserts, and five beverages. How
many different meals are possible if a diner intends to
order only three courses? (Consider the beverage to be a
“course.”)

2.6.10. An octave contains twelve distinct notes (on a
piano, five black keys and seven white keys). How many
different eight-note melodies within a single octave can be
written if the black keys and white keys need to alternate?

2.6.11. Residents of a condominium have an automatic
garage door opener that has a row of eight buttons. Each
garage door has been programmed to respond to a par-
ticular set of buttons being pushed. If the condominium
houses 250 families, can residents be assured that no two
garage doors will open on the same signal? If so, how
many additional families can be added before the eight-
button code becomes inadequate? (Note: The order in
which the buttons are pushed is irrelevant.)

2.6.12. In international Morse code, each letter in the
alphabet is symbolized by a series of dots and dashes: the
letter a, for example, is encoded as “· –”. What is the min-
imum number of dots and/or dashes needed to represent
any letter in the English alphabet?

2.6.13. The decimal number corresponding to a sequence
of n binary digits a0,a1, . . . ,an−1, where each ai is either 0
or 1, is defined to be

a020 + a121 + · · · + an−12n−1

For example, the sequence 0 1 1 0 is equal to 6 (=
0 · 20 + 1 · 21 + 1 · 22 + 0 · 23). Suppose a fair coin is tossed
nine times. Replace the resulting sequence of H’s and
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T’s with a binary sequence of 1’s and 0’s (1 for H, 0
for T). For how many sequences of tosses will the deci-
mal corresponding to the observed set of heads and tails
exceed 256?

2.6.14. Given the letters in the word

Z O M B I E S

in how many ways can two of the letters be arranged such
that one is a vowel and one is a consonant?

2.6.15. Suppose that two cards are drawn—in order—
from a standard 52-card poker deck. In how many ways
can the first card be a club and the second card be an ace?

2.6.16. Monica’s vacation plans require that she fly from
Nashville to Chicago to Seattle to Anchorage. According
to her travel agent, there are three available flights from
Nashville to Chicago, five from Chicago to Seattle, and
two from Seattle to Anchorage. Assume that the numbers
of options she has for return flights are the same. How
many round-trip itineraries can she schedule?

Counting Permutations (when the objects are all distinct)

Ordered sequences arise in two fundamentally different ways. The first is the sce-
nario addressed by the multiplication rule—a process is comprised of k operations,
each allowing ni options, i =1,2, . . . , k; choosing one version of each operation leads
to n1n2 . . .nk possibilities.

The second occurs when an ordered arrangement of some specified length k is
formed from a finite collection of objects. Any such arrangement is referred to as a
permutation of length k. For example, given the three objects A, B, and C , there are
six different permutations of length two that can be formed if the objects cannot be
repeated: AB, AC , BC , B A, C A, and C B.

Theorem
2.6.1

The number of permutations of length k that can be formed from a set of n distinct
elements, repetitions not allowed, is denoted by the symbol n Pk , where

n Pk = n(n − 1)(n − 2) · · · (n − k + 1)= n!
(n − k)!

Proof Any of the n objects may occupy the first position in the arrangement, any
of n − 1 the second, and so on—the number of choices available for filling the kth
position will be n − k + 1 (see Figure 2.6.6). The theorem follows, then, from the
multiplication rule: There will be n(n − 1) · · · (n − k + 1) ordered arrangements. �

n
1

n – 1
2

n – (k – 2)
k – 1

n – (k – 1)
k

Choices:

Position in sequence

Figure 2.6.6

Corollary
2.6.2

The number of ways to permute an entire set of n distinct objects is n Pn = n(n − 1)

(n − 2) · · ·1 = n!. �

Example
2.6.7

How many permutations of length k = 3 can be formed from the set of n = 4 distinct
elements, A, B,C , and D?

According to Theorem 2.6.1, the number should be 24:

n!
(n − k)! = 4!

(4 − 3)! = 4 · 3 · 2 · 1

1
= 24
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Confirming that figure, Table 2.6.2 lists the entire set of 24 permutations and
illustrates the argument used in the proof of the theorem.

Table 2.6.2

B
C 1. (ABC)
D 2. (ABD)

A C
B 3. (ACB)
D 4. (ACD)

D
B 5. (ADB)
C 6. (ADC)

A
C 7. (BAC)
D 8. (BAD)

B C
A 9. (BCA)
D 10. (BCD)

D
A 11. (BDA)
C 12. (BDC)

A
B 13. (CAB)
D 14. (CAD)

C B
A 15. (CBA)
D 16. (CBD)

D
A 17. (CDA)
B 18. (CDB)

A
B 19. (DAB)
C 20. (DAC)

D B
A 21. (DBA)
C 22. (DBC)

C
A 23. (DCA)
B 24. (DCB)

Example
2.6.8

In her sonnet with the famous first line, “How do I love thee? Let me count the
ways,” Elizabeth Barrett Browning listed eight ways. Suppose Ms. Browning had
decided that writing greeting cards afforded her a better format for expressing her
feelings. For how many years could she have corresponded with her favorite beau
on a daily basis and never sent the same card twice? Assume that each card contains
exactly four of the eight “ways” and that order matters.

In selecting the verse for a card, Ms. Browning would be creating a permutation
of length k = 4 from a set of n = 8 distinct objects. According to Theorem 2.6.1,

number of different cards = 8 P4 = 8!
(8 − 4)! = 8 · 7 · 6 · 5

= 1680

At the rate of a card a day, she could have kept the correspondence going for more
than four and one-half years.

Example
2.6.9

Years ago—long before Rubik’s Cubes and electronic games had become
epidemic—puzzles were much simpler. One of the more popular combinatorial-
related diversions was a four-by-four grid consisting of fifteen movable squares
and one empty space. The object was to maneuver as quickly as possible an arbi-
trary configuration (Figure 2.6.7a) into a specific pattern (Figure 2.6.7b). How many
different ways could the puzzle be arranged?
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Take the empty space to be square number 16 and imagine the four rows of
the grid laid end to end to make a sixteen-digit sequence. Each permutation of that
sequence corresponds to a different pattern for the grid. By the corollary to The-
orem 2.6.1, the number of ways to position the tiles is 16!, or more than twenty
trillion (20,922,789,888,000, to be exact). That total is more than fifty times the num-
ber of stars in the entire Milky Way galaxy. (Note: Not all of the 16! permutations
can be generated without physically removing some of the tiles. Think of the two-
by-two version of Figure 2.6.7 with tiles numbered 1 through 3. How many of the 4!
theoretical configurations can actually be formed?)

13 1 8 7

6 9 3 11

2 10 4

5 12 15 14

(a)

1 2 3 4

5 6 7 8

9 10 12

13 14 15

11

(b)

Figure 2.6.7

Example
2.6.10

A deck of fifty-two cards is shuffled and dealt face up in a row. For how many
arrangements will the four aces be adjacent?

This is a good example illustrating the problem-solving benefits that come from
drawing diagrams, as mentioned earlier. Figure 2.6.8 shows the basic structure that
needs to be considered: The four aces are positioned as a “clump” somewhere
between or around the forty-eight non-aces.

Non-aces

1 2 3 4 48

4 aces

Figure 2.6.8

Clearly, there are forty-nine “spaces” that could be occupied by the four aces (in
front of the first non-ace, between the first and second non-aces, and so on). Further-
more, by the corollary to Theorem 2.6.1, once the four aces are assigned to one of
those forty-nine positions, they can still be permuted in 4 P4 = 4! ways. Similarly, the
forty-eight non-aces can be arranged in 48 P48 = 48! ways. It follows from the multi-
plication rule, then, that the number of arrangements having consecutive aces is the
product 49 · 4! · 48!, or, approximately, 1.46 × 1064.

Comment Computing n! can be quite cumbersome, even for n’s that are fairly
small: We saw in Example 2.6.9, for instance, that 16! is already in the trillions. For-
tunately, an easy-to-use approximation is available. According to Stirling’s formula,

n! .= √
2πnn+1/2e−n
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In practice, we apply Stirling’s formula by writing

log10(n!) .= log10

(√
2π
)+(n + 1

2

)
log10(n)− n log10(e)

and then exponentiating the right-hand side.
In Example 2.6.10, the number of arrangements was calculated to be 49 · 4! · 48!,

or 24 · 49!. Substituting into Stirling’s formula, we can write

log10(49!) .= log10

(√
2π
)+(49 + 1

2

)
log10(49)− 49 log10(e)

≈ 62.783366

Therefore,

24 · 49! .= 24 · 1062.78337

= 1.46 × 1064

Example
2.6.11

In chess a rook can move vertically and horizontally (see Figure 2.6.9). It can capture
any unobstructed piece located anywhere in its own row or column. In how many
ways can eight distinct rooks be placed on a chessboard (having eight rows and eight
columns) so that no two can capture one another?

Figure 2.6.9

To start with a simpler problem, suppose that the eight rooks are all identical.
Since no two rooks can be in the same row or same column (why?), it follows that
each row must contain exactly one. The rook in the first row, however, can be in any
of eight columns; the rook in the second row is then limited to being in one of seven
columns, and so on. By the multiplication rule, then, the number of noncapturing
configurations for eight identical rooks is 8 P8, or 8! (see Figure 2.6.10).

Now imagine the eight rooks to be distinct—they might be numbered, for exam-
ple, 1 through 8. The rook in the first row could be marked with any of eight
numbers; the rook in the second row with any of the remaining seven numbers; and
so on. Altogether, there would be 8! numbering patterns for each configuration. The
total number of ways to position eight distinct, noncapturing rooks, then, is 8! · 8!, or
1,625,702,400.
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Choices

8

7

6

5

4

3

2

1

Total number =
8   7   6   5   4   3   2   1

Figure 2.6.10

Example
2.6.12

A new horror movie, Friday the 13th, Part X, will star Jason’s great-grandson (also
named Jason) as a psychotic trying to dispatch (as gruesomely as possible) eight
camp counselors, four men and four women. (a) How many scenarios (i.e., victim
orders) can the screenwriters devise, assuming they want Jason to do away with all
the men before going after any of the women? (b) How many scripts are possible if
the only restriction imposed on Jason is that he save Muffy for last?

a. Suppose the male counselors are denoted A, B, C , and D and the female coun-
selors, W , X , Y , and Z . Among the admissible plots would be the sequence
pictured in Figure 2.6.11, where B is done in first, then D, and so on. The men,
if they are to be restricted to the first four positions, can still be permuted in
4 P4 = 4! ways. The same number of arrangements can be found for the women.
Furthermore, the plot in its entirety can be thought of as a two-step sequence:
first the men are eliminated, then the women. Since 4! ways are available to
do the former and 4! the latter, the total number of different scripts, by the
multiplication rule, is 4!4!, or 576.

Men Women

B D A C Y Z W X

1 2 3 4 5 6 7 8

Order of killing

Figure 2.6.11

b. If the only condition to be met is that Muffy be dealt with last, the number of
admissible scripts is simply 7 P7 = 7!, that being the number of ways to permute
the other seven counselors (see Figure 2.6.12).

B W Z C Y A D Muffy

1 2 3 4 5 6 7 8

Order of killing

Figure 2.6.12

Example
2.6.13

Consider the set of nine-digit numbers that can be formed by rearranging without
repetition the integers 1 through 9. For how many of those permutations will the 1
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and the 2 precede the 3 and the 4? That is, we want to count sequences like 7 2 5 1 3
6 9 4 8 but not like 6 8 1 5 4 2 7 3 9.

At first glance, this seems to be a problem well beyond the scope of Theo-
rem 2.6.1. With the help of a symmetry argument, though, its solution is surprisingly
simple.

Think of just the digits 1 through 4. By the corollary on p. 74, those four numbers
give rise to 4!(=24) permutations. Of those twenty-four, only four—(1, 2, 3, 4), (2, 1,
3, 4), (1, 2, 4, 3), and (2, 1, 4, 3)—have the property that the 1 and the 2 come before
the 3 and the 4. It follows that 4

24 of the total number of nine-digit permutations
should satisfy the condition being imposed on 1, 2, 3, and 4. Therefore,

number of permutations where 1 and 2 precede 3 and 4 = 4

24
· 9!

= 60,480

Questions

2.6.17. The board of a large corporation has six mem-
bers willing to be nominated for office. How many dif-
ferent “president/vice president/treasurer” slates could be
submitted to the stockholders?

2.6.18. How many ways can a set of four tires be put on
a car if all the tires are interchangeable? How many ways
are possible if two of the four are snow tires?

2.6.19. Use Stirling’s formula to approximate 30!.
(Note: The exact answer is 265,252,859,812,268,935,315,188,
480,000,000.)

2.6.20. The nine members of the music faculty base-
ball team, the Mahler Maulers, are all incompetent, and
each can play any position equally poorly. In how many
different ways can the Maulers take the field?

2.6.21. A three-digit number is to be formed from the dig-
its 1 through 7, with no digit being used more than once.
How many such numbers would be less than 289?

2.6.22. Four men and four women are to be seated in a
row of chairs numbered 1 through 8.

(a) How many total arrangements are possible?
(b) How many arrangements are possible if the men are

required to sit in alternate chairs?

2.6.23. An engineer needs to take three technical elec-
tives sometime during his final four semesters. The three
are to be selected from a list of ten. In how many ways can
he schedule those classes, assuming that he never wants to
take more than one technical elective in any given term?

2.6.24. How many ways can a twelve-member cheer-
leading squad (six men and six women) pair up to form

six male-female teams? How many ways can six male-
female teams be positioned along a sideline? What might
the number 6!6!26 represent? What might the number
6!6!26212 represent?

2.6.25. Suppose that a seemingly interminable German
opera is recorded on all six sides of a three-record album.
In how many ways can the six sides be played so that at
least one is out of order?

2.6.26. A group of n families, each with m members, are
to be lined up for a photograph. In how many ways can the
nm people be arranged if members of a family must stay
together?

2.6.27. Suppose that ten people, including you and a
friend, line up for a group picture. How many ways
can the photographer rearrange the line if she wants
to keep exactly three people between you and your
friend?

2.6.28. Use an induction argument to prove Theo-
rem 2.6.1. (Note: This was the first mathematical result
known to have been proved by induction. It was done in
1321 by Levi ben Gerson.)

2.6.29. In how many ways can a pack of fifty-two cards be
dealt to thirteen players, four to each, so that every player
has one card of each suit?

2.6.30. If the definition of n! is to hold for all nonnegative
integers n, show that it follows that 0! must equal 1.

2.6.31. The crew of Apollo 17 consisted of a pilot, a
copilot, and a geologist. Suppose that NASA had actu-
ally trained nine aviators and four geologists as candidates
for the flight. How many different crews could they have
assembled?
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2.6.32. Uncle Harry and Aunt Minnie will both be attend-
ing your next family reunion. Unfortunately, they hate
each other. Unless they are seated with at least two people
between them, they are likely to get into a shouting match.
The side of the table at which they will be seated has seven
chairs. How many seating arrangements are available for
those seven people if a safe distance is to be maintained
between your aunt and your uncle?

2.6.33. In how many ways can the digits 1 through 9 be
arranged such that

(a) all the even digits precede all the odd digits?
(b) all the even digits are adjacent to each other?
(c) two even digits begin the sequence and two even

digits end the sequence?
(d) the even digits appear in either ascending or

descending order?

Counting Permutations (when the objects are not all distinct)

The corollary to Theorem 2.6.1 gives a formula for the number of ways an entire set
of n objects can be permuted if the objects are all distinct. Fewer than n! permutations
are possible, though, if some of the objects are identical. For example, there are 3!=6
ways to permute the three distinct objects A, B, and C :

ABC
ACB
BAC
BCA
CAB
CBA

If the three objects to permute, though, are A, A, and B—that is, if two of the three
are identical—the number of permutations decreases to three:

AAB
ABA
BAA

As we will see, there are many real-world applications where the n objects to be
permuted belong to r different categories, each category containing one or more
identical objects.

Theorem
2.6.2

The number of ways to arrange n objects, n1 being of one kind, n2 of a second
kind, . . . , and nr of an r th kind, is

n!
n1!n2! · · ·nr !

where
r∑

i=1
ni = n.

Proof Let N denote the total number of such arrangements. For any one of those N ,
the similar objects (if they were actually different) could be arranged in n1!n2! · · ·nr !
ways. (Why?) It follows that N · n1!n2! · · ·nr ! is the total number of ways to arrange
n (distinct) objects. But n! equals that same number. Setting N · n1!n2! · · ·nr ! equal
to n! gives the result. �
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Comment Ratios like n!/(n1!n2! · · ·nr !) are called multinomial coefficients because
the general term in the expansion of

(x1 + x2 + · · ·+ xr )
n

is
n!

n1!n2! · · ·nr ! xn1
1 xn2

2 · · · xnr
r

Example
2.6.14

A pastry in a vending machine costs 85� c. In how many ways can a customer put in
two quarters, three dimes, and one nickel?

Order in which coins are deposited

1 2 3 5 64

Figure 2.6.13

If all coins of a given value are considered identical, then a typical deposit
sequence, say, QDDQND (see Figure 2.6.13), can be thought of as a permutation
of n = 6 objects belonging to r = 3 categories, where

n1 = number of nickels = 1

n2 = number of dimes = 3

n3 = number of quarters = 2

By Theorem 2.6.2, there are sixty such sequences:

n!
n1!n2!n3! = 6!

1!3!2! = 60

Of course, had we assumed the coins were distinct (having been minted at different
places and different times), the number of distinct permutations would have been
6!, or 720.

Example
2.6.15

Prior to the seventeenth century there were no scientific journals, a state of affairs
that made it difficult for researchers to document discoveries. If a scientist sent a
copy of his work to a colleague, there was always a risk that the colleague might
claim it as his own. The obvious alternative—wait to get enough material to publish a
book—invariably resulted in lengthy delays. So, as a sort of interim documentation,
scientists would sometimes send each other anagrams—letter puzzles that, when
properly unscrambled, summarized in a sentence or two what had been discovered.

When Christiaan Huygens (1629–1695) looked through his telescope and saw
the ring around Saturn, he composed the following anagram (191):

aaaaaaa, ccccc,d, eeeee, g,h, i i i i i i i, llll,mm,

nnnnnnnnn,oooo, pp,q, rr, s, t t t t t,uuuuu

How many ways can the sixty-two letters in Huygens’s anagram be arranged?
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Let n1(= 7) denote the number of a’s, n2(= 5) the number of c’s, and so on.
Substituting into the appropriate multinomial coefficient, we find

N = 62!
7!5!1!5!1!1!7!4!2!9!4!2!1!2!1!5!5!

as the total number of arrangements. To get a feeling for the magnitude of N , we
need to apply Stirling’s formula to the numerator. Since

62! .= √
2πe−626262.5

then

log(62!) .= log
(√

2π
)− 62 · log(e)+ 62.5 · log(62)

.= 85.49731

The antilog of 85.49731 is 3.143 × 1085, so

N
.= 3.143 × 1085

7!5!1!5!1!1!7!4!2!9!4!2!1!2!1!5!5!

is a number on the order of 3.6 × 1060. Huygens was clearly taking no chances!
(Note: When appropriately rearranged, the anagram becomes “Annulo cingitur
tenui, plano, nusquam cohaerente, ad eclipticam inclinato,” which translates to
“Surrounded by a thin ring, flat, suspended nowhere, inclined to the ecliptic.”)

Example
2.6.16

What is the coefficient of x23 in the expansion of (1 + x5 + x9)100?
To understand how this question relates to permutations, consider the simpler

problem of expanding (a + b)2:

(a + b)2 = (a + b)(a + b)

= a · a + a · b + b · a + b · b

= a2 + 2ab + b2

Notice that each term in the first (a + b) is multiplied by each term in the second
(a +b). Moreover, the coefficient that appears in front of each term in the expansion
corresponds to the number of ways that that term can be formed. For example, the
2 in the term 2ab reflects the fact that the product ab can result from two different
multiplications:

(a + b)(a + b︸ ︷︷ ︸
ab

) or (a + b) (a︸︷︷︸
ab

+ b)

By analogy, the coefficient of x23 in the expansion of (1 + x5 + x9)100 will be the
number of ways that one term from each of the one hundred factors (1+ x5 + x9) can
be multiplied together to form x23. The only factors that will produce x23, though,
are the set of two x9’s, one x5, and ninety-seven 1’s:

x23 = x9 · x9 · x5 · 1 · 1 · · ·1

It follows that the coefficient of x23 is the number of ways to permute two x9’s, one
x5, and ninety-seven 1’s. So, from Theorem 2.6.2,
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coefficient of x23 = 100!
2!1!97!

= 485,100

Example
2.6.17

A palindrome is a phrase whose letters are in the same order whether they are read
backward or forward, such as Napoleon’s lament

Able was I ere I saw Elba.

or the often-cited

Madam, I’m Adam.

Words themselves can become the units in a palindrome, as in the sentence

Girl, bathing on Bikini, eyeing boy,

finds boy eyeing bikini on bathing girl.

Suppose the members of a set consisting of four objects of one type, six of a sec-
ond type, and two of a third type are to be lined up in a row. How many of those
permutations are palindromes?

Think of the twelve objects to arrange as being four A’s, six B’s, and two C ’s.
If the arrangement is to be a palindrome, then half of the A’s, half of the B’s, and
half of the C ’s must occupy the first six positions in the permutation. Moreover, the
final six members of the sequence must be in the reverse order of the first six. For
example, if the objects comprising the first half of the permutation were

C A B A B B

then the last six would need to be in the order

B B A B A C

It follows that the number of palindromes is the number of ways to permute the
first six objects in the sequence, because once the first six are positioned, there is only
one arrangement of the last six that will complete the palindrome. By Theorem 2.6.2,
then,

number of palindromes = 6!/(2!3!1!)= 60

Example
2.6.18

A deliveryman is currently at Point X and needs to stop at Point 0 before driv-
ing through to Point Y (see Figure 2.6.14). How many different routes can he take
without ever going out of his way?

Notice that any admissible path from, say, X to 0 is an ordered sequence of 11
“moves”—nine east and two north. Pictured in Figure 2.6.14, for example, is the
particular X to 0 route

E E N E E E E N E E E

Similarly, any acceptable path from 0 to Y will necessarily consist of five moves east
and three moves north (the one indicated is E E N N E N E E).
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X

O

Y

Figure 2.6.14

Since each path from X to 0 corresponds to a unique permutation of nine E ’s
and two N ’s, the number of such paths (from Theorem 2.6.2) is the quotient

11!/(9!2!)= 55

For the same reasons, the number of different paths from 0 to Y is

8!/(5!3!)= 56

By the multiplication rule, then, the total number of admissible routes from X to Y
that pass through 0 is the product of 55 and 56, or 3080.

Example
2.6.19

A burglar is trying to deactivate an alarm system that has a six-digit entry code. He
notices that three of the keyboard buttons—the 3, the 4, and the 9—are more pol-
ished than the other seven, suggesting that only those three numbers appear in the
correct entry code. Trial and error may be a feasible strategy, but earlier misadven-
tures have convinced him that if his probability of guessing the correct code in the
first thirty minutes is not at least 70%, the risk of getting caught is too great. Given
that he can try a different permutation every five seconds, what should he do? He
could look for an unlocked window to crawl through (or, here’s a thought, get an
honest job!). Deactivating the alarm, though, is not a good option.

Table 2.6.3 shows that 570 six-digit permutations can be made from the numbers
3, 4, and 9.

Table 2.6.3

Form of Permutations Example Number

One digit appears four
times; other digits appear
once

449434 6!/(4!1!1!)× 3 = 90

One digit appears three
times; another appears
twice; and a third appears
once

944334 6!/(3!2!1!)× 3! = 360

Each digit appears twice 439934 6!/(2!2!2!)× 1 = 120

TOTAL: 570
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Guessing at the rate of one permutation every five seconds would allow 360
permutations to be tested in thirty minutes, but 360 is only 63% of 570, so the bur-
glar’s 70% probability criteria of success would not be met. (Question: The first
factors in Column 3 of Table 2.6.3 are applications of Theorem 2.6.2 to the sam-
ple permutations shown in Column 2. What do the second factors in Column 3
represent?)

Questions

2.6.34. Which state name can generate more permuta-
tions, TENNESSEE or FLORIDA?

2.6.35. How many numbers greater than four million can
be formed from the digits 2, 3, 4, 4, 5, 5, 5?

2.6.36. An interior decorator is trying to arrange a shelf
containing eight books, three with red covers, three with
blue covers, and two with brown covers.

(a) Assuming the titles and the sizes of the books are
irrelevant, in how many ways can she arrange the
eight books?

(b) In how many ways could the books be arranged if
they were all considered distinct?

(c) In how many ways could the books be arranged if the
red books were considered indistinguishable, but the
other five were considered distinct?

2.6.37. Four Nigerians (A, B, C , D), three Chinese (#, ∗,
&), and three Greeks (α, β, γ ) are lined up at the box
office, waiting to buy tickets for the World’s Fair.

(a) How many ways can they position themselves if the
Nigerians are to hold the first four places in line;
the Chinese, the next three; and the Greeks, the last
three?

(b) How many arrangements are possible if members of
the same nationality must stay together?

(c) How many different queues can be formed?
(d) Suppose a vacationing Martian strolls by and wants

to photograph the ten for her scrapbook. A bit
myopic, the Martian is quite capable of discerning
the more obvious differences in human anatomy
but is unable to distinguish one Nigerian (N) from
another, one Chinese (C) from another, or one
Greek (G) from another. Instead of perceiving a
line to be B∗β AD#&Cαγ , for example, she would
see NCGNNCCNGG. From the Martian’s perspec-
tive, in how many different ways can the ten funny-
looking Earthlings line themselves up?

2.6.38. How many ways can the letters in the word

S L U M G U L L I O N

be arranged so that the three L’s precede all the other
consonants?

2.6.39. A tennis tournament has a field of 2n entrants, all
of whom need to be scheduled to play in the first round.
How many different pairings are possible?

2.6.40. What is the coefficient of x12 in the expansion of
(1 + x3 + x6)18?

2.6.41. In how many ways can the letters of the word

E L E E M O S Y N A R Y

be arranged so that the S is always immediately followed
by a Y ?

2.6.42. In how many ways can the word ABRA-
CADABRA be formed in the array pictured below?
Assume that the word must begin with the top A and
progress diagonally downward to the bottom A.

      A

     B  B

    R  R  R

   A  A  A  A

  C  C  C  C  C

 A  A  A  A  A  A

  D  D  D  D  D

   A  A  A  A

    B  B  B

     R  R

      A

2.6.43. Suppose a pitcher faces a batter who never swings.
For how many different ball/strike sequences will the
batter be called out on the fifth pitch?

2.6.44. What is the coefficient of w2x3 yz3 in the expansion
of (w + x + y + z)9?

2.6.45. Imagine six points in a plane, no three of which
lie on a straight line. In how many ways can the six points
be used as vertices to form two triangles? (Hint: Number
the points 1 through 6. Call one of the triangles A and the
other B. What does the permutation
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A A B B A B
1 2 3 4 5 6

represent?)

2.6.46. Show that (k!)! is divisible by k!(k−1)!. (Hint: Think
of a related permutation problem whose solution would
require Theorem 2.6.2.)

2.6.47. In how many ways can the letters of the word
B R O B D I N G N A G I A N

be arranged without changing the order of the vowels?

2.6.48. Make an anagram out of the familiar expression
STATISTICS IS FUN. In how many ways can the letters
in the anagram be permuted?

2.6.49. Linda is taking a five-course load her first
semester: English, math, French, psychology, and history.
In how many different ways can she earn three A’s and
two B’s? Enumerate the entire set of possibilities. Use
Theorem 2.6.2 to verify your answer.

Counting Combinations

Order is not always a meaningful characteristic of a collection of elements. Consider
a poker player being dealt a five-card hand. Whether he receives a 2 of hearts, 4 of
clubs, 9 of clubs, jack of hearts, and ace of diamonds in that order, or in any one of the
other 5!−1 permutations of those particular five cards is irrelevant—the hand is still
the same. As the last set of examples in this section bears out, there are many such
situations—problems where our only legitimate concern is with the composition of
a set of elements, not with any particular arrangement of them.

We call a collection of k unordered elements a combination of size k. For exam-
ple, given a set of n = 4 distinct elements—A, B, C , and D—there are six ways to
form combinations of size 2:

A and B B and C
A and C B and D
A and D C and D

A general formula for counting combinations can be derived quite easily from what
we already know about counting permutations.

Theorem
2.6.3

The number of ways to form combinations of size k from a set of n distinct objects,
repetitions not allowed, is denoted by the symbols

( n
k

)
or nCk , where(n

k

)
= nCk = n!

k!(n − k)!

Proof Let the symbol
( n

k

)
denote the number of combinations satisfying the condi-

tions of the theorem. Since each of those combinations can be ordered in k! ways, the
product k! ( n

k

)
must equal the number of permutations of length k that can be formed

from n distinct elements. But n distinct elements can be formed into permutations
of length k in n(n − 1) · · · (n − k + 1)= n!/(n − k)! ways. Therefore,

k!
(n

k

)
= n!

(n − k)!
Solving for

( n
k

)
gives the result. �

Comment It often helps to think of combinations in the context of drawing objects
out of an urn. If an urn contains n chips labeled 1 through n, the number of ways
we can reach in and draw out different samples of size k is

( n
k

)
. In deference to
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this sampling interpretation for the formation of combinations,
( n

k

)
is usually read

“n things taken k at a time” or “n choose k.”

Comment The symbol
( n

k

)
appears in the statement of a familiar theorem from

algebra,

(x + y)n =
n∑

k=0

(n

k

)
xk yn−k

Since the expression being raised to a power involves two terms, x and y, the
constants

( n
k

)
, k = 0, 1, . . ., n, are commonly referred to as binomial coefficients.

Example
2.6.20

Eight politicians meet at a fund-raising dinner. How many greetings can be
exchanged if each politician shakes hands with every other politician exactly once?

Imagine the politicians to be eight chips—1 through 8—in an urn. A handshake
corresponds to an unordered sample of size 2 chosen from that urn. Since repeti-
tions are not allowed (even the most obsequious and overzealous of campaigners
would not shake hands with himself!), Theorem 2.6.3 applies, and the total number
of handshakes is (

8

2

)
= 8!

2!6!
or 28.

Example
2.6.21

A chemist is trying to synthesize a part of a straight-chain aliphatic hydrocarbon
polymer that consists of twenty-one radicals—ten ethyls (E), six methyls (M), and
five propyls (P). Assuming all arrangements of radicals are physically possible, how
many different polymers can be formed if no two of the methyl radicals are to be
adjacent?

Imagine arranging the E ’s and the P’s without the M ’s. Figure 2.6.15 shows one
such possibility. Consider the sixteen “spaces” between and outside the E ’s and P’s
as indicated by the arrows in Figure 2.6.15. In order for the M ’s to be nonadjacent,
they must occupy any six of these locations. But those six spaces can be chosen in(

16
6

)
ways. And for each of the

(
16
6

)
positionings of the M ’s, the E ’s and P’s can be

permuted in 15!
10!5! ways (Theorem 2.6.2).

E E P P P P PE E E E E E E E

Figure 2.6.15

So, by the multiplication rule, the total number of polymers having nonadjacent
methyl radicals is 24,048,024:(

16
6

)
· 15!

10!5! = 16!
10!6!

15!
10!5! = (8008)(3003)= 24,048,024
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Example
2.6.22

Binomial coefficients have many interesting properties. Perhaps the most familiar is
Pascal’s triangle,1 a numerical array where each entry is equal to the sum of the two
numbers appearing diagonally above it (see Figure 2.6.16). Notice that each entry in
Pascal’s triangle can be expressed as a binomial coefficient, and the relationship just
described appears to reduce to a simple equation involving those coefficients:

(
n + 1

k

)
=
(n

k

)
+
(

n

k − 1

)
(2.6.1)

Prove that Equation 2.6.1 holds for all positive integers n and k.

     1

    1  1

   1  2  1

  1  3  3  1

 1  4  6  4  1

0

1

2

3

4

Row
0
0(    )

1
0(    ) 1

1(    )

2
0(    ) 2

1(    ) 2
2(    )

3
0(    ) 3

1(    )(    )

4
0(    ) 4

1(    ) 4
2(    )

3
2(    ) 3

3(    )(    )

4
3(    ) 4

4(    )

Figure 2.6.16

Consider a set of n + 1 distinct objects A1, A2, . . ., An+1. We can obviously draw
samples of size k from that set in

(n+1
k

)
different ways. Now, consider any particular

object—for example, A1. Relative to A1, each of those
(n+1

k

)
samples belongs to one

of two categories: those containing A1 and those not containing A1. To form sam-
ples containing A1, we need to select k − 1 additional objects from the remaining n.
This can be done in

( n
k−1

)
ways. Similarly, there are

(n
k

)
ways to form samples not

containing A1. Therefore,
(n+1

k

)
must equal

( n
k

)+ ( n
k−1

)
.

Example
2.6.23

The answers to combinatorial questions can sometimes be obtained using quite dif-
ferent approaches. What invariably distinguishes one solution from another is the
way in which outcomes are characterized.

For example, suppose you have just ordered a roast beef sub at a sandwich
shop, and now you need to decide which, if any, of the available toppings (lettuce,
tomato, onions, etc.) to add. If the shop has eight “extras” to choose from, how many
different subs can you order?

One way to answer this question is to think of each sub as an ordered sequence
of length eight, where each position in the sequence corresponds to one of the top-
pings. At each of those positions, you have two choices—“add” or “do not add” that
particular topping. Pictured in Figure 2.6.17 is the sequence corresponding to the sub
that has lettuce, tomato, and onion but no other toppings. Since two choices (“add”
or “do not add”) are available for each of the eight toppings, the multiplication rule

1 Despite its name, Pascal’s triangle was not discovered by Pascal. Its basic structure had been known hundreds
of years before the French mathematician was born. It was Pascal, though, who first made extensive use of its
properties.



2.6 Combinatorics 89

Add?
Y Y Y N N N N N

Lettuce Tomato Onion Mustard Relish Mayo Pickles Peppers

Figure 2.6.17

tells us that the number of different roast beef subs that could be requested is 28,
or 256.

An ordered sequence of length eight, though, is not the only model capable of
characterizing a roast beef sandwich. We can also distinguish one roast beef sub from
another by the particular combination of toppings that each one has. For example,

there are
(

8
4

)
= 70 different subs having exactly four toppings. It follows that the

total number of different sandwiches is the total number of different combinations
of size k, where k ranges from 0 to 8. Reassuringly, that sum agrees with the ordered
sequence answer:

total number of different roast beef subs =
(

8

0

)
+
(

8

1

)
+
(

8

2

)
+ · · ·+

(
8

8

)
= 1 + 8 + 28 + · · · + 1

= 256

What we have just illustrated here is another property of binomial coefficients—
namely, that

n∑
k=0

(n

k

)
= 2n (2.6.2)

The proof of Equation 2.6.2 is a direct consequence of Newton’s binomial expansion
(see the second comment following Theorem 2.6.3).

Questions

2.6.50. How many straight lines can be drawn between
five points (A, B, C , D, and E), no three of which are
collinear?

2.6.51. The Alpha Beta Zeta sorority is trying to fill
a pledge class of nine new members during fall rush.
Among the twenty-five available candidates, fifteen have
been judged marginally acceptable and ten highly desir-
able. How many ways can the pledge class be chosen to
give a two-to-one ratio of highly desirable to marginally
acceptable candidates?

2.6.52. A boat has a crew of eight: Two of those eight can
row only on the stroke side, while three can row only on
the bow side. In how many ways can the two sides of the
boat be manned?

2.6.53. Nine students, five men and four women, inter-
view for four summer internships sponsored by a city
newspaper.

(a) In how many ways can the newspaper choose a set of
four interns?

(b) In how many ways can the newspaper choose a set
of four interns if it must include two men and two
women in each set?

(c) How many sets of four can be picked such that not
everyone in a set is of the same sex?

2.6.54. The final exam in History 101 consists of five essay
questions that the professor chooses from a pool of seven
that are given to the students a week in advance. For how
many possible sets of questions does a student need to be
prepared? In this situation, does order matter?

2.6.55. Ten basketball players meet in the school gym for
a pickup game. How many ways can they form two teams
of five each?

2.6.56. Your statistics teacher announces a twenty-page
reading assignment on Monday that is to be finished by
Thursday morning. You intend to read the first x1 pages
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Monday, the next x2 pages Tuesday, and the final x3 pages
Wednesday, where x1 + x2 + x3 = 20, and each xi ≥ 1. In
how many ways can you complete the assignment? That
is, how many different sets of values can be chosen for x1,
x2, and x3?

2.6.57. In how many ways can the letters in

M I S S I S S I P P I

be arranged so that no two I ’s are adjacent?

2.6.58. Prove that
n∑

k=0

(
n
k

) = 2n . (Hint: Use the binomial

expansion mentioned on p. 87.)

2.6.59. Prove that(n

0

)2 +
(n

1

)2 + · · · +
(n

n

)2 =
(

2n

n

)
(Hint: Rewrite the left-hand side as(n

0

)(n

n

)
+
(n

1

)( n

n − 1

)
+
(n

2

)( n

n − 2

)
+ · · ·

and consider the problem of selecting a sample of n
objects from an original set of 2n objects.)

2.6.60. Show that(n

1

)
+
(n

3

)
+ · · · =

(n

0

)
+
(n

2

)
+ · · ·

(Hint: Consider the expansion of (x − y)n .)

2.6.61. Prove that successive terms in the sequence
(

n
0

)
,(

n
1

)
, . . .,
(

n
n

)
first increase and then decrease. [Hint: Exam-

ine the ratio of two successive terms,
(

n
j+1

)/(
n
j

)
.]

2.6.62. Mitch is trying to add a little zing to his cabaret act
by telling four jokes at the beginning of each show. His cur-
rent engagement is booked to run four months. If he gives
one performance a night and never wants to repeat the
same set of jokes on any two nights, what is the minimum
number of jokes he needs in his repertoire?

2.6.63. Compare the coefficients of t k in (1 + t)d(1 + t)e =
(1 + t)d+e to prove that

k∑
j=0

(
d

j

)(
e

k − j

)
=
(

d + e

k

)

2.7 Combinatorial Probability
In Section 2.6 our concern focused on counting the number of ways a given oper-
ation, or sequence of operations, could be performed. In Section 2.7 we want to
couple those enumeration results with the notion of probability. Putting the two
together makes a lot of sense—there are many combinatorial problems where an
enumeration, by itself, is not particularly relevant. A poker player, for example, is
not interested in knowing the total number of ways he can draw to a straight; he is
interested, though, in his probability of drawing to a straight.

In a combinatorial setting, making the transition from an enumeration to a
probability is easy. If there are n ways to perform a certain operation and a total
of m of those satisfy some stated condition—call it A—then P(A) is defined to
be the ratio m/n. This assumes, of course, that all possible outcomes are equally
likely.

Historically, the “m over n” idea is what motivated the early work of Pascal,
Fermat, and Huygens (recall Section 1.3). Today we recognize that not all probabili-
ties are so easily characterized. Nevertheless, the m/n model—the so-called classical
definition of probability—is entirely appropriate for describing a wide variety of
phenomena.

Example
2.7.1

An urn contains eight chips, numbered 1 through 8. A sample of three is drawn
without replacement. What is the probability that the largest chip in the sample
is a 5?

Let A be the event “Largest chip in sample is a 5.” Figure 2.7.1 shows what
must happen in order for A to occur: (1) the 5 chip must be selected, and (2) two
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chips must be drawn from the subpopulation of chips numbered 1 through 4. By the
multiplication rule, the number of samples satisfying event A is the product

(1
1

) · (42).
6 8

Choose 1

1

5

34 2

7

Choose 2

Figure 2.7.1

The sample space S for the experiment of drawing three chips from the urn

contains
(

8
3

)
outcomes, all equally likely. In this situation, then, m =

(
1
1

)
·
(

4
2

)
, n =(

8
3

)
, and

P(A) =
(1

1

) · (42)(8
3

)
= 0.11

Example
2.7.2

An urn contains n red chips numbered 1 through n, n white chips numbered 1
through n, and n blue chips numbered 1 through n (see Figure 2.7.2). Two chips
are drawn at random and without replacement. What is the probability that the two
drawn are either the same color or the same number?

Draw two

without
replacement

r1

rn

r2

w1

wn

w2

b1

bn

b2

Figure 2.7.2

Let A be the event that the two chips drawn are the same color; let B be the
event that they have the same number. We are looking for P(A ∪ B).

Since A and B here are mutually exclusive,

P(A ∪ B)= P(A)+ P(B)

With 3n chips in the urn, the total number of ways to draw an unordered sample of

size 2 is
(

3n
2

)
. Moreover,

P(A) = P(2 reds ∪ 2 whites ∪ 2 blues)

= P(2 reds)+ P(2 whites)+ P(2 blues)

= 3
(n

2

)/(3n

2

)
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and

P(B) = P(two 1’s ∪ two 2’s ∪ · · · ∪ two n’s)

= n

(
3

2

)/(3n

2

)
Therefore,

P(A ∪ B) =
3
(n

2

)
+ n

(
3

2

)
(

3n

2

)
= n + 1

3n − 1

Example
2.7.3

Twelve fair dice are rolled. What is the probability that

a. the first six dice all show one face and the last six dice all show a second face?
b. not all the faces are the same?
c. each face appears exactly twice?

a. The sample space that corresponds to the “experiment” of rolling twelve dice
is the set of ordered sequences of length twelve, where the outcome at every
position in the sequence is one of the integers 1 through 6. If the dice are fair,
all 612 such sequences are equally likely.

Let A be the set of rolls where the first six dice show one face and the second
six show another face. Figure 2.7.3 shows one of the sequences in the event A.
Clearly, the face that appears for the first half of the sequence could be any of
the six integers from 1 through 6.

Faces
2 2 2 2 2 2 4 4 4 4 4 4

1 2 3 4 5 6 7 8 9 10 11 12
Position in sequence

Figure 2.7.3

Five choices would be available for the last half of the sequence (since the two
faces cannot be the same). The number of sequences in the event A, then, is
6 P2 = 6 · 5 = 30. Applying the “m/n” rule gives

P(A)= 30/612 = 1.4 × 10−8

b. Let B be the event that not all the faces are the same. Then

P(B) = 1 − P(BC )

= 1 − 6/126

since there are six sequences—(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,), . . ., (6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6,)—where the twelve faces are all the same.
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c. Let C be the event that each face appears exactly twice. From Theorem 2.6.2, the
number of ways each face can appear exactly twice is 12!/(2! · 2! · 2! · 2! · 2! · 2!).
Therefore,

P(C) = 12!/(2! · 2! · 2! · 2! · 2! · 2!)
612

= 0.0034

Example
2.7.4

A fair die is tossed n times. What is the probability that the sum of the faces showing
is n + 2?

The sample space associated with rolling a die n times has 6n outcomes, all of
which in this case are equally likely because the die is presumed fair. There are two
“types” of outcomes that will produce a sum of n + 2: (a) n − 1 1’s and one 3 and (b)
n − 2 1’s and two 2’s (see Figure 2.7.4). By Theorem 2.6.2 the number of sequences
having n − 1 1’s and one 3 is n!

1!(n−1)! = n; likewise, there are n!
2!(n−2)! = ( n

2

)
outcomes

having n − 2 1’s and two 2’s. Therefore,

P(sum = n + 2)= n + (n2)
6n

1
1

1
2

1
3

1
n – 1

3
n

Sum = n + 2

1
1

1
2

1
3

1
n – 2

2
n – 1

2
n

Sum = n + 2

Figure 2.7.4

Example
2.7.5

Two monkeys, Mickey and Marian, are strolling along a moonlit beach when Mickey
sees an abandoned Scrabble set. Investigating, he notices that some of the letters are
missing, and what remain are the following fifty-nine:

A B C D E F G H I J K L M
4 1 2 2 7 1 1 3 5 0 3 5 1

N O P Q R S T U V W X Y Z
3 2 0 0 2 8 4 2 0 1 0 2 0

Mickey, being of a romantic bent, would like to impress Marian, so he rearranges
the letters in hopes of spelling out something clever. (Note: The rearranging is ran-
dom because Mickey can’t spell; fortunately, Marian can’t read, so it really doesn’t
matter.) What is the probability that Mickey gets lucky and spells out

She walks in beauty, like the night
Of cloudless climes and starry skies

As we might imagine, Mickey would have to get very lucky. The total number of
ways to permute fifty-nine letters—four A’s, one B, two C ’s, and so on—is a direct
application of Theorem 2.6.2:

59!
4!1!2! . . . 2!0!
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But of that number of ways, only one is the couplet he is hoping for. So, since
he is arranging the letters randomly, making all permutations equally likely, the
probability of his spelling out Byron’s lines is

1
59!

4!1!2! . . . 2!0!
or, using Stirling’s formula, about 1.7 × 10−61. Love may conquer all, but it won’t
beat those odds: Mickey would be well advised to start working on Plan B.

Example
2.7.6

Suppose that k people are selected at random from the general population. What
are the chances that at least two of those k were born on the same day? Known
as the birthday problem, this is a particularly intriguing example of combinatorial
probability because its statement is so simple, its analysis is straightforward, yet its
solution, as we will see, is strongly contrary to our intuition.

Picture the k individuals lined up in a row to form an ordered sequence. If leap
year is omitted, each person might have any of 365 birthdays. By the multiplication
rule, the group as a whole generates a sample space of 365k birthday sequences (see
Figure 2.7.5).

(365)
1

(365)
2

(365)
k

Person

Possible
birthdays: 365 k different

sequences

Figure 2.7.5

Define A to be the event “At least two people have the same birthday.” If each
person is assumed to have the same chance of being born on any given day, the 365k

sequences in Figure 2.7.5 are equally likely, and

P(A)= number of sequences in A

365k

Counting the number of sequences in the numerator here is prohibitively dif-
ficult because of the complexity of the event A; fortunately, counting the number
of sequences in Ac is quite easy. Notice that each birthday sequence in the sample
space belongs to exactly one of two categories (see Figure 2.7.6):

1. At least two people have the same birthday.
2. All k people have different birthdays.

It follows that

number of sequences in A = 365k − number of sequences where all k people

have different birthdays

The number of ways to form birthday sequences for k people subject to the
restriction that all k birthdays must be different is simply the number of ways to
form permutations of length k from a set of 365 distinct objects:

365 Pk = 365(364) · · · (365 − k + 1)
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(July 13, Sept. 2, , July 13) •
(April 4, April 4, , Aug. 17) •

Sequences where at least
two people have the same
birthday

(June 14, Jan. 10, , Oct. 28) •
(Aug. 10, March 1, , Sept. 8) •

A

Sequences where all k
people have different
birthdays

Sample space: all birthday sequences of 
length k (contains 365k outcomes).

Figure 2.7.6

Therefore,

P(A)= P(At least two people have the same birthday)

= 365k − 365(364) · · · (365 − k + 1)

365k

Table 2.7.1 shows P(A) for k values of 15, 22, 23, 40, 50, and 70. Notice how the
P(A)’s greatly exceed what our intuition would suggest.

Comment Presidential biographies offer one opportunity to “confirm” the unex-
pectedly large values that Table 2.7.1 gives for P(A). Among our first k = 40
presidents, two did have the same birthday: Harding and Polk were both born on
November 2. More surprising, though, are the death dates of the presidents: John
Adams, Jefferson, and Monroe all died on July 4, and Fillmore and Taft both died
on March 8.

Table 2.7.1

k P(A)= P (at least two have same birthday)

15 0.253
22 0.476
23 0.507
40 0.891
50 0.970
70 0.999

Comment The values for P(A) in Table 2.7.1 are actually slight underestimates for
the true probabilities that at least two of k people will be born on the same day. The
assumption made earlier that all 365k birthday sequences are equally likely is not
entirely correct: Births are somewhat more common during the summer than they
are during the winter. It has been proven, though, that any sort of deviation from
the equally likely model will serve only to increase the chances that two or more
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people will share the same birthday (117). So, if k = 40, for example, the probability
is slightly greater than 0.891 that at least two were born on the same day.

Example
2.7.7

One of the more instructive—and to some, one of the more useful—applications of
combinatorics is the calculation of probabilities associated with various poker hands.
It will be assumed in what follows that five cards are dealt from a poker deck and
that no other cards are showing, although some may already have been dealt. The
sample space is the set of

(52
5

)= 2,598,960 different hands, each having probability
1/2,598,960. What are the chances of being dealt (a) a full house, (b) one pair, and
(c) a straight? [Probabilities for the various other kinds of poker hands (two pairs,
three-of-a-kind, flush, and so on) are gotten in much the same way.]

a. Full house. A full house consists of three cards of one denomination and two
of another. Figure 2.7.7 shows a full house consisting of three 7’s and two
queens. Denominations for the three-of-a-kind can be chosen in

(13
1

)
ways. Then,

given that a denomination has been decided on, the three requisite suits can
be selected in

(4
3

)
ways. Applying the same reasoning to the pair gives

(12
1

)
available denominations, each having

(4
2

)
possible choices of suits. Thus, by the

multiplication rule,

P(full house)=

(
13

1

)(
4

3

)(
12

1

)(
4

2

)
(

52

5

) = 0.00144

2 3 4 5 6 7 8 9 10 J Q K A

D
H × ×
C ×
S × ×

Figure 2.7.7

b. One pair. To qualify as a one-pair hand, the five cards must include two of
the same denomination and three “single” cards—cards whose denominations
match neither the pair nor each other. Figure 2.7.8 shows a pair of 6’s. For
the pair, there are

(13
1

)
possible denominations and, once selected,

(4
2

)
possi-

ble suits. Denominations for the three single cards can be chosen
(12

3

)
ways

(see Question 2.7.16), and each card can have any of
(4

1

)
suits. Multiplying these

factors together and dividing by
(52

2

)
gives a probability of 0.42:

P(one pair)=

(
13

1

)(
4

2

)(
12

3

)(
4

1

)(
4

1

)(
4

1

)
(

52

5

) = 0.42
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2 3 4 5 6 7 8 9 10 J Q K A

D × ×
H × ×
C ×
S

Figure 2.7.8

c. Straight. A straight is five cards having consecutive denominations but not all
in the same suit—for example, a 4 of diamonds, 5 of hearts, 6 of hearts, 7 of
clubs, and 8 of diamonds (see Figure 2.7.9). An ace may be counted “high” or
“low,” which means that (10, jack, queen, king, ace) is a straight and so is (ace,
2, 3, 4, 5). (If five consecutive cards are all in the same suit, the hand is called
a straight flush. The latter is considered a fundamentally different type of hand
in the sense that a straight flush “beats” a straight.) To get the numerator for
P(straight), we will first ignore the condition that all five cards not be in the
same suit and simply count the number of hands having consecutive denomina-
tions. Note there are ten sets of consecutive denominations of length five: (ace,
2, 3, 4, 5), (2, 3, 4, 5, 6), . . ., (10, jack, queen, king, ace). With no restrictions on
the suits, each card can be either a diamond, heart, club, or spade. It follows,
then, that the number of five-card hands having consecutive denominations is

10 · (41)5. But forty (= 10 · 4) of those hands are straight flushes. Therefore,

P(straight)=
10 ·
(

4

1

)5

− 40(
52

5

) = 0.00392

Table 2.7.2 shows the probabilities associated with all the different poker hands.
Hand i beats hand j if P(hand i)< P(hand j).

2 3 4 5 6 7 8 9 10 J Q K A

D × ×
H × ×
C ×
S

Figure 2.7.9

Table 2.7.2

Hand Probability

One pair 0.42
Two pairs 0.048
Three-of-a-kind 0.021
Straight 0.0039
Flush 0.0020
Full house 0.0014
Four-of-a-kind 0.00024
Straight flush 0.000014
Royal flush 0.0000015
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Problem-Solving Hints

(Doing combinatorial probability problems)
Listed on p. 72 are several hints that can be helpful in counting the number

of ways to do something. Those same hints apply to the solution of combinato-
rial probability problems, but a few others should be kept in mind as well.

1. The solution to a combinatorial probability problem should be set up as a
quotient of numerator and denominator enumerations. Avoid the tempta-
tion to multiply probabilities associated with each position in the sequence.
The latter approach will always “sound” reasonable, but it will frequently
oversimplify the problem and give the wrong answer.

2. Keep the numerator and denominator consistent with respect to order—if
permutations are being counted in the numerator, be sure that permuta-
tions are being counted in the denominator; likewise, if the outcomes in
the numerator are combinations, the outcomes in the denominator must
also be combinations.

3. The number of outcomes associated with any problem involving the rolling
of n six-sided dice is 6n ; similarly, the number of outcomes associated
with tossing a coin n times is 2n . The number of outcomes associated with
dealing a hand of n cards from a standard 52-card poker deck is 52Cn .

Questions

2.7.1. Ten equally qualified marketing assistants are can-
didates for promotion to associate buyer; seven are men
and three are women. If the company intends to promote
four of the ten at random, what is the probability that
exactly two of the four are women?

2.7.2. An urn contains six chips, numbered 1 through 6.
Two are chosen at random and their numbers are added
together. What is the probability that the resulting sum is
equal to 5?

2.7.3. An urn contains twenty chips, numbered 1 through
20. Two are drawn simultaneously. What is the probabil-
ity that the numbers on the two chips will differ by more
than 2?

2.7.4. A bridge hand (thirteen cards) is dealt from a stan-
dard 52-card deck. Let A be the event that the hand con-
tains four aces; let B be the event that the hand contains
four kings. Find P(A ∪ B).

2.7.5. Consider a set of ten urns, nine of which contain
three white chips and three red chips each. The tenth con-
tains five white chips and one red chip. An urn is picked at
random. Then a sample of size 3 is drawn without replace-
ment from that urn. If all three chips drawn are white,
what is the probability that the urn being sampled is the
one with five white chips?

2.7.6. A committee of fifty politicians is to be chosen from
among our one hundred U.S. senators. If the selection is
done at random, what is the probability that each state
will be represented?

2.7.7. Suppose that n fair dice are rolled. What are the
chances that all n faces will be the same?

2.7.8. Five fair dice are rolled. What is the probability
that the faces showing constitute a “full house”—that is,
three faces show one number and two faces show a second
number?

2.7.9. Imagine that the test tube pictured contains 2n
grains of sand, n white and n black. Suppose the tube is
vigorously shaken. What is the probability that the two
colors of sand will completely separate; that is, all of one
color fall to the bottom, and all of the other color lie on
top? (Hint: Consider the 2n grains to be aligned in a row.
In how many ways can the n white and the n black grains
be permuted?)



2.8 Taking a Second Look at Statistics (Monte Carlo Techniques) 99

2.7.10. Does a monkey have a better chance of
rearranging

A C C L L U U S to spell C A L C U L U S

or

A A B E G L R to spell A L G E B R A?

2.7.11. An apartment building has eight floors. If seven
people get on the elevator on the first floor, what is the
probability they all want to get off on different floors? On
the same floor? What assumption are you making? Does
it seem reasonable? Explain.

2.7.12. If the letters in the phrase

A R O L L I N G S T O N E G A T H E R S N O M O S S

are arranged at random, what are the chances that not all
the S’s will be adjacent?

2.7.13. Suppose each of ten sticks is broken into a long
part and a short part. The twenty parts are arranged into
ten pairs and glued back together so that again there are
ten sticks. What is the probability that each long part will
be paired with a short part? (Note: This problem is a model
for the effects of radiation on a living cell. Each chro-
mosome, as a result of being struck by ionizing radiation,
breaks into two parts, one part containing the centromere.
The cell will die unless the fragment containing the cen-
tromere recombines with a fragment not containing a
centromere.)

2.7.14. Six dice are rolled one time. What is the probabil-
ity that each of the six faces appears?

2.7.15. Suppose that a randomly selected group of k peo-
ple are brought together. What is the probability that
exactly one pair has the same birthday?

2.7.16. For one-pair poker hands, why is the number of
denominations for the three single cards

(12
3

)
rather than(12

1

)(11
1

)(10
1

)
?

2.7.17. Dana is not the world’s best poker player. Dealt a
2 of diamonds, an 8 of diamonds, an ace of hearts, an ace

of clubs, and an ace of spades, she discards the three aces.
What are her chances of drawing to a flush?

2.7.18. A poker player is dealt a 7 of diamonds, a queen
of diamonds, a queen of hearts, a queen of clubs, and an
ace of hearts. He discards the 7. What is his probability of
drawing to either a full house or four-of-a-kind?

2.7.19. Tim is dealt a 4 of clubs, a 6 of hearts, an 8 of hearts,
a 9 of hearts, and a king of diamonds. He discards the 4
and the king. What are his chances of drawing to a straight
flush? To a flush?

2.7.20. Five cards are dealt from a standard 52-card deck.
What is the probability that the sum of the faces on the
five cards is 48 or more?

2.7.21. Nine cards are dealt from a 52-card deck. Write
a formula for the probability that three of the five even
numerical denominations are represented twice, one of
the three face cards appears twice, and a second face card
appears once. (Note: Face cards are the jacks, queens,
and kings; 2, 4, 6, 8, and 10 are the even numerical
denominations.)

2.7.22. A coke hand in bridge is one where none of the
thirteen cards is an ace or is higher than a 9. What is the
probability of being dealt such a hand?

2.7.23. A pinochle deck has forty-eight cards, two of
each of six denominations (9, J, Q, K, 10, A) and the
usual four suits. Among the many hands that count for
meld is a roundhouse, which occurs when a player has a
king and queen of each suit. In a hand of twelve cards,
what is the probability of getting a “bare” roundhouse
(a king and queen of each suit and no other kings or
queens)?

2.7.24. A somewhat inebriated conventioneer finds him-
self in the embarrassing predicament of being unable to
predetermine whether his next step will be forward or
backward. What is the probability that after hazarding n
such maneuvers he will have stumbled forward a distance
of r steps? (Hint: Let x denote the number of steps he
takes forward and y, the number backward. Then x + y =n
and x − y = r .)

2.8 Taking a Second Look at Statistics (Monte Carlo
Techniques)
Recall the von Mises definition of probability given on p. 17. If an experiment is
repeated n times under identical conditions, and if the event E occurs on m of those
repetitions, then

P(E)= lim
n→∞

m

n
(2.8.1)
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To be sure, Equation 2.8.1 is an asymptotic result, but it suggests an obvious (and
very useful) approximation—if n is finite,

P(E)
.= m

n

In general, efforts to estimate probabilities by simulating repetitions of an
experiment (usually with a computer) are referred to as Monte Carlo studies. Usu-
ally the technique is used in situations where an exact probability is difficult to
calculate. It can also be used, though, as an empirical justification for choosing one
proposed solution over another.

For example, consider the game described in Example 2.4.12 An urn contains a
red chip, a blue chip, and a two-color chip (red on one side, blue on the other). One
chip is drawn at random and placed on a table. The question is, if blue is showing,
what is the probability that the color underneath is also blue?

Pictured in Figure 2.8.1 are two ways of conceptualizing the question just posed.
The outcomes in (a) are assuming that a chip was drawn. Starting with that premise,
the answer to the question is 1

2 —the red chip is obviously eliminated and only one
of the two remaining chips is blue on both sides.

Figure 2.8.1 Chip drawn

red
blue

two-color

Side drawn

red/red
blue/blue
red/blue

P(B|B) = 1/2 P(B|B) = 2/3

(a) (b)

Table 2.8.1

Trial # S U Trial # S U Trial # S U Trial # S U

1 R B 26 B R 51 B R 76 B B*
2 B B* 27 R R 52 R B 77 B B*
3 B R 28 R B 53 B B* 78 R R
4 R R 29 R B 54 R B 79 B B*
5 R B 30 R R 55 R R 80 R R
6 R B 31 R B 56 R B 81 R B
7 R R 32 B B* 57 R R 82 R B
8 R R 33 R B 58 B B* 83 R R
9 B B* 34 B B* 59 B R 84 B R

10 B R 35 B B* 60 B B* 85 B R
11 R R 36 R R 61 B R 86 R R
12 B B* 37 B R 62 R B 87 B B*
13 R R 38 B B* 63 R R 88 R B
14 B R 39 R R 64 R R 89 B R
15 B B* 40 B B* 65 B B* 90 R R
16 B B* 41 B B* 66 B R 91 R B
17 R B 42 B R 67 R R 92 R R
18 B R 43 B B* 68 B B* 93 R R
19 B B* 44 B B* 69 B B* 94 R B
20 B B* 45 B B* 70 R R 95 B B*
21 R R 46 R R 71 R R 96 B B*
22 R R 47 B B* 72 B B* 97 B R
23 B B* 48 B B* 73 R B 98 R R
24 B R 49 R R 74 R R 99 B B*
25 B B* 50 R R 75 B B* 100 B B*
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By way of contrast, the outcomes in (b) are assuming that the side of a chip was
drawn. If so, the blue color showing could be any of three blue sides, two of which
are blue underneath. According to model (b), then, the probability of both sides
being blue is 2

3 .
The formal analysis on p. 46, of course, resolves the debate—the correct answer

is 2
3 . But suppose that such a derivation was unavailable. How might we assess the

relative plausibilities of 1
2 and 2

3 ? The answer is simple—just play the game a num-
ber of times and see what proportion of outcomes that show blue on top have blue
underneath.

To that end, Table 2.8.1 summarizes the results of one hundred random draw-
ings. For a total of fifty-two, blue was showing (S) when the chip was placed on a
table; for thirty-six of the trials (those marked with an asterisk), the color under-
neath (U) was also blue. Using the approximation suggested by Equation 2.8.1,

P(Blue is underneath | Blue is on top)= P(B | B)
.= 36

52
= 0.69

a figure much more consistent with 2
3 than with 1

2 .
The point of this example is not to downgrade the importance of rigorous

derivations and exact answers. Far from it. The application of Theorem 2.4.1 to
solve the problem posed in Example 2.4.12 is obviously superior to the Monte Carlo
approximation illustrated in Table 2.8.1. Still, replications of experiments can often
provide valuable insights and call attention to nuances that might otherwise go
unnoticed. As a problem-solving technique in probability and combinatorics, they
are extremely important.
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One of a Swiss family producing eight distinguished scientists, Jakob was forced by
his father to pursue theological studies, but his love of mathematics eventually led
him to a university career. He and his brother, Johann, were the most prominent
champions of Leibniz’s calculus on continental Europe, the two using the new theory
to solve numerous problems in physics and mathematics. Bernoulli’s main work in
probability, Ars Conjectandi, was published after his death by his nephew, Nikolaus,
in 1713.

—Jakob (Jacques) Bernoulli (1654–1705)

3.1 Introduction
Throughout Chapter 2, probabilities were assigned to events—that is, to sets of
sample outcomes. The events we dealt with were composed of either a finite or a
countably infinite number of sample outcomes, in which case the event’s probabil-
ity was simply the sum of the probabilities assigned to its outcomes. One particular
probability function that came up over and over again in Chapter 2 was the assign-
ment of 1

n as the probability associated with each of the n points in a finite sample
space. This is the model that typically describes games of chance (and all of our
combinatorial probability problems in Chapter 2).

The first objective of this chapter is to look at several other useful ways for
assigning probabilities to sample outcomes. In so doing, we confront the desirability
of “redefining” sample spaces using functions known as random variables. How and
why these are used—and what their mathematical properties are—become the focus
of virtually everything covered in Chapter 3.

As a case in point, suppose a medical researcher is testing eight elderly adults
for their allergic reaction (yes or no) to a new drug for controlling blood pressure.
One of the 28 = 256 possible sample points would be the sequence (yes, no, no, yes,

102
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no, no, yes, no), signifying that the first subject had an allergic reaction, the second
did not, the third did not, and so on. Typically, in studies of this sort, the particular
subjects experiencing reactions is of little interest: what does matter is the number
who show a reaction. If that were true here, the outcome’s relevant information (i.e.,
the number of allergic reactions) could be summarized by the number 3.1

Suppose X denotes the number of allergic reactions among a set of eight adults.
Then X is said to be a random variable and the number 3 is the value of the random
variable for the outcome (yes, no, no, yes, no, no, yes, no).

In general, random variables are functions that associate numbers with some
attribute of a sample outcome that is deemed to be especially important. If X
denotes the random variable and s denotes a sample outcome, then X (s)= t , where
t is a real number. For the allergy example, s = (yes, no, no, yes, no, no, yes, no) and
t = 3.

Random variables can often create a dramatically simpler sample space. That
certainly is the case here—the original sample space has 256 (= 28) outcomes, each
being an ordered sequence of length eight. The random variable X , on the other
hand, has only nine possible values, the integers from 0 to 8, inclusive.

In terms of their fundamental structure, all random variables fall into one of
two broad categories, the distinction resting on the number of possible values the
random variable can equal. If the latter is finite or countably infinite (which would
be the case with the allergic reaction example), the random variable is said to be
discrete; if the outcomes can be any real number in a given interval, the number of
possibilities is uncountably infinite, and the random variable is said to be continuous.
The difference between the two is critically important, as we will learn in the next
several sections.

The purpose of Chapter 3 is to introduce the important definitions, concepts,
and computational techniques associated with random variables, both discrete and
continuous. Taken together, these ideas form the bedrock of modern probability and
statistics.

3.2 Binomial and Hypergeometric Probabilities
This section looks at two specific probability scenarios that are especially impor-
tant, both for their theoretical implications as well as for their ability to describe
real-world problems. What we learn in developing these two models will help us
understand random variables in general, the formal discussion of which begins in
Section 3.3.

The Binomial Probability Distribution

Binomial probabilities apply to situations involving a series of independent and
identical trials, where each trial can have only one of two possible outcomes. Imag-
ine three distinguishable coins being tossed, each having a probability p of coming
up heads. The set of possible outcomes are the eight listed in Table 3.2.1. If the prob-
ability of any of the coins coming up heads is p, then the probability of the sequence
(H, H, H) is p3, since the coin tosses qualify as independent trials. Similarly, the

1 By Theorem 2.6.2, of course, there would be a total of fifty-six (= 8!/3!5!) outcomes having exactly three yeses.
All fifty-six would be equivalent in terms of what they imply about the drug’s likelihood of causing allergic
reactions.
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probability of (T, H, H) is (1 − p)p2. The fourth column of Table 3.2.1 shows the
probabilities associated with each of the three-coin sequences.

Table 3.2.1

1st Coin 2nd Coin 3rd Coin Probability Number of Heads

H H H p3 3
H H T p2(1 − p) 2
H T H p2(1 − p) 2
T H H p2(1 − p) 2
H T T p(1 − p)2 1
T H T p(1 − p)2 1
T T H p(1 − p)2 1
T T T (1 − p)3 0

Suppose our main interest in the coin tosses is the number of heads that occur.
Whether the actual sequence is, say, (H, H, T) or (H, T, H) is immaterial, since
each outcome contains exactly two heads. The last column of Table 3.2.1 shows the
number of heads in each of the eight possible outcomes. Notice that there are three
outcomes with exactly two heads, each having an individual probability of p2(1− p).
The probability, then, of the event “two heads” is the sum of those three individual
probabilities—that is, 3p2(1− p). Table 3.2.2 lists the probabilities of tossing k heads,
where k = 0, 1, 2, or 3.

Table 3.2.2

Number of Heads Probability

0 (1 − p)3

1 3p(1 − p)2

2 3p2(1 − p)

3 p3

Now, more generally, suppose that n coins are tossed, in which case the number
of heads can equal any integer from 0 through n. By analogy,

P(k heads) =
⎛⎝ number of

ways to arrange k
heads and n − k tails

⎞⎠ ·

⎛⎜⎜⎝
probability of

any particular sequence
having k heads
and n − k tails

⎞⎟⎟⎠
=
⎛⎝ number of ways

to arrange k
heads and n − k tails

⎞⎠ · pk(1 − p)n−k

The number of ways to arrange k H’s and n − k T’s, though, is n!
k!(n−k)! , or

(n
k

)
(recall

Theorem 2.6.2).

Theorem
3.2.1

Consider a series of n independent trials, each resulting in one of two possible out-
comes, “success” or “failure.” Let p = P (success occurs at any given trial) and assume
that p remains constant from trial to trial. Then

P(k successes)=
(n

k

)
pk(1 − p)n−k, k = 0,1, . . . ,n
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Comment The probability assignment given by the equation in Theorem 3.2.1 is
known as the binomial distribution.

Example
3.2.1

An information technology center uses nine aging disk drives for storage. The prob-
ability that any one of them is out of service is 0.06. For the center to function
properly, at least seven of the drives must be available. What is the probability that
the computing center can get its work done?

The probability that a drive is available is p = 1 − 0.06 = 0.94. Assuming the
devices operate independently, the number of disk drives available has a binomial
distribution with n = 9 and p = 0.94. The probability that at least seven disk drives
work is a reassuring 0.986:(

9

7

)
(0.94)7(0.06)2 +

(
9

8

)
(0.94)8(0.06)1 +

(
9

7

)
(0.94)9(0.06)0 = 0.986

Example
3.2.2

Kingwest Pharmaceuticals is experimenting with a new affordable AIDS medi-
cation, PM-17, that may have the ability to strengthen a victim’s immune sys-
tem. Thirty monkeys infected with the HIV complex have been given the drug.
Researchers intend to wait six weeks and then count the number of animals whose
immunological responses show a marked improvement. Any inexpensive drug capa-
ble of being effective 60% of the time would be considered a major breakthrough;
medications whose chances of success are 50% or less are not likely to have any
commercial potential.

Yet to be finalized are guidelines for interpreting results. Kingwest hopes to
avoid making either of two errors: (1) rejecting a drug that would ultimately prove
to be marketable and (2) spending additional development dollars on a drug whose
effectiveness, in the long run, would be 50% or less. As a tentative “decision rule,”
the project manager suggests that unless sixteen or more of the monkeys show
improvement, research on PM-17 should be discontinued.

a. What are the chances that the “sixteen or more” rule will cause the company to
reject PM-17, even if the drug is 60% effective?

b. How often will the “sixteen or more” rule allow a 50%-effective drug to be
perceived as a major breakthrough?

(a) Each of the monkeys is one of n = 30 independent trials, where the out-
come is either a “success” (Monkey’s immune system is strengthened) or a
“failure” (Monkey’s immune system is not strengthened). By assumption,
the probability that PM-17 produces an immunological improvement in any
given monkey is p = P (success) = 0.60.

By Theorem 3.2.1, the probability that exactly k monkeys (out of thirty)

will show improvement after six weeks is
(

30

k

)
(0.60)k(0.40)30−k . The prob-

ability, then, that the “sixteen or more” rule will cause a 60%-effective drug
to be discarded is the sum of “binomial” probabilities for k values ranging
from 0 to 15:

P(60%-effective drug fails “sixteen or more” rule) =
15∑

k=0

(
30

k

)
(0.60)k(0.40)30−k

= 0.1754
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Roughly 18% of the time, in other words, a “breakthrough” drug such as
PM-17 will produce test results so mediocre (as measured by the “sixteen
or more” rule) that the company will be misled into thinking it has no
potential.

(b) The other error Kingwest can make is to conclude that PM-17 warrants
further study when, in fact, its value for p is below a marketable level. The
chance that particular incorrect inference will be drawn here is the proba-
bility that the number of successes will be greater than or equal to sixteen
when p = 0.5. That is,

P(50%-effective PM-17 appears to be marketable)

= P(Sixteen or more successes occur)

=
30∑

k=16

(
30

k

)
(0.5)k(0.5)30−k

= 0.43

Thus, even if PM-17’s success rate is an unacceptably low 50%, it has a 43%

chance of performing sufficiently well in thirty trials to satisfy the “sixteen
or more” criterion.

Comment Evaluating binomial summations can be tedious, even with a calcula-
tor. Statistical software packages offer a convenient alternative. Appendix 3.A.1
describes how one such program, Minitab, can be used to answer the sorts of
questions posed in Example 3.2.2.

Example
3.2.3

The Stanley Cup playoff in professional hockey is a seven-game series, where the
first team to win four games is declared the champion. The series, then, can last any-
where from four to seven games (just like the World Series in baseball). Calculate
the likelihoods that the series will last four, five, six, or seven games. Assume that
(1) each game is an independent event and (2) the two teams are evenly matched.

Consider the case where Team A wins the series in six games. For that to happen,
they must win exactly three of the first five games and they must win the sixth game.
Because of the independence assumption, we can write

P(Team A wins in six games) = P(Team A wins three of first five) ·
P(Team A wins sixth)

=
[(

5

3

)
(0.5)3(0.5)2

]
· (0.5)= 0.15625

Since the probability that Team B wins the series in six games is the same (why?),

P(Series ends in six games)= P(Team A wins in six games ∪
Team B wins in six games)

= P(A wins in six)+ P(B wins in six) (why?)

= 0.15625 + 0.15625

= 0.3125
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A similar argument allows us to calculate the probabilties of four-, five-, and seven-
game series:

P(four-game series)= 2(0.5)4 = 0.125

P(five-game series)= 2

[(
4

3

)
(0.5)3(0.5)

]
(0.5)= 0.25

P(seven-game series)= 2

[(
6

3

)
(0.5)3(0.5)3

]
(0.5)= 0.3125

Having calculated the “theoretical” probabilities associated with the possible
lengths of a Stanley Cup playoff raises an obvious question: How do those likeli-
hoods compare with the actual distribution of playoff lengths? Between 1947 and
2006 there were sixty playoffs (the 2004–05 season was cancelled). Column 2 in
Table 3.2.3 shows the proportion of playoffs that have lasted four, five, six, and seven
games, respectively.

Table 3.2.3

Series Length Observed Proportion Theoretical Probability

4 17/60 = 0.283 0.125
5 15/60 = 0.250 0.250
6 16/60 = 0.267 0.3125
7 12/60 = 0.200 0.3125

Source: statshockey.homestead.com/stanleycup.html

Clearly, the agreement between the entries in Columns 2 and 3 is not very good:
Particularly noticeable is the excess of short playoffs (four games) and the deficit
of long playoffs (seven games). What this “lack of fit” suggests is that one or more
of the binomial distribution assumptions is not satisfied. Consider, for example, the
parameter p, which we assumed to equal 1

2 . In reality, its value might be something
quite different—just because the teams playing for the championship won their
respective divisions, it does not necessarily follow that the two are equally good.
Indeed, if the two contending teams were frequently mismatched, the consequence
would be an increase in the number of short playoffs and a decrease in the num-
ber of long playoffs. It may also be the case that momentum is a factor in a team’s
chances of winning a given game. If so, the independence assumption implicit in the
binomial model is rendered invalid.

Example
3.2.4

The junior mathematics class at Superior High School knows that the probability of
making a 600 or greater on the SAT Reasoning Test in Mathematics is 0.231, while
the similar probability for the Critical Reading Test is 0.191. The math students issue
a challenge to their math-averse classmates. Each group will select four students and
have them take the respective test. The mathematics students will win the challenge
if more of their members exceed 600 on the mathematics test than do the other
students on the Critical Reading Test. What is the probability that the mathematics
students win the challenge?

Let M denote the number of mathematics scores of 600 or more and CR
denote the similar number for the critical reading testees. In this notation, a typical
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combination in which the mathematics class wins is CR = 2, M = 3. The probability
of this combination is

P(CR = 2, M = 3)= P(CR = 2)P(M = 3)

because events involving C R and M are independent. But

P(CR = 2) · P(M = 3)=
[(

4

2

)
(0.191)2(0.809)2

]
·
[(

4

3

)
(0.231)3(0.769)1

]
= (0.143)(0.038)= 0.0054

Table 3.2.4 below lists all of these joint probabilities to four decimal places for the
various values of CR and M . The shaded cells are those where mathematics wins the
challenge.

Table 3.2.4
�����CR

M 0 1 2 3 4

0 0.1498 0.1800 0.0811 0.0162 0.0012
1 0.1415 0.1700 0.0766 0.0153 0.0012
2 0.0501 0.0602 0.0271 0.0054 0.0004
3 0.0079 0.0095 0.0043 0.0009 0.0001
4 0.0005 0.0006 0.0003 0.0001 0.0000

The sum of the probabilities in the cells is 0.3775.
The moral of the story is that the mathematics students need to study more

probability.

Questions

3.2.1. An investment analyst has tracked a certain blue-
chip stock for the past six months and found that on any
given day, it either goes up a point or goes down a point.
Furthermore, it went up on 25% of the days and down
on 75%. What is the probability that at the close of trad-
ing four days from now, the price of the stock will be the
same as it is today? Assume that the daily fluctuations are
independent events.

3.2.2. In a nuclear reactor, the fission process is con-
trolled by inserting special rods into the radioactive core
to absorb neutrons and slow down the nuclear chain reac-
tion. When functioning properly, these rods serve as a
first-line defense against a core meltdown. Suppose a reac-
tor has ten control rods, each operating independently and
each having an 0.80 probability of being properly inserted
in the event of an “incident.” Furthermore, suppose that

a meltdown will be prevented if at least half the rods
perform satisfactorily. What is the probability that, upon
demand, the system will fail?

3.2.3. In 2009 a donor who insisted on anonymity
gave seven-figure donations to twelve universities. A
media report of this generous but somewhat mysteri-
ous act identified that all of the universities awarded
had female presidents. It went on to say that with about
23% of U.S. college presidents being women, the prob-
ability of a dozen randomly selected institutions having
female presidents is about 1/50,000,000. Is this probability
approximately correct?

3.2.4. An entrepreneur owns six corporations, each with
more than $10 million in assets. The entrepreneur consults
the U.S. Internal Revenue Data Book and discovers that
the IRS audits 15.3% of businesses of that size. What is
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the probability that two or more of these businesses will
be audited?

3.2.5. The probability is 0.10 that ball bearings in a
machine component will fail under certain adverse condi-
tions of load and temperature. If a component containing
eleven ball bearings must have a least eight of them
functioning to operate under the adverse conditions, what
is the probability that it will break down?

3.2.6. Suppose that since the early 1950s some
ten-thousand independent UFO sightings have been
reported to civil authorities. If the probability that any
sighting is genuine is on the order of one in one hundred
thousand, what is the probability that at least one of the
ten-thousand was genuine?

3.2.7. Doomsday Airlines (“Come Take the Flight of
Your Life”) has two dilapidated airplanes, one with two
engines, and the other with four. Each plane will land
safely only if at least half of its engines are working. Each
engine on each aircraft operates independently and each
has probability p = 0.4 of failing. Assuming you wish to
maximize your survival probability, which plane should
you fly on?

3.2.8. Two lighting systems are being proposed for an
employee work area. One requires fifty bulbs, each hav-
ing a probability of 0.05 of burning out within a month’s
time. The second has one hundred bulbs, each with a
0.02 burnout probability. Whichever system is installed
will be inspected once a month for the purpose of replac-
ing burned-out bulbs. Which system is likely to require
less maintenance? Answer the question by comparing the
probabilities that each will require at least one bulb to be
replaced at the end of thirty days.

3.2.9. The great English diarist Samuel Pepys asked his
friend Sir Isaac Newton the following question: Is it more
likely to get at least one 6 when six dice are rolled, at
least two 6’s when twelve dice are rolled, or at least three
6’s when eighteen dice are rolled? After considerable cor-
respondence [see (158)]. Newton convinced the skeptical
Pepys that the first event is the most likely. Compute the
three probabilities.

3.2.10. The gunner on a small assault boat fires six mis-
siles at an attacking plane. Each has a 20% chance of being
on-target. If two or more of the shells find their mark, the
plane will crash. At the same time, the pilot of the plane
fires ten air-to-surface rockets, each of which has a 0.05
chance of critically disabling the boat. Would you rather
be on the plane or the boat?

3.2.11. If a family has four children, is it more likely
they will have two boys and two girls or three of one sex
and one of the other? Assume that the probability of a
child being a boy is 1

2
and that the births are independent

events.

3.2.12. Experience has shown that only 1
3

of all patients
having a certain disease will recover if given the standard
treatment. A new drug is to be tested on a group of twelve
volunteers. If the FDA requires that at least seven of these
patients recover before it will license the new drug, what is
the probability that the treatment will be discredited even
if it has the potential to increase an individual’s recovery
rate to 1

2
?

3.2.13. Transportation to school for a rural county’s
seventy-six children is provided by a fleet of four buses.
Drivers are chosen on a day-to-day basis and come from
a pool of local farmers who have agreed to be “on call.”
What is the smallest number of drivers who need to be in
the pool if the county wants to have at least a 95% proba-
bility on any given day that all the buses will run? Assume
that each driver has an 80% chance of being available if
contacted.

3.2.14. The captain of a Navy gunboat orders a vol-
ley of twenty-five missiles to be fired at random along
a five-hundred-foot stretch of shoreline that he hopes
to establish as a beachhead. Dug into the beach is a
thirty-foot-long bunker serving as the enemy’s first line
of defense. The captain has reason to believe that the
bunker will be destroyed if at least three of the missiles
are on-target. What is the probability of that happening?

3.2.15. A computer has generated seven random num-
bers over the interval 0 to 1. Is it more likely that (a)
exactly three will be in the interval 1

2
to 1 or (b) fewer than

three will be greater than 3
4
?

3.2.16. Listed in the following table is the length distri-
bution of World Series competition for the 58 series from
1950 to 2008 (there was no series in 1994).

World Series Lengths

Number of Games, X Number of Years

4 12
5 10
6 12
7 24

58
Source: espn.go.com/mlb/worldseries/history/winners

Assuming that each World Series game is an independent
event and that the probability of either team’s winning
any particular contest is 0.5, find the probability of each
series length. How well does the model fit the data?
(Compute the “expected” frequencies, that is, multiply the
probability of a given-length series times 58).
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3.2.17. Use the expansion of (x + y)n (recall the com-
ment in Section 2.6 on p. 67) to verify that the binomial

probabilities sum to 1; that is,
n∑

k=0

(
n
k

)
pk(1 − p)n−k = 1.

3.2.18. Suppose a series of n independent trials can
end in one of three possible outcomes. Let k1 and k2

denote the number of trials that result in outcomes 1
and 2, respectively. Let p1 and p2 denote the proba-
bilities associated with outcomes 1 and 2. Generalize
Theorem 3.2.1 to deduce a formula for the probability

of getting k1 and k2 occurrences of outcomes 1 and 2,
respectively.

3.2.19. Repair calls for central air conditioners fall into
three general categories: coolant leakage, compressor
failure, and electrical malfunction. Experience has shown
that the probabilities associated with the three are 0.5, 0.3,
and 0.2, respectively. Suppose that a dispatcher has logged
in ten service requests for tomorrow morning. Use the
answer to Question 3.2.18 to calculate the probability that
three of those ten will involve coolant leakage and five will
be compressor failures.

The Hypergeometric Distribution

The second “special” distribution that we want to look at formalizes the urn prob-
lems that frequented Chapter 2. Our solutions to those earlier problems tended to
be enumerations in which we listed the entire set of possible samples, and then
counted the ones that satisfied the event in question. The inefficiency and redun-
dancy of that approach should now be painfully obvious. What we are seeking here
is a general formula that can be applied to any and all such problems, much like the
expression in Theorem 3.2.1 can handle the full range of questions arising from the
binomial model.

Suppose an urn contains r red chips and w white chips, where r + w = N . Imag-
ine drawing n chips from the urn one at a time without replacing any of the chips
selected. At each drawing we record the color of the chip removed. The question
is, what is the probability that exactly k red chips are included among the n that are
removed?

Notice that the experiment just described is similar in some respects to the bino-
mial model, but the method of sampling creates a critical distinction. If each chip
drawn was replaced prior to making another selection, then each drawing would be
an independent trial, the chances of drawing a red in any given trial would be a con-
stant r/N , and the probability that exactly k red chips would ultimately be included
in the n selections would be a direct application of Theorem 3.2.1:

P(k reds drawn)=
(

n

k

)
(r/N )k(1 − r/N )n−k, k = 0,1,2, . . . ,n

However, if the chips drawn are not replaced, then the probability of drawing a
red on any given attempt is not necessarily r/N : Its value would depend on the col-
ors of the chips selected earlier. Since p = P(Red is drawn) = P(success) does not
remain constant from drawing to drawing, the binomial model of Theorem 3.2.1
does not apply. Instead, probabilities that arise from the “no replacement” scenario
just described are said to follow the hypergeometric distribution.

Theorem
3.2.2

Suppose an urn contains r red chips and w white chips, where r + w = N . If n chips
are drawn out at random, without replacement, and if k denotes the number of red
chips selected, then

P(k red chips are chosen)=
(r

k

)(
w

n−k

)(N
n

) (3.2.1)
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where k varies over all the integers for which
(r

k

)
and
(

w

n−k

)
are defined. The prob-

abilities appearing on the right-hand side of Equation 3.2.1 are known as the
hypergeometric distribution.

Proof Assume the chips are distinguishable. We need to count the number of ele-
ments making up the event of getting k red chips and n − k white chips. The number
of ways to select the red chips, regardless of the order in which they are chosen, is
r Pk . Similarly, the number of ways to select the n − k white chips is w Pn−k . However,
the order in which the white chips are selected does matter. Each outcome is an
n-long ordered sequence of red and white. There are

(n
k

)
ways to choose where in

the sequence the red chips go. Thus, the number of elements in the event of inter-
est is

(n
k

)
r Pk w Pn−k . Now, the total number of ways to choose n elements from N , in

order, without replacement is N Pn , so

P(k red chips are chosen)=
(n

k

)
r Pk w Pn−k

N Pn

This quantity, while correct, is not in the form of the statement of the theorem.
To make that conversion, we have to change all of the terms in the expression to
factorials:

P(k red chips are chosen)=
(n

k

)
r Pk w Pn−k

NPn

=
n!

k!(n − k)!
r !

(r − k)!
w!

(w − n + k)!
N !

(N − n)!

=
r !

k!(r − k)!
w!

(n − k)!(w − n + k)!
N !

n!(N − n)!
=
(r

k

)(
w

n−k

)(N
n

)
�

Comment The appearance of binomial coefficients suggests a model of selecting
unordered subsets. Indeed, one can consider the model of selecting a subset of size
n simultaneously, where order doesn’t matter. In that case, the question remains:
What is the probability of getting k red chips and n − k white chips? A moment’s
reflection will show that the hypergeometric probabilities given in the statement
of the theorem also answer that question. So, if our interest is simply counting the
number of red and white chips in the sample, the probabilities are the same whether
the drawing of the sample is simultaneous or the chips are drawn in order without
repetition.

Comment The name hypergeometric derives from a series introduced by the Swiss
mathematician and physicist Leonhard Euler, in 1769:

1 + ab

c
x + a(a + 1)b(b + 1)

2!c(c + 1)
x2 + a(a + 1)(a + 2)b(b + 1)(b + 2)

3!c(c + 1)(c + 2)
x3 + · · ·

This is an expansion of considerable flexibility: Given appropriate values for a, b,
and c, it reduces to many of the standard infinite series used in analysis. In particular,
if a is set equal to 1, and b and c are set equal to each other, it reduces to the familiar
geometric series,

1 + x + x2 + x3 + · · ·
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hence the name hypergeometric. The relationship of the probability function in The-
orem 3.2.2 to Euler’s series becomes apparent if we set a =−n, b =−r , c =w −n +1,
and multiply the series by

(
w

n

)
/
(N

n

)
. Then the coefficient of xk will be(r

k

)(
w

n−k

)(N
n

)
the value the theorem gives for P(k red chips are chosen).

Example
3.2.5

A hung jury is one that is unable to reach a unanimous decision. Suppose that a
pool of twenty-five potential jurors is assigned to a murder case where the evidence
is so overwhelming against the defendant that twenty-three of the twenty-five would
return a guilty verdict. The other two potential jurors would vote to acquit regardless
of the facts. What is the probability that a twelve-member panel chosen at random
from the pool of twenty-five will be unable to reach a unanimous decision?

Think of the jury pool as an urn containing twenty-five chips, twenty-three of
which correspond to jurors who would vote “guilty” and two of which correspond
to jurors who would vote “not guilty.” If either or both of the jurors who would
vote “not guilty” are included in the panel of twelve, the result would be a hung
jury. Applying Theorem 3.2.2 (twice) gives 0.74 as the probability that the jury
impanelled would not reach a unanimous decision:

P(Hung jury)= P(Decision is not unanimous)

=
(

2

1

)(
23

11

)/(
25

12

)
+
(

2

2

)(
23

10

)/(
25

12

)
= 0.74

Example
3.2.6

The Florida Lottery features a number of games of chance, one of which is called
Fantasy Five. The player chooses five numbers from a card containing the numbers 1
through 36. Each day five numbers are chosen at random, and if the player matches
all five, the winnings can be as much as $200,000 for a $1 bet.

Lottery games like this one have spawned a mini-industry looking for biases
in the selection of the winning numbers. Websites post various “analyses” claiming
certain numbers are “hot” and should be played. One such examination focused
on the frequency of winning numbers between 1 and 12. The probability of such
occurrences fits the hypergeometric distribution, where r = 12, w = 24, n = 5, and
N = 36. For example, the probability that three of the five numbers are 12 or less is(

12
3

)(
24
2

)
(

36
5

) = 60,720

376,992
= 0.161

Notice how that compares to the observed proportion of drawings with exactly three
numbers between 1 and 12. Of the 2008 daily drawings—366 of them—there were
sixty-five with three numbers 12 or less, giving a relative frequency of 65/366=0.178.

The full breakdown of observed and expected probabilities for winning num-
bers between 1 and 12 is given in Table 3.2.5.

The naive or dishonest commentator might claim that the lottery “likes” num-
bers ≤ 12 since the proportion of tickets drawn with three, four, or five numbers ≤
12 is

0.178 + 0.038 + 0.005 = 0.221
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Table 3.2.5

No. Drawn ≤ 12 Observed Proportion Hypergeometric Probability

0 0.128 0.113
1 0.372 0.338
2 0.279 0.354
3 0.178 0.161
4 0.038 0.032
5 0.005 0.002

Source: www.flalottery.com/exptkt/ff.html

This figure is in excess of the sum of the hypergeometric probabilities for k = 3,
4, and 5:

0.161 + 0.032 + 0.002 = 0.195

However, we shall see in Chapter 10 that such variation is well within the random
fluctuations expected for truly random drawings. No bias can be inferred from these
results.

Example
3.2.7

When a bullet is fired it becomes scored with minute striations produced by imper-
fections in the gun barrel. Appearing as a series of parallel lines, these striations
have long been recognized as a basis for matching a bullet with a gun, since repeated
firings of the same weapon will produce bullets having substantially the same con-
figuration of markings. Until recently, deciding how close two patterns had to be
before it could be concluded the bullets came from the same weapon was largely
subjective. A ballistics expert would simply look at the two bullets under a micro-
scope and make an informed judgment based on past experience. Today, however,
criminologists are beginning to address the problem more quantitatively, partly with
the help of the hypergeometric distribution.

Suppose a bullet is recovered from the scene of a crime, along with the sus-
pect’s gun. Under a microscope, a grid of m cells, numbered 1 to m, is superimposed
over the bullet. If m is chosen large enough that the width of the cells is sufficiently
small, each of that evidence bullet’s ne striations will fall into a different cell (see
Figure 3.2.1a). Then the suspect’s gun is fired, yielding a test bullet, which will have
a total of nt striations located in a possibly different set of cells (see Figure 3.2.1b).
How might we assess the similarities in cell locations for the two striation patterns?

As a model for the striation pattern on the evidence bullet, imagine an urn con-
taining m chips, with ne corresponding to the striation locations. Now, think of the
striation pattern on the test bullet as representing a sample of size nt from the evi-
dence urn. By Theorem 3.2.2, the probability that k of the cell locations will be
shared by the two striation patterns is(ne

k

)(m−ne
nt −k

)(m
nt

)
Suppose the bullet found at a murder scene is superimposed with a grid having

m = 25 cells, ne of which contain striations. The suspect’s gun is fired and the bul-
let is found to have nt = 3 striations, one of which matches the location of one of
the striations on the evidence bullet. What do you think a ballistics expert would
conclude?

www.flalottery.com/exptkt/ff.html
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1 2 3 4 5 m

Striations (total of ne)

Evidence bullet

(a)

1 2 3 4 5 m

Striations (total of nt)

Test bullet

(b)

Figure 3.2.1

Intuitively, the similarity between the two bullets would be reflected in the prob-
ability that one or more striations in the suspect’s bullet match the evidence bullet.
The smaller that probability is, the stronger would be our belief that the two bullets
were fired by the same gun. Based on the values given for m, ne, and nt ,

P(one or more matches) =
(4

1

)(21
2

)(25
3

) +
(4

2

)(21
1

)(25
3

) +
(4

3

)(21
0

)(25
3

)
= 0.42

If P(one or more matches) had been a very small number—say, 0.001—the
inference would have been clear-cut: The same gun fired both bullets. But, here
with the probability of one or more matches being so large, we cannot rule out the
possibility that the bullets were fired by two different guns (and, presumably, by two
different people).

Example
3.2.8

A tax collector, finding himself short of funds, delayed depositing a large property
tax payment ten different times. The money was subsequently repaid, and the whole
amount deposited in the proper account. The tip-off to this behavior was the delay
of the deposit. During the period of these irregularities, there was a total of 470 tax
collections.

An auditing firm was preparing to do a routine annual audit of these transac-
tions. They decided to randomly sample nineteen of the collections (approximately
4%) of the payments. The auditors would assume a pattern of malfeasance only if
they saw three or more irregularities. What is the probability that three or more of
the delayed deposits would be chosen in this sample?

This kind of audit sampling can be considered a hypergeometric experiment.
Here, N = 470, n = 19, r = 10, and w = 460. In this case it is better to calculate the
desired probability via the complement—that is,

1 −
(

10
0

)(
460
19

)
(

470
19

) −
(

10
1

)(
460
18

)
(

470
19

) −
(

10
2

)(
460
17

)
(

470
19

)
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The calculation of the first hypergeometric term is(
10
0

)(
460
19

)
(

470
19

) = 1 · 460!
19!441! · 19!451

470! = 451

470
· 450

469
· · · · · 442

461
= 0.6592

To compute hypergeometric probabilities where the numbers are large, a useful
device is a recursion formula. To that end, note that the ratio of the k + 1 term to the
k term is ( r

k+1

) (
w

n−k−1

)(
N
n

) ÷
( r

k

) (
w

n−k

)(
N
n

) = n − k

k + 1
· r − k

w − n + k + 1

(See Question 3.2.30.)
Therefore,(

10
1

)(
460
18

)
(

470
19

) = 0.6592 · 19 + 0

1 + 0
· 10 − 0

460 − 19 + 0 + 1
= 0.2834

and (
10
2

)(
460
17

)
(

470
19

) = 0.2834 · 19 − 1

1 + 1
· 10 − 1

460 − 19 + 1 + 1
= 0.0518

The desired probability, then, is 1 − 0.6592 − 0.2834 − 0.0518 = 0.0056, which shows
that a larger audit sample would be necessary to have a reasonable chance of
detecting this sort of impropriety.

Case Study 3.2.1

Biting into a plump, juicy apple is one of the innocent pleasures of autumn.
Critical to that enjoyment is the firmness of the apple, a property that growers
and shippers monitor closely. The apple industry goes so far as to set a lowest
acceptable limit for firmness, which is measured (in lbs) by inserting a probe
into the apple. For the Red Delicious variety, for example, firmness is supposed
to be at least 12 lbs; in the state of Washington, wholesalers are not allowed to
sell apples if more than 10% of their shipment falls below that 12-lb limit.

All of this raises an obvious question: How can shippers demonstrate that
their apples meet the 10% standard? Testing each one is not an option—
the probe that measures firmness renders an apple unfit for sale. That leaves
sampling as the only viable strategy.

Suppose, for example, a shipper has a supply of 144 apples. She decides
to select 15 at random and measure each one’s firmness, with the intention of
selling the remaining apples if 2 or fewer in the sample are substandard. What
are the consequences of her plan? More specifically, does it have a good chance
of “accepting” a shipment that meets the 10% rule and “rejecting” one that does
not? (If either or both of those objectives are not met, the plan is inappropriate.)

For example, suppose there are actually 10 defective apples among the
original 144. Since 10

144 × 100 = 6.9%, that shipment would be suitable for sale
because fewer than 10% failed to meet the firmness standard. The question is,

(Continued on next page)
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(Case Study 3.2.1 continued)

how likely is it that a sample of 15 chosen at random from that shipment will
pass inspection?

Notice, here, that the number of substandard apples in the sample has a
hypergeometric distribution with r =10, w=134, n =15, and N =144. Therefore,

P(Sample passes inspection)= P(2 or fewer substandard apples are found)

=
(10

0

)(134
15

)(144
15

) +
(10

1

)(134
14

)(144
15

) +
(10

2

)(134
13

)(144
15

)
= 0.320 + 0.401 + 0.208 = 0.929

So, the probability is reassuringly high that a supply of apples this good would,
in fact, be judged acceptable to ship. Of course, it also follows from this cal-
culation that roughly 7% of the time, the number of substandard apples found
will be greater than 2, in which case the apples would be (incorrectly) assumed
to be unsuitable for sale (earning them an undeserved one-way ticket to the
applesauce factory . . . ).

How good is the proposed sampling plan at recognizing apples that would,
in fact, be inappropriate to ship? Suppose, for example, that 30, or 21%, of the
144 apples would fall below the 12-lb limit. Ideally, the probability here that a
sample passes inspection should be small. The number of substandard apples
found in this case would be hypergeometric with r = 30, w = 114, n = 15, and
N = 144, so

P(Sample passes inspection)=
(30

0

)(114
15

)(144
15

) +
(30

1

)(114
14

)(144
15

) +
(30

2

)(114
13

)(144
15

)
= 0.024 + 0.110 + 0.221 = 0.355

Here the bad news is that the sampling plan will allow a 21% defective supply
to be shipped 36% of the time. The good news is that 64% of the time, the
number of substandard apples in the sample will exceed 2, meaning that the
correct decision “not to ship” will be made.

Figure 3.2.2 shows P(Sample passes) plotted against the percentage of
defectives in the entire supply. Graphs of this sort are called operating char-
acteristic (or OC) curves: They summarize how a sampling plan will respond to
all possible levels of quality.
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(Continued on next page)
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Comment Every sampling plan invariably allows for two kinds of errors—
rejecting shipments that should be accepted and accepting shipments that
should be rejected. In practice, the probabilities of committing these errors can
be manipulated by redefining the decision rule and/or changing the sample size.
Some of these options will be explored in Chapter 6.

Questions

3.2.20. A corporate board contains twelve members.
The board decides to create a five-person Committee
to Hide Corporation Debt. Suppose four members of
the board are accountants. What is the probability that
the Committee will contain two accountants and three
nonaccountants?

3.2.21. One of the popular tourist attractions in Alaska
is watching black bears catch salmon swimming upstream
to spawn. Not all “black” bears are black, though—
some are tan-colored. Suppose that six black bears and
three tan-colored bears are working the rapids of a
salmon stream. Over the course of an hour, six different
bears are sighted. What is the probability that those six
include at least twice as many black bears as tan-colored
bears?

3.2.22. A city has 4050 children under the age of ten,
including 514 who have not been vaccinated for measles.
Sixty-five of the city’s children are enrolled in the ABC
Day Care Center. Suppose the municipal health depart-
ment sends a doctor and a nurse to ABC to immunize any
child who has not already been vaccinated. Find a formula
for the probability that exactly k of the children at ABC
have not been vaccinated.

3.2.23. Country A inadvertently launches ten
guided missiles—six armed with nuclear warheads—at
Country B. In response, Country B fires seven antiballis-
tic missiles, each of which will destroy exactly one of the
incoming rockets. The antiballistic missiles have no way
of detecting, though, which of the ten rockets are carrying
nuclear warheads. What are the chances that Country B
will be hit by at least one nuclear missile?

3.2.24. Anne is studying for a history exam covering the
French Revolution that will consist of five essay ques-
tions selected at random from a list of ten the professor
has handed out to the class in advance. Not exactly a
Napoleon buff, Anne would like to avoid researching all
ten questions but still be reasonably assured of getting a
fairly good grade. Specifically, she wants to have at least
an 85% chance of getting at least four of the five ques-
tions right. Will it be sufficient if she studies eight of the
ten questions?

3.2.25. Each year a college awards five merit-based schol-
arships to members of the entering freshman class who
have exceptional high school records. The initial pool
of applicants for the upcoming academic year has been
reduced to a “short list” of eight men and ten women, all
of whom seem equally deserving. If the awards are made
at random from among the eighteen finalists, what are the
chances that both men and women will be represented?

3.2.26. Keno is a casino game in which the player has
a card with the numbers 1 through 80 on it. The player
selects a set of k numbers from the card, where k can
range from one to fifteen. The “caller” announces twenty
winning numbers, chosen at random from the eighty. The
amount won depends on how many of the called numbers
match those the player chose. Suppose the player picks ten
numbers. What is the probability that among those ten are
six winning numbers?

3.2.27. A display case contains thirty-five gems, of which
ten are real diamonds and twenty-five are fake diamonds.
A burglar removes four gems at random, one at a time
and without replacement. What is the probability that the
last gem she steals is the second real diamond in the set of
four?

3.2.28. A bleary-eyed student awakens one morning, late
for an 8:00 class, and pulls two socks out of a drawer that
contains two black, six brown, and two blue socks, all ran-
domly arranged. What is the probability that the two he
draws are a matched pair?

3.2.29. Show directly that the set of probabilities associ-
ated with the hypergeometric distribution sum to 1. (Hint:
Expand the identity

(1 +μ)N = (1 +μ)r (1 +μ)N−r

and equate coefficients.)

3.2.30. Show that the ratio of two successive hypergeo-
metric probability terms satisfies the following equation,(

r
k+1

) (
w

n−k−1

)(
N
n

) ÷
(

r
k

) (
w

n−k

)(
N
n

) = n − k

k + 1
· r − k

w − n + k + 1

for any k where both numerators are defined.
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3.2.31. Urn I contains five red chips and four white chips;
urn II contains four red and five white chips. Two chips are
drawn simultaneously from urn I and placed into urn II.
Then a single chip is drawn from urn II. What is the prob-
ability that the chip drawn from urn II is white? (Hint: Use
Theorem 2.4.1.)

3.2.32. As the owner of a chain of sporting goods stores,
you have just been offered a “deal” on a shipment of
one hundred robot table tennis machines. The price is
right, but the prospect of picking up the merchandise at
midnight from an unmarked van parked on the side of
the New Jersey Turnpike is a bit disconcerting. Being of
low repute yourself, you do not consider the legality of
the transaction to be an issue, but you do have concerns
about being cheated. If too many of the machines are
in poor working order, the offer ceases to be a bargain.
Suppose you decide to close the deal only if a sample of
ten machines contains no more than one defective. Con-
struct the corresponding operating characteristic curve.
For approximately what incoming quality will you accept
a shipment 50% of the time?

3.2.33. Suppose that r of N chips are red. Divide the chips
into three groups of sizes n1,n2, and n3, where n1 + n2 +
n3 = N . Generalize the hypergeometric distribution to find
the probability that the first group contains r1 red chips,

the second group r2 red chips, and the third group r3 red
chips, where r1 + r2 + r3 = r .

3.2.34. Some nomadic tribes, when faced with a life-
threatening, contagious disease, try to improve their
chances of survival by dispersing into smaller groups. Sup-
pose a tribe of twenty-one people, of whom four are
carriers of the disease, split into three groups of seven
each. What is the probability that at least one group is
free of the disease? (Hint: Find the probability of the
complement.)

3.2.35. Suppose a population contains n1 objects of one
kind, n2 objects of a second kind, . . . , and nt objects of a
tth kind, where n1 + n2 + · · · + nt = N . A sample of size n
is drawn at random and without replacement. Deduce an
expression for the probability of drawing k1 objects of the
first kind, k2 objects of the second kind, . . . , and kt objects
of the tth kind by generalizing Theorem 3.2.2.

3.2.36. Sixteen students—five freshmen, four sopho-
mores, four juniors, and three seniors—have applied for
membership in their school’s Communications Board,
a group that oversees the college’s newspaper, literary
magazine, and radio show. Eight positions are open. If
the selection is done at random, what is the probability
that each class gets two representatives? (Hint: Use the
generalized hypergeometric model asked for in Ques-
tion 3.2.35.)

3.3 Discrete Random Variables
The binomial and hypergeometric distributions described in Section 3.2 are special
cases of some important general concepts that we want to explore more fully in this
section. Previously in Chapter 2, we studied in depth the situation where every point
in a sample space is equally likely to occur (recall Section 2.6). The sample space of
independent trials that ultimately led to the binomial distribution presented a quite
different scenario: specifically, individual points in S had different probabilities. For
example, if n =4 and p = 1

3 , the probabilities assigned to the sample points (s, f, s, f )

and ( f, f, f, f ) are (1/3)2(2/3)2 = 4
81 and (2/3)4 = 16

81 , respectively. Allowing for the
possibility that different outcomes may have different probabilities will obviously
broaden enormously the range of real-world problems that probability models can
address.

How to assign probabilities to outcomes that are not binomial or hypergeomet-
ric is one of the major questions investigated in this chapter. A second critical issue
is the nature of the sample space itself and whether it makes sense to redefine the
outcomes and create, in effect, an alternative sample space. Why we would want to
do that has already come up in our discussion of independent trials. The “original”
sample space in such cases is a set of ordered sequences, where the ith member of a
sequence is either an “s” or an “ f ,” depending on whether the ith trial ended in suc-
cess or failure, respectively. However, knowing which particular trials ended in suc-
cess is typically less important than knowing the number that did (recall the medical
researcher discussion on p. 102). That being the case, it often makes sense to replace
each ordered sequence with the number of successes that sequence contains. Doing
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so collapses the original set of 2n ordered sequences (i.e., outcomes) in S to the set
of n + 1 integers ranging from 0 to n. The probabilities assigned to those integers, of
course, are given by the binomial formula in Theorem 3.2.1.

In general, a function that assigns numbers to outcomes is called a random vari-
able. The purpose of such functions in practice is to define a new sample space
whose outcomes speak more directly to the objectives of the experiment. That
was the rationale that ultimately motivated both the binomial and hypergeometric
distributions.

The purpose of this section is to (1) outline the general conditions under which
probabilities can be assigned to sample spaces and (2) explore the ways and means
of redefining sample spaces through the use of random variables. The notation
introduced in this section is especially important and will be used throughout the
remainder of the book.

Assigning Probabilities: The Discrete Case

We begin with the general problem of assigning probabilities to sample outcomes,
the simplest version of which occurs when the number of points in S is either finite
or countably infinite. The probability functions, p(s), that we are looking for in those
cases satisfy the conditions in Definition 3.3.1.

Definition 3.3.1. Suppose that S is a finite or countably infinite sample space.
Let p be a real-valued function defined for each element of S such that

a. 0 ≤ p(s) for each s ∈ S
b.
∑
s∈S

p(s)= 1

Then p is said to be a discrete probability function.

Comment Once p(s) is defined for all s, it follows that the probability of any event
A—that is, P(A)—is the sum of the probabilities of the outcomes comprising A:

P(A)=
∑
s∈A

p(s) (3.3.1)

Defined in this way, the function P(A) satisfies the probability axioms given in
Section 2.3. The next several examples illustrate some of the specific forms that p(s)
can have and how P(A) is calculated.

Example
3.3.1

Ace-six flats are a type of crooked dice where the cube is foreshortened in the one-
six direction, the effect being that 1’s and 6’s are more likely to occur than any of
the other four faces. Let p(s) denote the probability that the face showing is s. For
many ace-six flats, the “cube” is asymmetric to the extent that p(1)= p(6)= 1

4 , while
p(2)= p(3)= p(4)= p(5)= 1

8 . Notice that p(s) here qualifies as a discrete probability
function because each p(s) is greater than or equal to 0 and the sum of p(s), over
all s, is 1

[= 2
(

1
4

)+ 4
(

1
8

)]
.
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Suppose A is the event that an even number occurs. It follows from Equa-
tion 3.3.1 that P(A)= P(2)+ P(4)+ P(6)= 1

8 + 1
8 + 1

4 = 1
2 .

Comment If two ace-six flats are rolled, the probability of getting a sum equal to 7
is equal to 2p(1)p(6) + 2p(2)p(5) + 2p(3)p(4) = 2

(
1
4

)2 + 4
(

1
8

)2 = 3
16 . If two fair dice

are rolled, the probability of getting a sum equal to 7 is 2p(1)p(6) + 2p(2)p(5) +
2p(3)p(4) = 6

(
1
6

)2 = 1
6 , which is less than 3

16 . Gamblers cheat with ace-six flats by
switching back and forth between fair dice and ace-six flats, depending on whether
or not they want a sum of 7 to be rolled.

Example
3.3.2

Suppose a fair coin is tossed until a head comes up for the first time. What are the
chances of that happening on an odd-numbered toss?

Note that the sample space here is countably infinite and so is the set of out-
comes making up the event whose probability we are trying to find. The P(A) that
we are looking for, then, will be the sum of an infinite number of terms.

Let p(s) be the probability that the first head appears on the sth toss. Since
the coin is presumed to be fair, p(1) = 1

2 . Furthermore, we would expect that half
the time, when a tail appears, the next toss would be a head, so p(2) = 1

2 · 1
2 = 1

4 . In
general, p(s)= ( 1

2

)s , s = 1,2, . . . .
Does p(s) satisfy the conditions stated in Definition 3.3.1? Yes. Clearly, p(s)≥ 0

for all s. To see that the sum of the probabilities is 1, recall the formula for the sum
of a geometric series: If 0 < r < 1,

∞∑
s=0

r s = 1

1 − r
(3.3.2)

Applying Equation 3.3.2 to the sample space here confirms that P(S)= 1:

P(S)=
∞∑

s=1

p(s)=
∞∑

s=1

(
1

2

)s

=
∞∑

s=0

(
1

2

)s

−
(

1

2

)0

= 1

/(
1 − 1

2

)
− 1 = 1

Now, let A be the event that the first head appears on an odd-numbered toss.
Then P(A)= p(1)+ p(3)+ p(5)+ · · · But

p(1)+ p(3)+ p(5)+ · · · =
∞∑

s=0

p(2s + 1) =
∞∑

s=0

(
1

2

)2s+1

=
(

1

2

) ∞∑
s=0

(
1

4

)s

=
(

1

2

)[
1

/(
1 − 1

4

)]
= 2

3

Case Study 3.3.1

For good pedagogical reasons, the principles of probability are always intro-
duced by considering events defined on familiar sample spaces generated by
simple experiments. To that end, we toss coins, deal cards, roll dice, and draw
chips from urns. It would be a serious error, though, to infer that the impor-
tance of probability extends no further than the nearest casino. In its infancy,

(Continued on next page)
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gambling and probability were, indeed, intimately related: Questions arising
from games of chance were often the catalyst that motivated mathematicians
to study random phenomena in earnest. But more than 340 years have passed
since Huygens published De Ratiociniis. Today, the application of probability
to gambling is relatively insignificant (the NCAA March basketball tournament
notwithstanding) compared to the depth and breadth of uses the subject finds
in business, medicine, engineering, and science.

Probability functions—properly chosen—can “model” complex real-world
phenomena every bit as well as P(heads) = 1

2 describes the behavior of a fair
coin. The following set of actuarial data is a case in point. Over a period of
three years (= 1096 days) in London, records showed that a total of 903 deaths
occurred among males eighty-five years of age and older (180). Columns 1 and
2 of Table 3.3.1 give the breakdown of those 903 deaths according to the num-
ber occurring on a given day. Column 3 gives the proportion of days for which
exactly s elderly men died.

Table 3.3.1

(1) (2) (3) (4)
Number of
Deaths, s

Number of
Days

Proportion
[= Col.(2)/1096]

p(s)

0 484 0.442 0.440
1 391 0.357 0.361
2 164 0.150 0.148
3 45 0.041 0.040
4 11 0.010 0.008
5 1 0.001 0.003
6+ 0 0.000 0.000

1096 1 1

For reasons that we will go into at length in Chapter 4, the probability
function that describes the behavior of this particular phenomenon is

p(s)= P(s elderly men die on a given day)

= e−0.82(0.82)s

s! , s = 0,1,2, . . . (3.3.3)

How do we know that the p(s) in Equation 3.3.3 is an appropriate way to assign
probabilities to the “experiment” of elderly men dying? Because it accurately
predicts what happened. Column 4 of Table 3.3.1 shows p(s) evaluated for s =
0,1,2, . . . . To two decimal places, the agreement between the entries in Column
3 and Column 4 is perfect.

Example
3.3.3

Consider the following experiment: Every day for the next month you copy down
each number that appears in the stories on the front pages of your hometown news-
paper. Those numbers would necessarily be extremely diverse: One might be the
age of a celebrity who had just died, another might report the interest rate currently
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paid on government Treasury bills, and still another might give the number of square
feet of retail space recently added to a local shopping mall.

Suppose you then calculated the proportion of those numbers whose leading
digit was a 1, the proportion whose leading digit was a 2, and so on. What relation-
ship would you expect those proportions to have? Would numbers starting with a 2,
for example, occur as often as numbers starting with a 6?

Let p(s) denote the probability that the first significant digit of a “newspaper
number” is s, s = 1,2, . . . ,9. Our intuition is likely to tell us that the nine first digits
should be equally probable—that is, p(1)= p(2)=· · ·= p(9)= 1

9 . Given the diversity
and the randomness of the numbers, there is no obvious reason why one digit should
be more common than another. Our intuition, though, would be wrong—first digits
are not equally likely. Indeed, they are not even close to being equally likely!

Credit for making this remarkable discovery goes to Simon Newcomb, a math-
ematician who observed more than a hundred years ago that some portions of
logarithm tables are used more than others (78). Specifically, pages at the begin-
ning of such tables are more dog-eared than pages at the end, suggesting that users
have more occasion to look up logs of numbers starting with small digits than they
do numbers starting with large digits.

Almost fifty years later, a physicist, Frank Benford, reexamined Newcomb’s
claim in more detail and looked for a mathematical explanation. What is now known
as Benford’s law asserts that the first digits of many different types of measurements,
or combinations of measurements, often follow the discrete probability model:

p(s)= P(1st significant digit is s)= log

(
1 + 1

s

)
, s = 1,2, . . . ,9

Table 3.3.2 compares Benford’s law to the uniform assumption that p(s) = 1
9 , for

all s. The differences are striking. According to Benford’s law, for example, 1’s are
the most frequently occurring first digit, appearing 6.5 times (=0.301/0.046) as often
as 9’s.

Table 3.3.2

s “Uniform” Law Benford’s Law

1 0.111 0.301
2 0.111 0.176
3 0.111 0.125
4 0.111 0.097
5 0.111 0.079
6 0.111 0.067
7 0.111 0.058
8 0.111 0.051
9 0.111 0.046

Comment A key to why Benford’s law is true is the differences in proportional
changes associated with each leading digit. To go from one thousand to two thou-
sand, for example, represents a 100% increase; to go from eight thousand to nine
thousand, on the other hand, is only a 12.5% increase. That would suggest that
evolutionary phenomena such as stock prices would be more likely to start with
1’s and 2’s than with 8’s and 9’s—and they are. Still, the precise conditions under
which p(s) = log

(
1 + 1

s

)
, s = 1,2, . . . ,9, are not fully understood and remain a topic

of research.
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Example
3.3.4

Is

p(s)= 1

1 + λ

(
λ

1 + λ

)s

, s = 0,1,2, . . . ; λ > 0

a discrete probability function? Why or why not?
To qualify as a discrete probability function, a given p(s) needs to satisfy parts

(a) and (b) of Definition 3.3.1. A simple inspection shows that part (a) is satisfied.
Since λ > 0, p(s) is, in fact, greater than or equal to 0 for all s = 0,1,2, . . . . Part (b)
is satisfied if the sum of all the probabilities defined on the outcomes in S is 1. But

∑
all s∈S

p(s) =
∞∑

s=0

1

1 + λ

(
λ

1 + λ

)s

= 1

1 + λ

(
1

1 − λ
1+λ

)
(why?)

= 1

1 + λ
· 1 + λ

1

= 1

The answer, then, is “yes”—p(s)= 1
1+λ

(
λ

1+λ

)s
, s =0,1,2, . . . ;λ>0 does qualify as

a discrete probability function. Of course, whether it has any practical value depends
on whether the set of values for p(s) actually do describe the behavior of real-world
phenomena.

Defining “New” Sample Spaces

We have seen how the function p(s) associates a probability with each outcome, s,
in a sample space. Related is the key idea that outcomes can often be grouped or
reconfigured in ways that may facilitate problem solving. Recall the sample space
associated with a series of n independent trials, where each s is an ordered sequence
of successes and failures. The most relevant information in such outcomes is often
the number of successes that occur, not a detailed listing of which trials ended in
success and which ended in failure. That being the case, it makes sense to define
a “new” sample space by grouping the original outcomes according to the num-
ber of successes they contained. The outcome ( f , f , . . . , f ), for example, had
0 successes. On the other hand, there were n outcomes that yielded 1 success—
(s, f , f , . . . , f ), ( f , s, f , . . . , f ), . . . , and ( f , f , . . . , s). As we saw earlier in
this chapter, that particular regrouping of outcomes ultimately led to the binomial
distribution.

The function that replaces the outcome (s, f , f , . . . , f ) with the numerical value
1 is called a random variable. We conclude this section with a discussion of some of
the concepts, terminology, and applications associated with random variables.

Definition 3.3.2. A function whose domain is a sample space S and whose
values form a finite or countably infinite set of real numbers is called a dis-
crete random variable. We denote random variables by uppercase letters, often
X or Y .
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Example
3.3.5

Consider tossing two dice, an experiment for which the sample space is a set of
ordered pairs, S ={(i, j) | i = 1,2, . . . ,6; j = 1,2, . . . ,6}. For a variety of games rang-
ing from Monopoly to craps, the sum of the numbers showing is what matters on
a given turn. That being the case, the original sample space S of thirty-six ordered
pairs would not provide a particularly convenient backdrop for discussing the rules
of those games. It would be better to work directly with the sums. Of course, the
eleven possible sums (from 2 to 12) are simply the different values of the random
variable X , where X (i, j)= i + j .

Comment In the above example, suppose we define a random variable X1 that gives
the result on the first die and a random variable X2 that gives the result on the
second die. Then X = X1 + X2. Note how easily we could extend this idea to the
toss of three dice, or ten dice. The ability to conveniently express complex events in
terms of simpler ones is an advantage of the random variable concept that we will
see playing out over and over again.

The Probability Density Function

We began this section discussing the function p(s), which assigns a probability to
each outcome s in S. Now, having introduced the notion of a random variable X as
a real-valued function defined on S—that is, X (s) = k—we need to find a mapping
analogous to p(s) that assigns probabilities to the different values of k.

Definition 3.3.3. Associated with every discrete random variable X is a
probability density function (or pdf ), denoted pX (k), where

pX (k)= P({s ∈ S | X (s)= k})
Note that pX (k) = 0 for any k not in the range of X . For notational simplicity,
we will usually delete all references to s and S and write pX (k)= P(X = k).

Comment We have already discussed at length two examples of the function pX (k).
Recall the binomial distribution derived in Section 3.2. If we let the random vari-
able X denote the number of successes in n independent trials, then Theorem 3.2.1
states that

P(X = k)= pX (k)=
(

n

k

)
pk(1 − p)n−k, k = 0,1, . . . ,n

A similar result was given in that same section in connection with the hyper-
geometric distribution. If a sample of size n is drawn without replacement from
an urn containing r red chips and w white chips, and if we let the random vari-
able X denote the number of red chips included in the sample, then (according to
Theorem 3.2.2),

P(X = k)= pX (k)=
(

r

k

)(
w

n − k

)/(
r +w

n

)
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Example
3.3.6

Consider again the rolling of two dice as described in Example 3.3.5. Let i and j
denote the faces showing on the first and second die, respectively, and define the
random variable X to be the sum of the two faces: X (i, j)= i + j . Find pX (k).

According to Definition 3.3.3, each value of pX (k) is the sum of the probabilities
of the outcomes that get mapped by X onto the value k. For example,

P(X = 5) = pX (5)= P({s ∈ S | X (s)= 5})
= P[(1,4), (4,1), (2,3), (3,2)]
= P(1,4)+ P(4,1)+ P(2,3)+ P(3,2)

= 1

36
+ 1

36
+ 1

36
+ 1

36

= 4

36

assuming the dice are fair. Values of pX (k) for other k are calculated similarly.
Table 3.3.3 shows the random variable’s entire pdf.

Table 3.3.3

k pX (k) k pX (k)

2 1/36 8 5/36
3 2/36 9 4/36
4 3/36 10 3/36
5 4/36 11 2/36
6 5/36 12 1/36
7 6/36

Example
3.3.7

Acme Industries typically produces three electric power generators a day; some
pass the company’s quality-control inspection on their first try and are ready to be
shipped; others need to be retooled. The probability of a generator needing further
work is 0.05. If a generator is ready to ship, the firm earns a profit of $10,000. If
it needs to be retooled, it ultimately costs the firm $2,000. Let X be the random
variable quantifying the company’s daily profit. Find pX (k).

The underlying sample space here is a set of n = 3 independent trials, where
p = P(Generator passes inspection) = 0.95. If the random variable X is to measure
the company’s daily profit, then

X = $10,000 × (no.of generators passing inspection)

− $2,000 × (no.of generators needing retooling)

For instance, X (s, f, s) = 2($10,000) − 1($2,000) = $18,000. Moreover, the random
variable X equals $18,000 whenever the day’s output consists of two successes and
one failure. That is, X (s, f, s)= X (s, s, f )= X ( f, s, s). It follows that

P(X = $18,000)= pX (18,000)=
(

3

2

)
(0.95)2(0.05)1 = 0.135375

Table 3.3.4 shows pX (k) for the four possible values of k ($30,000, $18,000, $6,000,
and −$6,000).
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Table 3.3.4

No. Defectives k = Profit pX (k)

0 $30,000 0.857375
1 $18,000 0.135375
2 $6,000 0.007125
3 −$6,000 0.000125

Example
3.3.8

As part of her warm-up drill, each player on State’s basketball team is required to
shoot free throws until two baskets are made. If Rhonda has a 65% success rate at
the foul line, what is the pdf of the random variable X that describes the number of
throws it takes her to complete the drill? Assume that individual throws constitute
independent events.

Figure 3.3.1 illustrates what must occur if the drill is to end on the kth toss,
k = 2,3,4, . . .: First, Rhonda needs to make exactly one basket sometime during the
first k − 1 attempts, and, second, she needs to make a basket on the kth toss. Written
formally,

pX (k)= P(X = k)= P(Drill ends on kth throw)

= P[(1 basket and k − 2 misses in first k − 1 throws)∩ (basket on kth throw)]
= P(1 basket and k − 2 misses) · P(basket)

Exactly one basket

Miss
1

Basket
2

Miss
3

· · ·
Miss

k − 1
Basket

k
Attempts

Figure 3.3.1

Notice that k − 1 different sequences have the property that exactly one of the
first k − 1 throws results in a basket:

k − 1
sequences

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

B
1

M
2

M
3

M
4 · · · M

k−1
M
1

B
2

M
3

M
4 · · · M

k−1
...

M
1

M
2

M
3

M
4 · · · B

k−1

Since each sequence has probability (0.35)k−2(0.65),

P(1 basket and k − 2 misses)= (k − 1)(0.35)k−2(0.65)

Therefore,

pX (k)= (k − 1)(0.35)k−2(0.65) · (0.65)

= (k − 1)(0.35)k−2(0.65)2, k = 2,3,4, . . . (3.3.4)

Table 3.3.5 shows the pdf evaluated for specific values of k. Although the range of k
is infinite, the bulk of the probability associated with X is concentrated in the values
2 through 7: It is highly unlikely, for example, that Rhonda would need more than
seven shots to complete the drill.
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Table 3.3.5

k pX (k)

2 0.4225
3 0.2958
4 0.1553
5 0.0725
6 0.0317
7 0.0133
8+ 0.0089

The Cumulative Distribution Function

In working with random variables, we frequently need to calculate the probability
that the value of a random variable is somewhere between two numbers. For exam-
ple, suppose we have an integer-valued random variable. We might want to calculate
an expression like P(s ≤ X ≤ t). If we know the pdf for X , then

P(s ≤ X ≤ t)=
t∑

k=s

pX (k)

But depending on the nature of pX (k) and the number of terms that need to be
added, calculating the sum of pX (k) from k = s to k = t may be quite difficult. An
alternate strategy is to use the fact that

P(s ≤ X ≤ t)= P(X ≤ t)− P(X ≤ s − 1)

where the two probabilities on the right represent cumulative probabilities of the
random variable X . If the latter were available (and they often are), then evaluating
P(s ≤ X ≤ t) by one simple subtraction would clearly be easier than doing all the

calculations implicit in
t∑

k=s
pX (k).

Definition 3.3.4. Let X be a discrete random variable. For any real number t ,
the probability that X takes on a value ≤ t is the cumulative distribution function
(cdf ) of X [written FX (t)]. In formal notation, FX (t) = P({s ∈ S | X (s) ≤ t}). As
was the case with pdfs, references to s and S are typically deleted, and the cdf is
written FX (t)= P(X ≤ t).

Example
3.3.9

Suppose we wish to compute P(21 ≤ X ≤ 40) for a binomial random variable X
with n = 50 and p = 0.6. From Theorem 3.2.1, we know the formula for pX (k), so
P(21 ≤ X ≤ 40) can be written as a simple, although computationally cumbersome,
sum:

P(21 ≤ X ≤ 40)=
40∑

k=21

(
50

k

)
(0.6)k(0.4)50−k

Equivalently, the probability we are looking for can be expressed as the difference
between two cdfs:

P(21 ≤ X ≤ 40)= P(X ≤ 40)− P(X ≤ 20)= FX (40)− FX (20)
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As it turns out, values of the cdf for a binomial random variable are widely available,
both in books and in computer software. Here, for example, FX (40) = 0.9992 and
FX (20)= 0.0034, so

P(21 ≤ X ≤ 40) = 0.9992 − 0.0034

= 0.9958

Example
3.3.10

Suppose that two fair dice are rolled. Let the random variable X denote the larger
of the two faces showing: (a) Find FX (t) for t = 1,2, . . . ,6 and (b) Find FX (2.5).

a. The sample space associated with the experiment of rolling two fair dice is the
set of ordered pairs s = (i, j), where the face showing on the first die is i and the
face showing on the second die is j . By assumption, all thirty-six possible out-
comes are equally likely. Now, suppose t is some integer from 1 to 6, inclusive.
Then

FX (t)= P(X ≤ t)

= P[Max (i, j)≤ t]
= P(i ≤ t and j ≤ t) (why?)

= P(i ≤ t) · P( j ≤ t) (why?)

= t

6
· t

6

= t2

36
, t = 1,2,3,4,5,6

b. Even though the random variable X has nonzero probability only for the inte-
gers 1 through 6, the cdf is defined for any real number from −∞ to +∞. By
definition, FX (2.5)= P(X ≤ 2.5). But

P(X ≤ 2.5) = P(X ≤ 2)+ P(2 < X ≤ 2.5)

= FX (2)+ 0

so

FX (2.5)= FX (2)= 22

36
= 1

9

What would the graph of FX (t) as a function of t look like?

Questions

3.3.1. An urn contains five balls numbered 1 to 5. Two
balls are drawn simultaneously.

(a) Let X be the larger of the two numbers drawn. Find
pX (k).

(b) Let V be the sum of the two numbers drawn. Find
pV (k).

3.3.2. Repeat Question 3.3.1 for the case where the two
balls are drawn with replacement.

3.3.3. Suppose a fair die is tossed three times. Let X be
the largest of the three faces that appear. Find pX (k).

3.3.4. Suppose a fair die is tossed three times. Let X be the
number of different faces that appear (so X = 1,2, or 3).
Find pX (k).

3.3.5. A fair coin is tossed three times. Let X be the num-
ber of heads in the tosses minus the number of tails. Find
pX (k).

3.3.6. Suppose die one has spots 1,2,2,3,3,4 and die two
has spots 1,3,4,5,6,8. If both dice are rolled, what is the
sample space? Let X = total spots showing. Show that the
pdf for X is the same as for normal dice.
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3.3.7. Suppose a particle moves along the x-axis begin-
ning at 0. It moves one integer step to the left or right with
equal probability. What is the pdf of its position after four
steps?

3.3.8. How would the pdf asked for in Question 3.3.7 be
affected if the particle was twice as likely to move to the
right as to the left?

3.3.9. Suppose that five people, including you and a
friend, line up at random. Let the random variable X
denote the number of people standing between you and
your friend. What is pX (k)?

3.3.10. Urn I and urn II each have two red chips and
two white chips. Two chips are drawn simultaneously from
each urn. Let X1 be the number of red chips in the first

sample and X2 the number of red chips in the second
sample. Find the pdf of X1 + X2.

3.3.11. Suppose X is a binomial random variable with
n = 4 and p = 2

3
. What is the pdf of 2X + 1?

3.3.12. Find the cdf for the random variable X in Ques-
tion 3.3.3.

3.3.13. A fair die is rolled four times. Let the random vari-
able X denote the number of 6’s that appear. Find and
graph the cdf for X .

3.3.14. At the points x = 0,1, . . . ,6, the cdf for the dis-
crete random variable X has the value FX (x)= x(x +1)/42.
Find the pdf for X .

3.3.15. Find the pdf for the discrete random variable X
whose cdf at the points x = 0,1, . . . ,6 is given by FX (x) =
x3/216.

3.4 Continuous Random Variables
The statement was made in Chapter 2 that all sample spaces belong to one of two
generic types—discrete sample spaces are ones that contain a finite or a countably
infinite number of outcomes and continuous sample spaces are those that contain an
uncountably infinite number of outcomes. Rolling a pair of dice and recording the
faces that appear is an experiment with a discrete sample space; choosing a number
at random from the interval [0,1] would have a continuous sample space.

How we assign probabilities to these two types of sample spaces is different.
Section 3.3 focused on discrete sample spaces. Each outcome s is assigned a prob-
ability by the discrete probability function p(s). If a random variable X is defined
on the sample space, the probabilities associated with its outcomes are assigned by
the probability density function pX (k). Applying those same definitions, though, to
the outcomes in a continuous sample space will not work. The fact that a continuous
sample space has an uncountably infinite number of outcomes eliminates the option
of assigning a probability to each point as we did in the discrete case with the func-
tion p(s). We begin this section with a particular pdf defined on a discrete sample
space that suggests how we might define probabilities, in general, on a continuous
sample space.

Suppose an electronic surveillance monitor is turned on briefly at the beginning
of every hour and has a 0.905 probability of working properly, regardless of how
long it has remained in service. If we let the random variable X denote the hour at
which the monitor first fails, then pX (k) is the product of k individual probabilities:

pX (k) = P(X = k)= P(Monitor fails for the first time at the kth hour)

= P(Monitor functions properly for first k − 1 hours ∩ Monitor fails at the kth hour)

= (0.905)k−1(0.095), k = 1,2,3, . . .

Figure 3.4.1 shows a probability histogram of pX (k) for k values ranging from 1 to
21. Here the height of the kth bar is pX (k), and since the width of each bar is 1, the
area of the kth bar is also pX (k).

Now, look at Figure 3.4.2, where the exponential curve y = 0.1e−0.1x is super-
imposed on the graph of pX (k). Notice how closely the area under the curve
approximates the area of the bars. It follows that the probability that X lies in some
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given interval will be numerically similar to the integral of the exponential curve
above that same interval.
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y = 0.1e–0.1x

For example, the probability that the monitor fails sometime during the first
four hours would be the sum

P(0 ≤ X ≤ 4) =
4∑

k=0

pX (k)

=
4∑

k=0

(0.905)k−1(0.095)

= 0.3297

To four decimal places, the corresponding area under the exponential curve is the
same: ∫ 4

0
0.1e−0.1x dx = 0.3297
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Implicit in the similarity here between pX (k) and the exponential curve y =
0.1e−0.1x is our sought-after alternative to p(s) for continuous sample spaces. Instead
of defining probabilities for individual points, we will define probabilities for inter-
vals of points, and those probabilities will be areas under the graph of some function
(such as y = 0.1e−0.1x ), where the shape of the function will reflect the desired
probability “measure” to be associated with the sample space.

Definition 3.4.1. A probability function P on a set of real numbers S is called
continuous if there exists a function f (t) such that for any closed interval [a,b]⊂
S, P([a,b])= ∫ b

a f (t)dt .

Comment If a probability function P satisfies Definition 3.4.1, then P(A) =∫
A f (t)dt for any set A where the integral is defined.

Conversely, suppose a function f (t) has the two properties

1. f (t)≥ 0 for all t .
2.
∫∞
−∞ f (t)dt = 1.

If P(A) = ∫A f (t)dt for all A, then P will satisfy the probability axioms given in
Section 2.3.

Choosing the Function f(t)

We have seen that the probability structure of any sample space with a finite
or countably infinite number of outcomes is defined by the function p(s) =
P(Outcome is s). For sample spaces having an uncountably infinite number of pos-
sible outcomes, the function f (t) serves an analogous purpose. Specifically, f (t)
defines the probability structure of S in the sense that the probability of any interval
in the sample space is the integral of f (t). The next set of examples illustrate several
different choices for f (t).

Example
3.4.1

The continuous equivalent of the equiprobable probability model on a discrete sam-
ple space is the function f (t) defined by f (t)=1/(b −a) for all t in the interval [a,b]
(and f (t)= 0, otherwise). This particular f (t) places equal probability weighting on
every closed interval of the same length contained in the interval [a,b]. For example,
suppose a = 0 and b = 10, and let A =[1,3] and B =[6,8]. Then f (t)= 1

10 , and

P(A)=
∫ 3

1

(
1

10

)
dt = 2

10
= P(B)=

∫ 8

6

(
1

10

)
dt

(See Figure 3.4.3.)
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Figure 3.4.3
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Example
3.4.2

Could f (t)=3t2, 0≤ t ≤1, be used to define the probability function for a continuous
sample space whose outcomes consist of all the real numbers in the interval [0,1]?
Yes, because (1) f (t)≥ 0 for all t , and (2)

∫ 1
0 f (t)dt = ∫ 1

0 3t2 dt = t3
∣∣1
0 = 1.

Notice that the shape of f (t) (see Figure 3.4.4) implies that outcomes close to
1 are more likely to occur than are outcomes close to 0. For example, P

([
0, 1

3

])=∫ 1/3
0 3t2 dt = t3

∣∣1/3
0 = 1

27 , while P
([

2
3 ,1
])= ∫ 1

2/3 3t2 dt = t3
∫ 1

2/3 = 1 − 8
27 = 19

27 .
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Figure 3.4.4

Example
3.4.3

By far the most important of all continuous probability functions is the “bell-
shaped” curve, known more formally as the normal (or Gaussian) distribution.
The sample space for the normal distribution is the entire real line; its probability
function is given by

f (t)= 1√
2πσ

exp

[
−1

2

(
t −μ

σ

)2
]

, −∞< t <∞, −∞<μ<∞, σ > 0

Depending on the values assigned to the parameters μ and σ , f (t) can take on a
variety of shapes and locations; three are illustrated in Figure 3.4.5.

μ = –4
σ = 0.5

μ = 0
σ = 1.5

μ = 3
σ = 1

0
t

f(t)

–4 3

Figure 3.4.5

Fitting f(t) to Data: The Density-Scaled Histogram

The notion of using a continuous probability function to approximate an integer-
valued discrete probability model has already been discussed (recall Figure 3.4.2).
The “trick” there was to replace the spikes that define pX (k) with rectangles whose
heights are pX (k) and whose widths are 1. Doing that makes the sum of the areas of
the rectangles corresponding to pX (k) equal to 1, which is the same as the total area
under the approximating continuous probability function. Because of the equality
of those two areas, it makes sense to superimpose (and compare) the “histogram”
of pX (k) and the continuous probability function on the same set of axes.

Now, consider the related, but slightly more general, problem of using a con-
tinuous probability function to model the distribution of a set of n measurements,
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y1, y2, . . . , yn . Following the approach taken in Figure 3.4.2, we would start by mak-
ing a histogram of the n observations. The problem, though, is that the sum of the
areas of the bars comprising that histogram would not necessarily equal 1.

As a case in point, Table 3.4.1 shows a set of forty observations. Grouping those
yi ’s into five classes, each of width 10, produces the distribution and histogram pic-
tured in Figure 3.4.6. Furthermore, suppose we have reason to believe that these
forty yi ’s may be a random sample from a uniform probability function defined over
the interval [20, 70]—that is,

f (t)= 1

70 − 20
= 1

50
, 20 ≤ t ≤ 70

Table 3.4.1

33.8 62.6 42.3 62.9 32.9 58.9 60.8 49.1 42.6 59.8
41.6 54.5 40.5 30.3 22.4 25.0 59.2 67.5 64.1 59.3
24.9 22.3 69.7 41.2 64.5 33.4 39.0 53.1 21.6 46.0
28.1 68.7 27.6 57.6 54.8 48.9 68.4 38.4 69.0 46.6

(recall Example 3.4.1). How can we appropriately draw the distribution of the yi ’s
and the uniform probability model on the same graph?

Figure 3.4.6
Class Frequency

20 ≤ y < 30 7
30 ≤ y < 40 6
40 ≤ y < 50 9
50 ≤ y < 60 8
60 ≤ y < 70 10

40
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y

Note, first, that f (t) and the histogram are not compatible in the sense that the
area under f (t) is (necessarily) 1 (= 50 × 1

50 ), but the sum of the areas of the bars
making up the histogram is 400:

histogram area = 10(7)+ 10(6)+ 10(9)+ 10(8)+ 10(10)

= 400

Nevertheless, we can “force” the total area of the five bars to match the area under
f (t) by redefining the scale of the vertical axis on the histogram. Specifically, fre-
quency needs to be replaced with the analog of probability density, which would
be the scale used on the vertical axis of any graph of f (t). Intuitively, the density
associated with, say, the interval [20, 30) would be defined as the quotient

7

40 × 10

because integrating that constant over the interval [20, 30) would give 7
40 , and the

latter does represent the estimated probability that an observation belongs to the
interval [20, 30).

Figure 3.4.7 shows a histogram of the data in Table 3.4.1, where the height of
each bar has been converted to a density, according to the formula

density (of a class) = class frequency
total no. of observations × class width
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Superimposed is the uniform probability model, f (t)= 1
50 , 20 ≤ t ≤ 70. Scaled in this

fashion, areas under both f (t) and the histogram are 1.

Figure 3.4.7
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60 ≤ y < 70 10/[40(10)]= 0.0250
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In practice, density-scaled histograms offer a simple, but effective, format for
examining the “fit” between a set of data and a presumed continuous model.
We will use it often in the chapters ahead. Applied statisticians have especially
embraced this particular graphical technique. Indeed, computer software packages
that include Histograms on their menus routinely give users the choice of putting
either frequency or density on the vertical axis.

Case Study 3.4.1

Years ago, the V805 transmitter tube was standard equipment on many aircraft
radar systems. Table 3.4.2 summarizes part of a reliability study done on the
V805; listed are the lifetimes (in hrs) recorded for 903 tubes (35). Grouped into
intervals of width 80, the densities for the nine classes are shown in the last
column.

Table 3.4.2

Lifetime (hrs) Number of Tubes Density

0–80 317 0.0044
80–160 230 0.0032

160–240 118 0.0016
240–320 93 0.0013
320–400 49 0.0007
400–480 33 0.0005
480–560 17 0.0002
560–700 26 0.0002
700+ 20 0.0002

903

Experience has shown that lifetimes of electrical equipment can often be
nicely modeled by the exponential probability function,

f (t)= λe−λt , t > 0

where the value of λ (for reasons explained in Chapter 5) is set equal to
the reciprocal of the average lifetime of the tubes in the sample. Can the
distribution of these data also be described by the exponential model?

(Continued on next page)
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One way to answer such a question is to superimpose the proposed model
on a graph of the density-scaled histogram. The extent to which the two graphs
are similar then becomes an obvious measure of the appropriateness of the
model.

0.004

0.001

80 240 400 560500 700
0

V805 lifetimes (hrs)

f(t) = 0.0056e–0.0056t

Shaded area = P (lifetime > 500)

Probability
density 0.002

0.003

Figure 3.4.8

For these data, λ would be 0.0056. Figure 3.4.8 shows the function

f (t)= 0.0056e−0.0056t

plotted on the same axes as the density-scaled histogram. Clearly, the agreement
is excellent, and we would have no reservations about using areas under f (t) to
estimate lifetime probabilities. How likely is it, for example, that a V805 tube
will last longer than five hundred hrs? Based on the exponential model, that
probability would be 0.0608:

P(V805 lifetime exceeds 500 hrs)=
∫ ∞

500
0.0056e−0.0056ydy

=−e−0.0056y
∣∣∞
500 = e−0.0056(500) = e−2.8 = 0.0608

Continuous Probability Density Functions

We saw in Section 3.3 how the introduction of discrete random variables facilitates
the solution of certain problems. The same sort of function can also be defined on
sample spaces with an uncountably infinite number of outcomes. Usually, the sample
space is an interval of real numbers—finite or infinite. The notation and techniques
for this type of random variable replace sums with integrals.

Definition 3.4.2. Let Y be a function from a sample space S to the real num-
bers. The function Y is a called a continuous random variable if there exists a
function fY (y) such that for any real numbers a and b with a < b

P(a ≤ Y ≤ b)=
∫ b

a
fY (y)dy
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The function fY (y) is the probability density function (pdf) for Y .
As in the discrete case, the cumulative distribution function (cdf) is defined

by

FY (y)= P(Y ≤ y)

The cdf in the continuous case is just an integral of fY (y), that is,

FY (y)=
∫ y

−∞
fY (t)dt

Let f (y) be an arbitrary real-valued function defined on some subset S of the
real numbers. If

1. f (y)≥ 0 for all y in S and
2.
∫

s fY (y)dy = 1

then f (y)= fY (y) for all y, where the random variable Y is the identity mapping.

Example
3.4.4

We saw in Case Study 3.4.1 that lifetimes of V805 radar tubes can be nicely modeled
by the exponential probability function

f (t)= 0.0056e−0.0056t , t > 0

To couch that statement in random variable notation would simply require that we
define Y to be the life of a V805 radar tube. Then Y would be the identity mapping,
and the pdf for the random variable Y would be the same as the probability function,
f (t). That is, we would write

fY (y)= 0.0056e−0.0056y, y ≥ 0

Similarly, when we work with the bell-shaped normal distribution in later chapters,
we will write the model in random variable notation as

fY (y)= 1√
2πσ

e
− 1

2

(
y−μ
σ

)2

, −∞< y <∞

Example
3.4.5

Suppose we would like a continuous random variable Y to “select” a number
between 0 and 1 in such a way that intervals near the middle of the range would
be more likely to be represented than intervals near either 0 or 1. One pdf having
that property is the function fY (y) = 6y(1 − y),0 ≤ y ≤ 1 (see Figure 3.4.9). Do we
know for certain that the function pictured in Figure 3.4.9 is a “legitimate” pdf? Yes,
because fY (y)≥ 0 for all y, and

∫ 1
0 6y(1 − y)dy = 6[y2/2 − y3/3]∣∣10 = 1.

Comment To simplify the way pdfs are written, it will be assumed that fY (y)=0 for
all y outside the range actually specified in the funtion’s definition. In Example 3.4.5,
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Figure 3.4.9
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for instance, the statement fY (y) = 6y(1 − y), 0 ≤ y ≤ 1, is to be interpreted as an
abbreviation for

fY (y)=

⎧⎪⎨⎪⎩
0, y < 0

6y(1 − y), 0 ≤ y ≤ 1

0, y > 1

Continuous Cumulative Distribution Functions

Associated with every random variable, discrete or continuous, is a cumulative dis-
tribution function. For discrete random variables (recall Definition 3.3.4), the cdf
is a nondecreasing step function, where the “jumps” occur at the values of t for
which the pdf has positive probability. For continuous random variables, the cdf is
a monotonically nondecreasing continuous function. In both cases, the cdf can be
helpful in calculating the probability that a random variable takes on a value in a
given interval. As we will see in later chapters, there are also several important rela-
tionships that hold for continuous cdfs and pdfs. One such relationship is cited in
Theorem 3.4.1.

Definition 3.4.3. The cdf for a continuous random variable Y is an indefinite
integral of its pdf:

FY (y)=
∫ y

−∞
fY (r) dr = P({s ∈ S | Y (s)≤ y})= P(Y ≤ y)

Theorem
3.4.1

Let FY (y) be the cdf of a continuous random variable Y . Then

d

dy
FY (y)= fY (y)

Proof The statement of Theorem 3.4.1 follows immediately from the Fundamental
Theorem of Calculus. �

Theorem
3.4.2

Let Y be a continuous random variable with cdf FY (y). Then

a. P(Y > s)= 1 − FY (s)
b. P(r < Y ≤ s)= FY (s)− FY (r)

c. lim
y→∞ FY (y)= 1

d. lim
y→−∞ FY (y)= 0

Proof

a. P(Y > s) = 1 − P(Y ≤ s) since (Y > s) and (Y ≤ s) are complementary events.
But P(Y ≤ s)= FY (s), and the conclusion follows.

b. Since the set (r < Y ≤ s) = (Y ≤ s) − (Y ≤ r), P(r < Y ≤ s) = P(Y ≤ s) − P(Y ≤
r)= FY (s)− FY (r).

c. Let {yn} be a set of values of Y, n = 1,2,3, . . . , where yn < yn+1 for all n, and
lim

n→∞ yn =∞. If lim
n→∞ FY (yn)=1 for every such sequence {yn}, then lim

y→∞ FY (y)=1.

To that end, set A1 = (Y ≤ y1), and let An = (yn−1 < Y ≤ yn) for n = 2,3, . . . . Then
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FY (yn) = P(∪n
k=1 Ak) =

n∑
k=1

P(Ak), since the Ak ’s are disjoint. Also, the sample

space S = ∪∞
k=1 Ak , and by Axiom 4, 1 = P(S) = P(∪∞

k=1 Ak) =
∞∑

k=1
P(Ak). Putting

these equalities together gives 1 =
∞∑

k=0
P(Ak) = lim

n→∞
n∑

k=0
P(Ak)= lim

n→∞ FY (yn).

d. lim
y→−∞ FY (y) = lim

y→−∞ P(Y ≤ y)= lim
y→−∞ P(−Y ≥−y)= lim

y→−∞[1 − P(−Y ≤−y)]
= 1 − lim

y→−∞ P(−Y ≤−y)= 1 − lim
y→∞ P(−Y ≤ y)

= 1 − lim
y→∞ F−Y (y)= 0 �

Questions

3.4.1. Suppose fY (y)= 4y3,0 ≤ y ≤ 1. Find P
(
0 ≤ Y ≤ 1

2

)
.

3.4.2. For the random variable Y with pdf fY (y) = 2
3

+
2
3

y,0 ≤ y ≤ 1, find P
(

3
4
≤ Y ≤ 1

)
.

3.4.3. Let fY (y) = 3
2

y2,−1 ≤ y ≤ 1. Find P
(|Y − 1

2
| < 1

4

)
.

Draw a graph of fY (y) and show the area representing the
desired probability.

3.4.4. For persons infected with a certain form of malaria,
the length of time spent in remission is described by the
continuous pdf fY (y)= 1

9
y2,0≤ y ≤3, where Y is measured

in years. What is the probability that a malaria patient’s
remission lasts longer than one year?

3.4.5. The length of time, Y , that a customer spends in line
at a bank teller’s window before being served is described
by the exponential pdf fY (y)= 0.2e−0.2y, y ≥ 0.

(a) What is the probability that a customer will wait more
than ten minutes?

(b) Suppose the customer will leave if the wait is more
than ten minutes. Assume that the customer goes to
the bank twice next month. Let the random variable
X be the number of times the customer leaves without
being served. Calculate pX (1).

3.4.6. Let n be a positive integer. Show that fY (y) =
(n + 2)(n + 1)yn(1 − y),0 ≤ y ≤ 1, is a pdf.

3.4.7. Find the cdf for the random variable Y given in
Question 3.4.1. Calculate P

(
0 ≤ Y ≤ 1

2

)
using FY (y).

3.4.8. If Y is an exponential random variable, fY (y) =
λe−λy, y ≥ 0, find FY (y).

3.4.9. If the pdf for Y is

fY (y)=
{

0, |y|> 1
1 − |y|, |y| ≤ 1

find and graph FY (y).

3.4.10. A continuous random variable Y has a cdf
given by

FY (y)=
⎧⎨⎩

0 y < 0
y2 0 ≤ y < 1
1 y ≥ 1

Find P
(

1
2
< Y ≤ 3

4

)
two ways—first, by using the cdf and

second, by using the pdf.

3.4.11. A random variable Y has cdf

FY (y)=
⎧⎨⎩

0 y < 1
ln y 1 ≤ y ≤ e
1 e < y

Find

(a) P(Y < 2)

(b) P
(
2 < Y ≤ 2 1

2

)
(c) P

(
2 < Y < 2 1

2

)
(d) fY (y)

3.4.12. The cdf for a random variable Y is defined by
FY (y) = 0 for y < 0; FY (y) = 4y3 − 3y4 for 0 ≤ y ≤ 1; and
FY (y)=1 for y >1. Find P

(
1
4
≤Y ≤ 3

4

)
by integrating fY (y).

3.4.13. Suppose FY (y)= 1
12

(y2 + y3),0 ≤ y ≤ 2. Find fY (y).

3.4.14. In a certain country, the distribution of a fam-
ily’s disposable income, Y , is described by the pdf fY (y) =
ye−y, y ≥ 0. Find FY (y).

3.4.15. The logistic curve F(y) = 1
1+e−y ,−∞ < y < ∞, can

represent a cdf since it is increasing, lim
y→−∞

1
1+e−y = 0, and

lim
y→+∞

1
1+e−y = 1. Verify these three assertions and also find

the associated pdf.

3.4.16. Let Y be the random variable described in Ques-
tion 3.4.1. Define W = 2Y . Find fW (w). For which values
of w is fW (w) �= 0?
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3.4.17. Suppose that fY (y) is a continuous and symmetric
pdf, where symmetry is the property that fY (y) = fY (−y)

for all y. Show that P(−a ≤ Y ≤ a)= 2FY (a)− 1.

3.4.18. Let Y be a random variable denoting the age at
which a piece of equipment fails. In reliability theory, the
probability that an item fails at time y given that it has

survived until time y is called the hazard rate, h(y). In
terms of the pdf and cdf,

h(y)= fY (y)

1 − FY (y)

Find h(y) if Y has an exponential pdf (see Question 3.4.8).

3.5 Expected Values
Probability density functions, as we have already seen, provide a global overview
of a random variable’s behavior. If X is discrete, pX (k) gives P(X = k) for all k; if
Y is continuous, and A is any interval or a countable union of intervals, P(Y ε A) =∫

A fY (y)dy. Detail that explicit, though, is not always necessary—or even helpful.
There are times when a more prudent strategy is to focus the information contained
in a pdf by summarizing certain of its features with single numbers.

The first such feature that we will examine is central tendency, a term referring
to the “average” value of a random variable. Consider the pdfs pX (k) and fY (y)

pictured in Figure 3.5.1. Although we obviously cannot predict with certainty what
values any future X ’s and Y ’s will take on, it seems clear that X values will tend to
lie somewhere near μX , and Y values somewhere near μY . In some sense, then, we
can characterize pX (k) by μX , and fY (y) by μY .

Figure 3.5.1

μX μy

pX  (k)
fY (y)

The most frequently used measure for describing central tendency—that is, for
quantifying μX and μY —is the expected value. Discussed at some length in this
section and in Section 3.9, the expected value of a random variable is a slightly
more abstract formulation of what we are already familiar with in simple discrete
settings as the arithmetic average. Here, though, the values included in the average
are “weighted” by the pdf.

Gambling affords a familiar illustration of the notion of an expected value. Con-
sider the game of roulette. After bets are placed, the croupier spins the wheel and
declares one of thirty-eight numbers, 00, 0, 1, 2, . . ., 36, to be the winner. Disre-
garding what seems to be a perverse tendency of many roulette wheels to land on
numbers for which no money has been wagered, we will assume that each of these
thirty-eight numbers is equally likely (although only the eighteen numbers 1, 3, 5,
. . ., 35 are considered to be odd and only the eighteen numbers 2, 6, 4, . . ., 36 are
considered to be even). Suppose that our particular bet (at “even money”) is $1 on
odds. If the random variable X denotes our winnings, then X takes on the value 1 if
an odd number occurs, and −1 otherwise. Therefore,

pX (1)= P(X = 1)= 18

38
= 9

19
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and

pX (−1)= P(X =−1)= 20

38
= 10

19

Then 9
19 of the time we will win $1 and 10

19 of the time we will lose $1. Intuitively,
then, if we persist in this foolishness, we stand to lose, on the average, a little more
than 5� c each time we play the game:

“expected” winnings = $1 · 9

19
+ (−$1) · 10

19

=−$0.053
.= −5� c

The number −0.053 is called the expected value of X .
Physically, an expected value can be thought of as a center of gravity. Here, for

example, imagine two bars of height 10
19 and 9

19 positioned along a weightless X -axis
at the points −1 and +1, respectively (see Figure 3.5.2). If a fulcrum were placed at
the point −0.053, the system would be in balance, implying that we can think of that
point as marking off the center of the random variable’s distribution.

Figure 3.5.2 10
19

9
19

–1 0

–0.053

1

If X is a discrete random variable taking on each of its values with the same
probability, the expected value of X is simply the everyday notion of an arithmetic
average or mean:

expected value of X =
∑
all k

k · 1

n
= 1

n

∑
all k

k

Extending this idea to a discrete X described by an arbitrary pdf, pX (k), gives

expected value of X =
∑
all k

k · pX (k) (3.5.1)

For a continuous random variable Y , the summation in Equation 3.5.1 is replaced
by an integration and k · pX (k) becomes y · fY (y).

Definition 3.5.1. Let X be a discrete random variable with probability function
pX (k). The expected value of X is denoted E(X) (or sometimes μ or μX ) and is
given by

E(X)=μ=μX =
∑
all k

k · pX (k)

Similarly, if Y is a continuous random variable with pdf fY (y),

E(Y )=μ=μY =
∫ ∞

−∞
y · fY (y)dy
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Comment We assume that both the sum and the integral in Definition 3.5.1
converge absolutely:∑

all k

|k|pX (k)<∞
∫ ∞

−∞
|y| fY (y) dy <∞

If not, we say that the random variable has no finite expected value. One immediate
reason for requiring absolute convergence is that a convergent sum that is not abso-
lutely convergent depends on the order in which the terms are added, and order
should obviously not be a consideration when defining an average.

Example
3.5.1

Suppose X is a binomial random variable with p = 5
9 and n = 3. Then pX (k)= P(X =

k)= (3k)( 5
9

)k( 4
9

)3−k , k = 0, 1, 2, 3. What is the expected value of X?
Applying Definition 3.5.1 gives

E(X) =
3∑

k=0

k ·
(

3

k

)(
5

9

)k (4

9

)3−k

= (0)

(
64

729

)
+ (1)

(
240

729

)
+ (2)

(
300

729

)
+ (3)

(
125

729

)
= 1215

729
= 5

3
= 3

(
5

9

)

Comment Notice that the expected value here reduces to five-thirds, which can be
written as three times five-ninths, the latter two factors being n and p, respectively.
As the next theorem proves, that relationship is not a coincidence.

Theorem
3.5.1

Suppose X is a binomial random variable with parameters n and p. Then E(X)= np.

Proof According to Definition 3.5.1, E(X) for a binomial random variable is the sum

E(X)=
n∑

k=0

k · pX (k)=
n∑

k=0

k

(
n

k

)
pk(1 − p)n−k

=
n∑

k=0

k · n!
k!(n − k)! pk(1 − p)n−k

=
n∑

k=1

n!
(k − 1)!(n − k)! pk(1 − p)n−k (3.5.2)

At this point, a trick is called for. If E(X) =∑
all k

g(k) can be factored in such a way

that E(X)= h
∑
all k

pX∗(k), where pX∗(k) is the pdf for some random variable X∗, then

E(X) = h, since the sum of a pdf over its entire range is 1. Here, suppose that np is
factored out of Equation 3.5.2. Then

E(X) = np
n∑

k=1

(n − 1)!
(k − 1)!(n − k)! pk−1(1 − p)n−k

= np
n∑

k=1

(
n − 1

k − 1

)
pk−1(1 − p)n−k
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Now, let j = k − 1. It follows that

E(X)= np
n−1∑
j=0

(
n − 1

j

)
p j (1 − p)n− j−1

Finally, letting m = n − 1 gives

E(X)= np
m∑

j=0

(
m

j

)
p j (1 − p)m− j

and, since the value of the sum is 1 (why?),

E(X)= np (3.5.3)

�

Comment The statement of Theorem 3.5.1 should come as no surprise. If a
multiple-choice test, for example, has one hundred questions, each with five pos-
sible answers, we would “expect” to get twenty correct, just by guessing. But if the
random variable X denotes the number of correct answers (out of one hundred),
20 = E(X)= 100

(
1
5

)= np.

Example
3.5.2

An urn contains nine chips, five red and four white. Three are drawn out at random
without replacement. Let X denote the number of red chips in the sample. Find
E(X).

From Section 3.2, we recognize X to be a hypergeometric random variable,
where

P(X = k)= pX (k)=
(5

k

)( 4
3−k

)(9
3

) , k = 0,1,2,3

Therefore,

E(X) =
3∑

k=0

k ·
(5

k

)( 4
3−k

)(9
3

)
= (0)

(
4

84

)
+ (1)

(
30

84

)
+ (2)

(
40

84

)
+ (3)

(
10

84

)
= 5

3

Comment As was true in Example 3.5.1, the value found here for E(X) suggests a
general formula—in this case, for the expected value of a hypergeometric random
variable.

Theorem
3.5.2

Suppose X is a hypergeometric random variable with parameters r , w, and n. That is,
suppose an urn contains r red balls and w white balls. A sample of size n is drawn
simultaneously from the urn. Let X be the number of red balls in the sample. Then
E(X)= rn

r+w
.

Proof See Question 3.5.25. �
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Comment Let p represent the proportion of red balls in an urn—that is, p = r
r+w

.
The formula, then, for the expected value of a hypergeometric random variable
has the same structure as the formula for the expected value of a binomial random
variable:

E(X)= rn

r +w
= n

r

r +w
= np

Example
3.5.3

Among the more common versions of the “numbers” racket is a game called D.J., its
name deriving from the fact that the winning ticket is determined from Dow Jones
averages. Three sets of stocks are used: Industrials, Transportations, and Utilities.
Traditionally, the three are quoted at two different times, 11 a.m. and noon. The last
digits of the earlier quotation are arranged to form a three-digit number; the noon
quotation generates a second three-digit number, formed the same way. Those two
numbers are then added together and the last three digits of that sum become the
winning pick. Figure 3.5.3 shows a set of quotations for which 906 would be declared
the winner.

Industrials
Transportation
Utilities

845.6 1
375.2 7
110.6 3

11 A.M. quotation

Industrials
Transportation
Utilities

848.1 7
376.7 3
110.6 3

173 733

906 = Winning number

+

Noon quotation

=

Figure 3.5.3

The payoff in D.J. is 700 to 1. Suppose that we bet $5. How much do we stand to
win, or lose, on the average?

Let p denote the probability of our number being the winner and let X denote
our earnings. Then

X =
{

$3500 with probability p

−$5 with probability 1 − p

and

E(X)= $3500 · p − $5 · (1 − p)

Our intuition would suggest (and this time it would be correct!) that each of the
possible winning numbers, 000 through 999, is equally likely. That being the case,
p = 1/1000 and

E(X)= $3500 ·
(

1

1000

)
− $5 ·

(
999

1000

)
=−$1.50

On the average, then, we lose $1.50 on a $5.00 bet.

Example
3.5.4

Suppose that fifty people are to be given a blood test to see who has a certain disease.
The obvious laboratory procedure is to examine each person’s blood individually,
meaning that fifty tests would eventually be run. An alternative strategy is to divide
each person’s blood sample into two parts—say, A and B. All of the A’s would then
be mixed together and treated as one sample. If that “pooled” sample proved to be
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negative for the disease, all fifty individuals must necessarily be free of the infection,
and no further testing would need to be done. If the pooled sample gave a positive
reading, of course, all fifty B samples would have to be analyzed separately. Under
what conditions would it make sense for a laboratory to consider pooling the fifty
samples?

In principle, the pooling strategy is preferable (i.e., more economical) if it can
substantially reduce the number of tests that need to be performed. Whether or not
it can do so depends ultimately on the probability p that a person is infected with
the disease.

Let the random variable X denote the number of tests that will have to be
performed if the samples are pooled. Clearly,

X =
{

1 if none of the fifty is infected
51 if at least one of the fifty is infected

But

P(X = 1)= pX (1) = P(None of the fifty is infected)

= (1 − p)50

(assuming independence), and

P(X = 51)= pX (51)= 1 − P(X = 1)= 1 − (1 − p)50

Therefore,

E(X)= 1 · (1 − p)50 + 51 · [1 − (1 − p)50]
Table 3.5.1 shows E(X) as a function of p. As our intuition would suggest,

the pooling strategy becomes increasingly feasible as the prevalence of the disease
diminishes. If the chance of a person being infected is 1 in 1000, for example, the
pooling strategy requires an average of only 3.4 tests, a dramatic improvement over
the fifty tests that would be needed if the samples were tested one by one. On the
other hand, if 1 in 10 individuals is infected, pooling would be clearly inappropriate,
requiring more than fifty tests [E(X)= 50.7].

Table 3.5.1

p E(X)

0.5 51.0
0.1 50.7
0.01 20.8
0.001 3.4
0.0001 1.2

Example
3.5.5

Consider the following game. A fair coin is flipped until the first tail appears; we win
$2 if it appears on the first toss, $4 if it appears on the second toss, and, in general,
$2k if it first occurs on the kth toss. Let the random variable X denote our winnings.
How much should we have to pay in order for this to be a fair game? [Note: A fair
game is one where the difference between the ante and E(X) is 0.]

Known as the St. Petersburg paradox, this problem has a rather unusual answer.
First, note that

pX (2k)= P(X = 2k)= 1

2k
, k = 1,2, . . .
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Therefore,

E(X)=
∑
all k

2k pX (2k)=
∞∑

k=1

2k · 1

2k
= 1 + 1 + 1 + · · ·

which is a divergent sum. That is, X does not have a finite expected value, so in order
for this game to be fair, our ante would have to be an infinite amount of money!

Comment Mathematicians have been trying to “explain” the St. Petersburg para-
dox for almost two hundred years (56). The answer seems clearly absurd—no
gambler would consider paying even $25 to play such a game, much less an infinite
amount—yet the computations involved in showing that X has no finite expected
value are unassailably correct. Where the difficulty lies, according to one common
theory, is with our inability to put in perspective the very small probabilities of win-
ning very large payoffs. Furthermore, the problem assumes that our opponent has
infinite capital, which is an impossible state of affairs. We get a much more reason-
able answer for E(X) if the stipulation is added that our winnings can be at most,
say, $1000 (see Question 3.5.19) or if the payoffs are assigned according to some
formula other than 2k (see Question 3.5.20).

Comment There are two important lessons to be learned from the St. Petersburg
paradox. First is the realization that E(X) is not necessarily a meaningful character-
ization of the “location” of a distribution. Question 3.5.24 shows another situation
where the formal computation of E(X) gives a similarly inappropriate answer. Sec-
ond, we need to be aware that the notion of expected value is not necessarily
synonymous with the concept of worth. Just because a game, for example, has a
positive expected value—even a very large positive expected value—does not imply
that someone would want to play it. Suppose, for example, that you had the oppor-
tunity to spend your last $10,000 on a sweepstakes ticket where the prize was $1
billion but the probability of winning was only one in ten thousand. The expected
value of such a bet would be over $90,000,

E(X) = $1,000,000,000
(

1

10,000

)
+ (−$10,000)

(
9,999
10,000

)
= $90,001

but it is doubtful that many people would rush out to buy a ticket. (Economists have
long recognized the distinction between a payoff’s numerical value and its perceived
desirability. They refer to the latter as utility.)

Example
3.5.6

The distance, Y , that a molecule in a gas travels before colliding with another
molecule can be modeled by the exponential pdf

fY (y)= 1

μ
e−y/μ, y ≥ 0

where μ is a positive constant known as the mean free path. Find E(Y ).
Since the random variable here is continuous, its expected value is an integral:

E(Y )=
∫ ∞

0
y

1

μ
e−y/μ dy
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Let w = y/μ, so that dw = 1/μ dy. Then E(Y ) = μ
∫∞

0 we−wdw. Setting u = w and
dv = e−wdw and integrating by parts gives

E(Y )=μ[−we−w − e−w]∣∣∞0 =μ (3.5.4)

Equation 3.5.4 shows that μ is aptly named—it does, in fact, represent the aver-
age distance a molecule travels, free of any collisions. Nitrogen (N2), for example,
at room temperature and standard atmospheric pressure has μ = 0.00005 cm. An
N2 molecule, then, travels that far before colliding with another N2 molecule, on the
average.

Example
3.5.7

One continuous pdf that has a number of interesting applications in physics is the
Rayleigh distribution, where the pdf is given by

fY (y)= y

a2
e−y2/2a2

, a > 0; 0 ≤ y <∞ (3.5.5)

Calculate the expected value for a random variable having a Rayleigh distribution.
From Definition 3.5.1,

E(Y )=
∫ ∞

0
y · y

a2
e−y2/2a2

dy

Let v = y/(
√

2a). Then

E(Y )= 2
√

2a
∫ ∞

0
v2e−v2

dv

The integrand here is a special case of the general form v2ke−v2
. For k = 1,∫ ∞

0
v2ke−v2

dv =
∫ ∞

0
v2e−v2

dv = 1

4

√
π

Therefore,

E(Y ) = 2
√

2a · 1

4

√
π

= a
√

π/2

Comment The pdf here is named for John William Strutt, Baron Rayleigh, the
nineteenth- and twentieth-century British physicist who showed that Equation 3.5.5
is the solution to a problem arising in the study of wave motion. If two waves are
superimposed, it is well known that the height of the resultant at any time t is sim-
ply the algebraic sum of the corresponding heights of the waves being added (see
Figure 3.5.4). Seeking to extend that notion, Rayleigh posed the following question:
If n waves, each having the same amplitude h and the same wavelength, are super-
imposed randomly with respect to phase, what can we say about the amplitude R of
the resultant? Clearly, R is a random variable, its value depending on the particular
collection of phase angles represented by the sample. What Rayleigh was able to
show in his 1880 paper (166) is that when n is large, the probabilistic behavior of R
is described by the pdf

fR(r)= 2r

nh2
· e−r2/nh2

, r > 0

which is just a special case of Equation 3.5.5 with a =√2/nh2.
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Figure 3.5.4 Resultant

Wave 1

Wave 2

A Second Measure of Central Tendency: The Median

While the expected value is the most frequently used measure of a random vari-
able’s central tendency, it does have a weakness that sometimes makes it misleading
and inappropriate. Specifically, if one or several possible values of a random vari-
able are either much smaller or much larger than all the others, the value of μ can
be distorted in the sense that it no longer reflects the center of the distribution in
any meaningful way. For example, suppose a small community consists of a homo-
geneous group of middle-range salary earners, and then Bill Gates moves to town.
Obviously, the town’s average salary before and after the multibillionaire arrives
will be quite different, even though he represents only one new value of the “salary”
random variable.

It would be helpful to have a measure of central tendency that is not so sensitive
to “outliers” or to probability distributions that are markedly skewed. One such
measure is the median, which, in effect, divides the area under a pdf into two equal
areas.

Definition 3.5.2. If X is a discrete random variable, the median, m, is that point
for which P(X < m) = P(X > m). In the event that P(X ≤ m) = 0.5 and P(X ≥
m ′)= 0.5, the median is defined to be the arithmetic average, (m + m ′)/2.

If Y is a continuous random variable, its median is the solution to the
integral equation

∫ m
−∞ fY (y) dy = 0.5.

Example
3.5.8

If a random variable’s pdf is symmetric, both μ and m will be equal. Should pX (k) or
fY (y) not be symmetric, though, the difference between the expected value and the
median can be considerable, especially if the asymmetry takes the form of extreme
skewness. The situation described here is a case in point.

Soft-glow makes a 60-watt light bulb that is advertised to have an average life
of one thousand hours. Assuming that the performance claim is valid, is it rea-
sonable for consumers to conclude that the Soft-glow bulbs they buy will last for
approximately one thousand hours?

No! If the average life of a bulb is one thousand hours, the (continuous) pdf,
fY (y), modeling the length of time, Y , that it remains lit before burning out is likely
to have the form

fY (y)= 0.001e−0.001y, y > 0 (3.5.6)

(for reasons explained in Chapter 4). But Equation 3.5.6 is a very skewed pdf, having
a shape much like the curve drawn in Figure 3.4.8. The median for such a distribution
will lie considerably to the left of the mean.
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More specifically, the median lifetime for these bulbs—according to Defini-
tion 3.5.2—is the value m for which∫ m

0
0.001e−0.001ydy = 0.5

But
∫ m

0 0.001e−0.001ydy = 1 − e−0.001m . Setting the latter equal to 0.5 implies that

m = (1/−0.001) ln(0.5)= 693

So, even though the average life of one of these bulbs is 1000 hours, there is a 50%
chance that the one you buy will last less than 693 hours.

Questions

3.5.1. Recall the game of Keno described in Ques-
tion 3.2.26. The following are all the payoffs on a $1
wager where the player has bet on ten numbers. Calculate
E(X), where the random variable X denotes the amount
of money won.

Number of Correct Guesses Payoff Probability

< 5 −$ 1 .935
5 2 .0514
6 18 .0115
7 180 .0016
8 1,300 1.35 × 10−4

9 2,600 6.12 × 10−6

10 10,000 1.12 × 10−7

3.5.2. The roulette wheels in Monte Carlo typically have
a 0 but not a 00. What is the expected value of betting on
red in this case? If a trip to Monte Carlo costs $3000, how
much would a player have to bet to justify gambling there
rather than Las Vegas?

3.5.3. The pdf describing the daily profit, X , earned by
Acme Industries was derived in Example 3.3.7. Find the
company’s average daily profit.

3.5.4. In the game of redball, two drawings are made
without replacement from a bowl that has four white ping-
pong balls and two red ping-pong balls. The amount won is
determined by how many of the red balls are selected. For
a $5 bet, a player can opt to be paid under either Rule A
or Rule B, as shown. If you were playing the game, which
would you choose? Why?

A B

No. of Red No. of Red
Balls Drawn Payoff Balls Drawn Payoff

0 0 0 0
1 $2 1 $1
2 $10 2 $20

3.5.5. Suppose a life insurance company sells a $50,000,
five-year term policy to a twenty-five-year-old woman. At
the beginning of each year the woman is alive, the com-
pany collects a premium of $P . The probability that the
woman dies and the company pays the $50,000 is given
in the table below. So, for example, in Year 3, the com-
pany loses $50,000 – $P with probability 0.00054 and gains
$P with probability 1 – 0.00054 = 0.99946. If the company
expects to make $1000 on this policy, what should P be?

Year Probability of Payoff

1 0.00051
2 0.00052
3 0.00054
4 0.00056
5 0.00059

3.5.6. A manufacturer has one hundred memory chips
in stock, 4% of which are likely to be defective (based
on past experience). A random sample of twenty chips is
selected and shipped to a factory that assembles laptops.
Let X denote the number of computers that receive faulty
memory chips. Find E(X).

3.5.7. Records show that 642 new students have just
entered a certain Florida school district. Of those 642, a
total of 125 are not adequately vaccinated. The district’s
physician has scheduled a day for students to receive what-
ever shots they might need. On any given day, though,
12% of the district’s students are likely to be absent.
How many new students, then, can be expected to remain
inadequately vaccinated?

3.5.8. Calculate E(Y ) for the following pdfs:

(a) fY (y)= 3(1 − y)2,0 ≤ y ≤ 1
(b) fY (y)= 4ye−2y, y ≥ 0

(c) fY (y)=

⎧⎪⎪⎨⎪⎪⎩
3
4
, 0 ≤ y ≤ 1

1
4
, 2 ≤ y ≤ 3

0, elsewhere
(d) fY (y)= sin y, 0 ≤ y ≤ π

2
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3.5.9. Recall Question 3.4.4, where the length of time Y
(in years) that a malaria patient spends in remission has
pdf fY (y) = 1

9
y2,0 ≤ y ≤ 3. What is the average length of

time that such a patient spends in remission?

3.5.10. Let the random variable Y have the uniform dis-
tribution over [a,b]; that is, fY (y) = 1

b−a
for a ≤ y ≤ b.

Find E(Y ) using Definition 3.5.1. Also, deduce the value
of E(Y ), knowing that the expected value is the center of
gravity of fY (y).

3.5.11. Show that the expected value associated with the
exponential distribution, fY (y)=λe−λy, y >0, is 1/λ, where
λ is a positive constant.

3.5.12. Show that

fY (y)= 1

y2
, y ≥ 1

is a valid pdf but that Y does not have a finite expected
value.

3.5.13. Based on recent experience, ten-year-old passen-
ger cars going through a motor vehicle inspection station
have an 80% chance of passing the emissions test. Suppose
that two hundred such cars will be checked out next week.
Write two formulas that show the number of cars that are
expected to pass.

3.5.14. Suppose that fifteen observations are chosen at
random from the pdf fY (y) = 3y2,0 ≤ y ≤ 1. Let X denote
the number that lie in the interval

(
1
2
,1
)
. Find E(X).

3.5.15. A city has 74,806 registered automobiles. Each is
required to display a bumper decal showing that the owner
paid an annual wheel tax of $50. By law, new decals need
to be purchased during the month of the owner’s birth-
day. How much wheel tax revenue can the city expect to
receive in November?

3.5.16. Regulators have found that twenty-three of the
sixty-eight investment companies that filed for bankruptcy
in the past five years failed because of fraud, not for rea-
sons related to the economy. Suppose that nine additional
firms will be added to the bankruptcy rolls during the
next quarter. How many of those failures are likely to be
attributed to fraud?

3.5.17. An urn contains four chips numbered 1 through 4.
Two are drawn without replacement. Let the random
variable X denote the larger of the two. Find E(X).

3.5.18. A fair coin is tossed three times. Let the random
variable X denote the total number of heads that appear
times the number of heads that appear on the first and
third tosses. Find E(X).

3.5.19. How much would you have to ante to make the
St. Petersburg game “fair” (recall Example 3.5.5) if the

most you could win was $1000? That is, the payoffs are $2k

for 1 ≤ k ≤ 9, and $1000 for k ≥ 10.

3.5.20. For the St. Petersburg problem (Example 3.5.5),
find the expected payoff if

(a) the amounts won are ck instead of 2k , where 0<c < 2.

(b) the amounts won are log 2k . [This was a modi-
fication suggested by D. Bernoulli (a nephew of
James Bernoulli) to take into account the decreasing
marginal utility of money—the more you have, the
less useful a bit more is.]

3.5.21. A fair die is rolled three times. Let X denote
the number of different faces showing, X = 1,2,3.

Find E(X).

3.5.22. Two distinct integers are chosen at random from
the first five positive integers. Compute the expected
value of the absolute value of the difference of the two
numbers.

3.5.23. Suppose that two evenly matched teams are play-
ing in the World Series. On the average, how many games
will be played? (The winner is the first team to get four
victories.) Assume that each game is an independent
event.

3.5.24. An urn contains one white chip and one black
chip. A chip is drawn at random. If it is white, the “game”
is over; if it is black, that chip and another black one are
put into the urn. Then another chip is drawn at random
from the “new” urn and the same rules for ending or con-
tinuing the game are followed (i.e., if the chip is white, the
game is over; if the chip is black, it is placed back in the
urn, together with another chip of the same color). The
drawings continue until a white chip is selected. Show that
the expected number of drawings necessary to get a white
chip is not finite.

3.5.25. A random sample of size n is drawn without
replacement from an urn containing r red chips and w

white chips. Define the random variable X to be the num-
ber of red chips in the sample. Use the summation tech-
nique described in Theorem 3.5.1 to prove that E(X) =
rn/(r +w).

3.5.26. Given that X is a nonnegative, integer-valued
random variable, show that

E(X)=
∞∑

k=1

P(X ≥ k)

3.5.27. Find the median for each of the following pdfs:

(a) fY (y)= (θ + 1)yθ , 0 ≤ y ≤ 1, where θ > 0
(b) fY (y)= y + 1

2
, 0 ≤ y ≤ 1
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The Expected Value of a Function of a Random Variable

There are many situations that call for finding the expected value of a function of a
random variable—say, Y = g(X). One common example would be change of scale
problems, where g(X) = aX + b for constants a and b. Sometimes the pdf of the
new random variable Y can be easily determined, in which case E(Y ) can be cal-
culated by simply applying Definition 3.5.1. Often, though, fY (y) can be difficult to
derive, depending on the complexity of g(X). Fortunately, Theorem 3.5.3 allows us
to calculate the expected value of Y without knowing the pdf for Y .

Theorem
3.5.3

Suppose X is a discrete random variable with pdf pX (k). Let g(X) be a function of X .
Then the expected value of the random variable g(X) is given by

E[g(X)] =
∑
all k

g(k) · pX (k)

provided that
∑
all k

|g(k)|pX (k)<∞.

If Y is a continuous random variable with pdf fY (y), and if g(Y ) is a continuous
function, then the expected value of the random variable g(Y ) is

E[g(Y )] =
∫ ∞

−∞
g(y) · fY (y) dy

provided that
∫∞
−∞ |g(y)| fY (y) dy <∞.

Proof We will prove the result for the discrete case. See (146) for details showing
how the argument is modified when the pdf is continuous. Let W = g(X). The set of
all possible k values, k1, k2, . . ., will give rise to a set of w values, w1,w2, . . . , where, in
general, more than one k may be associated with a given w. Let Sj be the set of k’s
for which g(k)= w j [so ∪ j S j is the entire set of k values for which pX (k) is defined].
We obviously have that P(W =w j )= P(X ∈ Sj ), and we can write

E(W )=
∑

j

w j · P(W =w j )=
∑

j

w j · P(X ∈ Sj )

=
∑

j

w j

∑
k∈S j

pX (k)

=
∑

j

∑
k∈S j

w j · pX (k)

=
∑

j

∑
k∈S j

g(k)pX (k) (why?)

=
∑
all k

g(k)pX (k)

Since it is being assumed that
∑
all k

|g(k)|pX (k) < ∞, the statement of the theorem

holds. �

Corollary
3.5.1

For any random variable W , E(aW + b)= aE(W )+ b, where a and b are constants.�

Proof Suppose W is continuous; the proof for the discrete case is similar. By The-
orem 3.5.3, E(aW + b) = ∫∞

−∞(aw + b) fW (w) dw, but the latter can be written
a
∫∞
−∞ w · fW (w) dw + b

∫∞
−∞ fW (w) dw = aE(W )+ b · 1 = aE(W )+ b. �
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Example
3.5.9

Suppose that X is a random variable whose pdf is nonzero only for the three values
−2,1, and +2:

k pX (k)

−2
5

8

1
1

8

2
2

8
1

Let W = g(X) = X2. Verify the statement of Theorem 3.5.3 by computing E(W )

two ways—first, by finding pW (w) and summing w · pW (w) over w and, second, by
summing g(k) · pX (k) over k.

By inspection, the pdf for W is defined for only two values, 1 and 4:

w (= k2) pW (w)

1
1

8

4
7

8
1

Taking the first approach to find E(W ) gives

E(W )=
∑
w

w · pW (w)= 1 ·
(

1

8

)
+ 4 ·
(

7

8

)
= 29

8

To find the expected value via Theorem 3.5.3, we take

E[g(X)] =
∑

k

k2 · pX (k)= (−2)2 · 5

8
+ (1)2 · 1

8
+ (2)2 · 2

8

with the sum here reducing to the answer we already found, 29
8 .

For this particular situation, neither approach was easier than the other. In gen-
eral, that will not be the case. Finding pW (w) is often quite difficult, and on those
occasions Theorem 3.5.3 can be of great benefit.

Example
3.5.10

Suppose the amount of propellant, Y , put into a can of spray paint is a random
variable with pdf

fY (y)= 3y2, 0 < y < 1

Experience has shown that the largest surface area that can be painted by a can
having Y amount of propellant is twenty times the area of a circle generated by a
radius of Y ft. If the Purple Dominoes, a newly formed urban gang, have just stolen
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their first can of spray paint, can they expect to have enough to cover a 5′ ×8′ subway
panel with grafitti?

No. By assumption, the maximum area (in ft2) that can be covered by a can of
paint is described by the function

g(Y )= 20πY 2

According to the second statement in Theorem 3.5.3, though, the average value for
g(Y ) is slightly less than the desired 40 ft2:

E[g(Y )] =
∫ 1

0
20πy2 · 3y2 dy

= 60πy5

5

∣∣∣∣1
0

= 12π

= 37.7 ft2

Example
3.5.11

A fair coin is tossed until a head appears. You will be given
(

1
2

)k dollars if that first
head occurs on the kth toss. How much money can you expect to be paid?

Let the random variable X denote the toss at which the first head appears. Then

pX (k)= P(X = k) = P(1st k − 1 tosses are tails and kth toss is a head)

=
(

1

2

)k−1

· 1

2

=
(

1

2

)k

, k = 1,2, . . .

Moreover,

E(amount won) = E

[(
1

2

)X
]

= E[g(X)] =
∑
all k

g(k) · pX (k)

=
∞∑

k=1

(
1

2

)k

·
(

1

2

)k

=
∞∑

k=1

(
1

2

)2k

=
∞∑

k=1

(
1

4

)k

=
∞∑

k=0

(
1

4

)k

−
(

1

4

)0

= 1

1 − 1
4

− 1

= $0.33

Example
3.5.12

In one of the early applications of probability to physics, James Clerk Maxwell
(1831–1879) showed that the speed S of a molecule in a perfect gas has a density
function given by

fS(s)= 4

√
a3

π
s2e−as2

, s > 0
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where a is a constant depending on the temperature of the gas and the mass of the
particle. What is the average energy of a molecule in a perfect gas?

Let m denote the molecule’s mass. Recall from physics that energy (W ), mass
(m), and speed (S) are related through the equation

W = 1

2
mS2 = g(S)

To find E(W ) we appeal to the second part of Theorem 3.5.3:

E(W ) =
∫ ∞

0
g(s) fS(s)ds

=
∫ ∞

0

1

2
ms2 · 4

√
a3

π
s2e−as2

ds

= 2m

√
a3

π

∫ ∞

0
s4e−as2

ds

We make the substitution t = as2. Then

E(W )= m

a
√

π

∫ ∞

0
t3/2e−t dt

But ∫ ∞

0
t3/2e−t dt =

(
3

2

)(
1

2

)√
π (see Section 4.4.6)

so

E(energy)= E(W ) = m

a
√

π

(
3

2

)(
1

2

)√
π

= 3m

4a

Example
3.5.13

Consolidated Industries is planning to market a new product and they are trying to
decide how many to manufacture. They estimate that each item sold will return a
profit of m dollars; each one not sold represents an n-dollar loss. Furthermore, they
suspect the demand for the product, V , will have an exponential distribution,

fV (v)=
(

1

λ

)
e−v/λ, v > 0

How many items should the company produce if they want to maximize their
expected profit? (Assume that n,m, and λ are known.)

If a total of x items are made, the company’s profit can be expressed as a
function Q(v), where

Q(v)=
{

mv − n(x − v) if v < x
mx if v ≥ x

and v is the number of items sold. It follows that their expected profit is

E[Q(V )] =
∫ ∞

0
Q(v) · fV (v) dv

=
∫ x

0
[(m + n)v − nx]

(
1

λ

)
e−v/λ dv +

∫ ∞

x
mx ·
(

1

λ

)
e−v/λ dv (3.5.7)
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The integration here is straightforward, though a bit tedious. Equation 3.5.7 eventu-
ally simplifies to

E[Q(V )] = λ · (m + n)− λ · (m + n)e−x/λ − nx

To find the optimal production level, we need to solve d E[Q(V )]/dx = 0 for x . But

d E[Q(V )]
dx

= (m + n)e−x/λ − n

and the latter equals zero when

x =−λ · ln

(
n

m + n

)

Example
3.5.14

A point, y, is selected at random from the interval [0, 1], dividing the line into two
segments (see Figure 3.5.5). What is the expected value of the ratio of the shorter
segment to the longer segment?

0 11
2

y

Figure 3.5.5

Notice, first, that the function

g(Y )= shorter segment
longer segment

has two expressions, depending on the location of the chosen point:

g(Y )=
{

y/(1 − y), 0 ≤ y ≤ 1
2

(1 − y)/y, 1
2 < y ≤ 1

By assumption, fY (y)= 1, 0 ≤ y ≤ 1, so

E[g(Y )] =
∫ 1

2

0

y

1 − y
· 1 dy +

∫ 1

1
2

1 − y

y
· 1 dy

Writing the second integrand as (1/y − 1) gives∫ 1

1
2

1 − y

y
· 1 dy =

∫ 1

1
2

(
1

y
− 1

)
dy = (ln y − y)

∣∣∣∣1
1
2

= ln 2 − 1

2

By symmetry, though, the two integrals are the same, so

E

(
shorter segment
longer segment

)
= 2 ln 2 − 1

= 0.39

On the average, then, the longer segment will be a little more than 2 1
2 times the

length of the shorter segment.
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Questions

3.5.28. Suppose X is a binomial random variable with
n = 10 and p = 2

5
. What is the expected value of 3X − 4?

3.5.29. A typical day’s production of a certain electronic
component is twelve. The probability that one of these
components needs rework is 0.11. Each component need-
ing rework costs $100. What is the average daily cost for
defective components?

3.5.30. Let Y have probability density function

fY (y)= 2(1 − y), 0 ≤ y ≤ 1

Suppose that W = Y 2, in which case

fW (w)= 1√
w

− 1, 0 ≤w ≤ 1

Find E(W ) in two different ways.

3.5.31. A tool and die company makes castings for steel
stress-monitoring gauges. Their annual profit, Q, in hun-
dreds of thousands of dollars, can be expressed as a
function of product demand, y:

Q(y)= 2(1 − e−2y)

Suppose that the demand (in thousands) for their castings
follows an exponential pdf, fY (y) = 6e−6y, y > 0. Find the
company’s expected profit.

3.5.32. A box is to be constructed so that its height is
five inches and its base is Y inches by Y inches, where
Y is a random variable described by the pdf, fY (y) =
6y(1 − y),0 < y < 1. Find the expected volume of the box.

3.5.33. Grades on the last Economics 301 exam were not
very good. Graphed, their distribution had a shape similar
to the pdf

fY (y)= 1

5000
(100 − y), 0 ≤ y ≤ 100

As a way of “curving” the results, the professor announces
that he will replace each person’s grade, Y , with a
new grade, g(Y ), where g(Y ) = 10

√
Y . Will the profes-

sor’s strategy be successful in raising the class average
above 60?

3.5.34. If Y has probability density function

fY (y)= 2y, 0 ≤ y ≤ 1

then E(Y) = 2
3
. Define the random variable W to be the

squared deviation of Y from its mean, that is, W =(Y − 2
3

)2
.

Find E(W ).

3.5.35. The hypotenuse, Y , of the isosceles right triangle
shown is a random variable having a uniform pdf over
the interval [6, 10]. Calculate the expected value of the
triangle’s area. Do not leave the answer as a function
of a.

0

Y

a

a

3.5.36. An urn contains n chips numbered 1 through n.
Assume that the probability of choosing chip i is equal
to ki, i = 1,2, . . . ,n. If one chip is drawn, calculate E

(
1
X

)
,

where the random variable X denotes the number show-
ing on the chip selected. [Hint: Recall that the sum of the
first n integers is n(n + 1)/2.]

3.6 The Variance
We saw in Section 3.5 that the location of a distribution is an important characteristic
and that it can be effectively measured by calculating either the mean or the median.
A second feature of a distribution that warrants further scrutiny is its dispersion—
that is, the extent to which its values are spread out. The two properties are totally
different: Knowing a pdf’s location tells us absolutely nothing about its dispersion.
Table 3.6.1, for example, shows two simple discrete pdfs with the same expected
value (equal to zero), but with vastly different dispersions.

Table 3.6.1

k pX1(k) k pX2(k)

−1 1
2

−1,000,000 1
2

1 1
2

1,000,000 1
2
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It is not immediately obvious how the dispersion in a pdf should be quantified.
Suppose that X is any discrete random variable. One seemingly reasonable approach
would be to average the deviations of X from their mean—that is, calculate the
expected value of X − μ. As it happens, that strategy will not work because the
negative deviations will exactly cancel the positive deviations, making the numerical
value of such an average always zero, regardless of the amount of spread present in
pX (k):

E(X −μ)= E(X)−μ=μ−μ= 0 (3.6.1)

Another possibility would be to modify Equation 3.6.1 by making all the devia-
tions positive—that is, to replace E(X − μ) with E(|X − μ|). This does work, and
it is sometimes used to measure dispersion, but the absolute value is somewhat
troublesome mathematically: It does not have a simple arithmetic formula, nor is
it a differentiable function. Squaring the deviations proves to be a much better
approach.

Definition 3.6.1. The variance of a random variable is the expected value of its
squared deviations from μ. If X is discrete, with pdf pX (k),

Var(X)= σ 2 = E[(X −μ)2] =
∑
all k

(k −μ)2 · pX (k)

If Y is continuous, with pdf fY (y),

Var(Y )= σ 2 = E[(Y −μ)2] =
∫ ∞

−∞
(y −μ)2 · fY (y) dy

[If E(X2) or E(Y 2) is not finite, the variance is not defined.]

Comment One unfortunate consequence of Definition 3.6.1 is that the units for
the variance are the square of the units for the random variable: If Y is measured
in inches, for example, the units for Var(Y ) are inches squared. This causes obvi-
ous problems in relating the variance back to the sample values. For that reason,
in applied statistics, where unit compatibility is especially important, dispersion is
measured not by the variance but by the standard deviation, which is defined to be
the square root of the variance. That is,

σ = standard deviation =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√∑
all k

(k −μ)2 · pX (k) if X is discrete√∫ ∞

−∞
(y −μ)2 · fY (y) dy if Y is continuous

Comment The analogy between the expected value of a random variable and the
center of gravity of a physical system was pointed out in Section 3.5. A similar equiv-
alency holds between the variance and what engineers call a moment of inertia. If
a set of weights having masses m1,m2, . . . are positioned along a (weightless) rigid
bar at distances r1, r2, . . . from an axis of rotation (see Figure 3.6.1), the moment of
inertia of the system is defined to be value

∑
i

mir2
i . Notice, though, that if the masses

were the probabilities associated with a discrete random variable and if the axis of
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rotation were actually μ, then r1, r2, . . . could be written (k1 − μ), (k2 − μ), . . . and∑
i

mir2
i would be the same as the variance,

∑
all k

(k −μ)2 · pX (k).

Axis of
rotationm1

m2

m3

r3

r1 r2

Figure 3.6.1

Definition 3.6.1 gives a formula for calculating σ 2 in both the discrete and
the continuous cases. An equivalent—but easier-to-use—formula is given in The-
orem 3.6.1.

Theorem
3.6.1

Let W be any random variable, discrete or continuous, having mean μ and for which
E(W 2) is finite. Then

Var(W )= σ 2 = E(W 2)−μ2

Proof We will prove the theorem for the continuous case. The argument for discrete
W is similar. In Theorem 3.5.3, let g(W )= (W −μ)2. Then

Var(W )= E[(W −μ)2] =
∫ ∞

−∞
g(w) fW (w) dw =

∫ ∞

−∞
(w −μ)2 fW (w) dw

Squaring out the term (w −μ)2 that appears in the integrand and using the additive
property of integrals gives∫ ∞

−∞
(w−μ)2 fW (w) dw =

∫ ∞

−∞
(w2−2μw+μ2) fW (w) dw

=
∫ ∞

−∞
w2 fW (w) dw−2μ

∫ ∞

−∞
w fW (w) dw+

∫ ∞

−∞
μ2 fW (w) dw

= E(W 2)−2μ2+μ2 = E(W 2)−μ2

Note that the equality
∫∞
−∞ w2 fW (w) dw= E(W 2) also follows from Theorem 3.5.3. �

Example
3.6.1

An urn contains five chips, two red and three white. Suppose that two are drawn
out at random, without replacement. Let X denote the number of red chips in the
sample. Find Var(X).

Note, first, that since the chips are not being replaced from drawing to drawing,
X is a hypergeometric random variable. Moreover, we need to find μ, regardless of
which formula is used to calculate σ 2. In the notation of Theorem 3.5.2, r = 2, w = 3,
and n = 2, so

μ= rn/(r +w)= 2 · 2/(2 + 3)= 0.8
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To find Var(X) using Definition 3.6.1, we write

Var(X)= E[(X −μ)2] =
∑
all x

(x −μ)2 · fX (x)

= (0 − 0.8)2 ·
(2

0

)(3
2

)(5
2

) + (1 − 0.8)2 ·
(2

1

)(3
1

)(5
2

) + (2 − 0.8)2 ·
(2

2

)(3
0

)(5
2

)
= 0.36

To use Theorem 3.6.1, we would first find E(X2). From Theorem 3.5.3,

E(X2)=
∑
all x

x2 · fX (x) = 02 ·
(2

0

)(3
2

)(5
2

) + 12 ·
(2

1

)(3
1

)(5
2

) + 22 ·
(2

2

)(3
0

)(5
2

)
= 1.00

Then

Var(X)= E(X2)−μ2 = 1.00 − (0.8)2

= 0.36

confirming what we calculated earlier.

In Section 3.5 we encountered a change of scale formula that applied
to expected values. For any constants a and b and any random variable W ,
E(aW + b)= aE(W )+ b. A similar issue arises in connection with the variance of
a linear transformation: If Var(W )= σ 2, what is the variance of aW + b?

Theorem
3.6.2

Let W be any random variable having mean μ and where E(W 2) is finite. Then
Var(aW + b)= a2Var(W ).

Proof Using the same approach taken in the proof of Theorem 3.6.1, it can be
shown that E[(aW + b)2] = a2 E(W 2) + 2abμ + b2. We also know from the corol-
lary to Theorem 3.5.3 that E(aW + b) = aμ + b. Using Theorem 3.6.1, then, we can
write

Var(aW + b) = E[(aW + b)2]− [E(aW + b)]2

=[a2 E(W 2)+ 2abμ+ b2]− [aμ+ b]2

=[a2 E(W 2)+ 2abμ+ b2]− [a2μ2 + 2abμ+ b2]
= a2[E(W 2)−μ2] = a2Var(W ) �

Example
3.6.2

A random variable Y is described by the pdf

fY (y)= 2y, 0 ≤ y ≤ 1

What is the standard deviation of 3Y + 2?
First, we need to find the variance of Y . But

E(Y )=
∫ 1

0
y · 2y dy = 2

3

and

E(Y 2)=
∫ 1

0
y2 · 2y dy = 1

2
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so

Var(Y ) = E(Y 2)−μ2 = 1

2
−
(

2

3

)2

= 1

18

Then, by Theorem 3.6.2,

Var(3Y + 2) = (3)2 · Var(Y )= 9 · 1

18

= 1

2

which makes the standard deviation of 3Y + 2 equal to
√

1
2 or 0.71.

Questions

3.6.1. Find Var(X) for the urn problem of Example 3.6.1
if the sampling is done with replacement.

3.6.2. Find the variance of Y if

fY (y)=

⎧⎪⎨⎪⎩
3
4
, 0 ≤ y ≤ 1

1
4
, 2 ≤ y ≤ 3

0, elsewhere

3.6.3. Ten equally qualified applicants, six men and four
women, apply for three lab technician positions. Unable to
justify choosing any of the applicants over all the others,
the personnel director decides to select the three at ran-
dom. Let X denote the number of men hired. Compute
the standard deviation of X .

3.6.4. Compute the variance for a uniform random vari-
able defined on the unit interval.

3.6.5. Use Theorem 3.6.1 to find the variance of the
random variable Y , where

fY (y)= 3(1 − y)2, 0 < y < 1

3.6.6. If

fY (y)= 2y

k2
, 0 ≤ y ≤ k

for what value of k does Var(Y )= 2?

3.6.7. Calculate the standard deviation, σ , for the random
variable Y whose pdf has the graph shown below:

1
2

1 2 30

1

y

f  (y)Y

3.6.8. Consider the pdf defined by

fY (y)= 2

y3
, y ≥ 1

Show that (a)
∫ ∞

1 fY (y) dy =1, (b)E(Y )=2, and (c) Var(Y )

is not finite.

3.6.9. Frankie and Johnny play the following game.
Frankie selects a number at random from the interval
[a,b]. Johnny, not knowing Frankie’s number, is to pick
a second number from that same inverval and pay Frankie
an amount, W , equal to the squared difference between
the two [so 0 ≤ W ≤ (b − a)2]. What should be Johnny’s
strategy if he wants to minimize his expected loss?

3.6.10. Let Y be a random variable whose pdf is given by
fY (y)= 5y4,0 ≤ y ≤ 1. Use Theorem 3.6.1 to find Var(Y ).

3.6.11. Suppose that Y is an exponential random variable,
so fY (y)=λe−λy, y ≥0. Show that the variance of Y is 1/λ2.

3.6.12. Suppose that Y is an exponential random variable
with λ = 2 (recall Question 3.6.11). Find P[Y > E(Y ) +
2
√

Var(Y )].
3.6.13. Let X be a random variable with finite mean μ.
Define for every real number a, g(a) = E[(X − a)2]. Show
that

g(a)= E[(X −μ)2]+ (μ− a)2.

What is another name for min g(a)?

3.6.14. Let Y have the pdf given in Question 3.6.5. Find
the variance of W , where W =−5Y + 12.

3.6.15. If Y denotes a temperature recorded in degrees
Fahrenheit, then 5

9
(Y − 32) is the corresponding tempera-

ture in degrees Celsius. If the standard deviation for a set
of temperatures is 15.7◦F, what is the standard deviation
of the equivalent Celsius temperatures?
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3.6.16. If E(W )=μ and Var(W )= σ 2, show that

E

(
W −μ

σ

)
= 0 and Var

(
W −μ

σ

)
= 1

3.6.17. Suppose U is a uniform random variable over
[0,1].

(a) Show that Y = (b − a)U + a is uniform over [a,b].
(b) Use part (a) and Question 3.6.4 to find the variance

of Y .

3.6.18. Recovering small quantities of calcium in the pres-
ence of magnesium can be a difficult problem for an
analytical chemist. Suppose the amount of calcium Y to
be recovered is uniformly distributed between 4 and 7 mg.

The amount of calcium recovered by one method is the
random variable

W1 = 0.2281 + (0.9948)Y + E1

where the error term E1 has mean 0 and variance 0.0427
and is independent of Y .

A second procedure has random variable

W2 =−0.0748 + (1.0024)Y + E2

where the error term E2 has mean 0 and variance 0.0159
and is independent of Y .

The better technique should have a mean as close as
possible to the mean of Y (=5.5), and a variance as small as
possible. Compare the two methods on the basis of mean
and variance.

Higher Moments

The quantities we have identified as the mean and the variance are actually spe-
cial cases of what are referred to more generally as the moments of a random
variable. More precisely, E(W ) is the first moment about the origin and σ 2 is the
second moment about the mean. As the terminology suggests, we will have occasion
to define higher moments of W . Just as E(W ) and σ 2 reflect a random variable’s
location and dispersion, so it is possible to characterize other aspects of a distri-
bution in terms of other moments. We will see, for example, that the skewness of a
distribution—that is, the extent to which it is not symmetric around μ—can be effec-
tively measured in terms of a third moment. Likewise, there are issues that arise in
certain applied statistics problems that require a knowledge of the flatness of a pdf,
a property that can be quantified by the fourth moment.

Definition 3.6.2. Let W be any random variable with pdf fW (w). For any
positive integer r ,

1. The r th moment of W about the origin, μr , is given by

μr = E(W r )

provided
∫∞
−∞ |w|r · fW (w) dw < ∞ (or provided the analogous condition

on the summation of |w|r holds, if W is discrete). When r = 1, we usually
delete the subscript and write E(W ) as μ rather than μ1.

2. The r th moment of W about the mean, μ′
r , is given by

μ′
r = E[(W −μ)r ]

provided the finiteness conditions of part 1 hold.

Comment We can express μ′
r in terms of μ j , j = 1,2, . . . , r , by simply writing out

the binomial expansion of (W −μ)r :

μ′
r = E[(W −μ)r ] =

r∑
j=0

(
r

j

)
E(W j )(−μ)r− j



3.6 The Variance 161

Thus,

μ′
2 = E[(W −μ)2] = σ 2 =μ2 −μ2

1

μ′
3 = E[(W −μ)3] =μ3 − 3μ1μ2 + 2μ3

1

μ′
4 = E[(W −μ)4] =μ4 − 4μ1μ3 + 6μ2

1μ2 − 3μ4
1

and so on.

Example
3.6.3

The skewness of a pdf can be measured in terms of its third moment about the mean.
If a pdf is symmetric, E[(W − μ)3] will obviously be zero; for pdfs not symmetric,
E[(W − μ)3] will not be zero. In practice, the symmetry (or lack of symmetry) of a
pdf is often measured by the coefficient of skewness, γ1, where

γ1 = E[(W −μ)3]
σ 3

Dividing μ′
3 by σ 3 makes γ1 dimensionless.

A second “shape” parameter in common use is the coefficient of kurtosis, γ2,
which involves the fourth moment about the mean. Specifically,

γ2 = E[(W −μ)4]
σ 4

− 3

For certain pdfs, γ2 is a useful measure of peakedness: relatively flat pdfs are said to
be platykurtic; more peaked pdfs are called leptokurtic.

Earlier in this chapter we encountered random variables whose means do not
exist—recall, for example, the St. Petersburg paradox. More generally, there are
random variables having certain of their higher moments finite and certain others,
not finite. Addressing the question of whether or not a given E(W j ) is finite is the
following existence theorem.

Theorem
3.6.3

If the kth moment of a random variable exists, all moments of order less than k exist.

Proof Let fY (y) be the pdf of a continuous random variable Y . By Definition 3.6.2,
E(Y k) exists if and only if ∫ ∞

−∞
|y|k · fY (y) dy <∞ (3.6.2)

Let 1 ≤ j < k. To prove the theorem we must show that∫ ∞

−∞
|y| j · fY (y) dy <∞

is implied by Inequality 3.6.2. But∫ ∞

−∞
|y| j · fY (y) dy =

∫
|y|≤1

|y| j · fY (y) dy +
∫

|y|>1
|y| j · fY (y) dy

≤
∫

|y|≤1
fY (y) dy +

∫
|y|>1

|y| j · fY (y) dy

≤ 1 +
∫

|y|>1
|y| j · fY (y) dy

≤ 1 +
∫

|y|>1
|y|k · fY (y) dy <∞
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Therefore, E(Y j ) exists, j = 1,2, . . . , k − 1. The proof for discrete random variables
is similar. �

Questions

3.6.19. Let Y be a uniform random variable defined over
the interval (0, 2). Find an expression for the r th moment
of Y about the origin. Also, use the binomial expansion as
described in the Comment to find E[(Y −μ)6].
3.6.20. Find the coefficient of skewness for an exponen-
tial random variable having the pdf

fY (y)= e−y, y > 0

3.6.21. Calculate the coefficient of kurtosis for a uniform
random variable defined over the unit interval, fY (y) = 1,
for 0 ≤ y ≤ 1.

3.6.22. Suppose that W is a random variable for which
E[(W −μ)3]= 10 and E(W 3)= 4. Is it possible that μ= 2?

3.6.23. If Y = aX + b, a > 0, show that Y has the same
coefficients of skewness and kurtosis as X .

3.6.24. Let Y be the random variable of Question 3.4.6,
where for a positive integer n, fY (y)= (n + 2) (n + 1)yn(1 −
y),0 ≤ y ≤ 1.

(a) Find Var(Y ).
(b) For any positive integer k, find the kth moment

around the origin.

3.6.25. Suppose that the random variable Y is described
by the pdf

fY (y)= c · y−6, y > 1

(a) Find c.
(b) What is the highest moment of Y that exists?

3.7 Joint Densities
Sections 3.3 and 3.4 introduced the basic terminology for describing the probabilis-
tic behavior of a single random variable. Such information, while adequate for many
problems, is insufficient when more than one variable are of interest to the exper-
imenter. Medical researchers, for example, continue to explore the relationship
between blood cholesterol and heart disease, and, more recently, between “good”
cholesterol and “bad” cholesterol. And more than a little attention—both political
and pedagogical—is given to the role played by K–12 funding in the performance
of would-be high school graduates on exit exams. On a smaller scale, electronic
equipment and systems are often designed to have built-in redundancy: Whether
or not that equipment functions properly ultimately depends on the reliability of
two different components.

The point is, there are many situations where two relevant random variables,
say, X and Y ,2 are defined on the same sample space. Knowing only fX (x) and
fY (y), though, does not necessarily provide enough information to characterize the
all-important simultaneous behavior of X and Y . The purpose of this section is to
introduce the concepts, definitions, and mathematical techniques associated with
distributions based on two (or more) random variables.

Discrete Joint Pdfs

As we saw in the single-variable case, the pdf is defined differently depending on
whether the random variable is discrete or continuous. The same distinction applies

2 For the next several sections we will suspend our earlier practice of using X to denote a discrete random
variable and Y to denote a continuous random variable. The category of the random variables will need to be
determined from the context of the problem. Typically, though, X and Y will either be both discrete or both
continuous.
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to joint pdfs. We begin with a discussion of joint pdfs as they apply to two discrete
random variables.

Definition 3.7.1. Suppose S is a discrete sample space on which two random
variables, X and Y , are defined. The joint probability density function of X and
Y (or joint pdf) is denoted pX,Y (x, y), where

pX,Y (x, y)= P({s|X (s)= x and Y (s)= y})

Comment A convenient shorthand notation for the meaning of pX,Y (x, y), consis-
tent with what we used earlier for pdfs of single discrete random variables, is to write
pX,Y (x, y)= P(X = x,Y = y).

Example
3.7.1

A supermarket has two express lines. Let X and Y denote the number of customers
in the first and in the second, respectively, at any given time. During nonrush hours,
the joint pdf of X and Y is summarized by the following table:

X
0 1 2 3

0 0.1 0.2 0 0
1 0.2 0.25 0.05 0

Y
2 0 0.05 0.05 0.025
3 0 0 0.025 0.05

Find P(|X − Y | = 1), the probability that X and Y differ by exactly 1.
By definition,

P(|X − Y | = 1) =
∑

|x−y|=1

∑
pX,Y (x, y)

= pX,Y (0,1)+ pX,Y (1,0)+ pX,Y (1,2)

+ pX,Y (2,1)+ pX,Y (2,3)+ pX,Y (3,2)

= 0.2 + 0.2 + 0.05 + 0.05 + 0.025 + 0.025

= 0.55

[Would you expect pX,Y (x, y) to be symmetric? Would you expect the event |X −
Y | ≥ 2 to have zero probability?]

Example
3.7.2

Suppose two fair dice are rolled. Let X be the sum of the numbers showing, and let
Y be the larger of the two. So, for example,

pX,Y (2,3) = P(X = 2,Y = 3)= P(∅)= 0

pX,Y (4,3) = P(X = 4,Y = 3)= P({(1,3)(3,1)})= 2

36

and

pX,Y (6,3)= P(X = 6,Y = 3)= P({(3,3)} = 1

36

The entire joint pdf is given in Table 3.7.1.
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Table 3.7.1
�����x

y
1 2 3 4 5 6 Row totals

2 1/36 0 0 0 0 0 1/36
3 0 2/36 0 0 0 0 2/36
4 0 1/36 2/36 0 0 0 3/36
5 0 0 2/36 2/36 0 0 4/36
6 0 0 1/36 2/36 2/36 0 5/36
7 0 0 0 2/36 2/36 2/36 6/36
8 0 0 0 1/36 2/36 2/36 5/36
9 0 0 0 0 2/36 2/36 4/36

10 0 0 0 0 1/36 2/36 3/36
11 0 0 0 0 0 2/36 2/36
12 0 0 0 0 0 1/36 1/36

Col. totals 1/36 3/36 5/36 7/36 9/36 11/36

Notice that the row totals in the right-hand margin of the table give the pdf
for X . Similarly, the column totals along the bottom detail the pdf for Y . Those
are not coincidences. Theorem 3.7.1 gives a formal statement of the relationship
between the joint pdf and the individual pdfs.

Theorem
3.7.1

Suppose that pX,Y (x, y) is the joint pdf of the discrete random variables X and Y .
Then

pX (x)=
∑
all y

pX,Y (x, y) and pY (y)=
∑
all x

pX,Y (x, y)

Proof We will prove the first statement. Note that the collection of sets (Y = y) for
all y forms a partition of S; that is, they are disjoint and

⋃
all y(Y = y) = S. The set

(X = x)= (X = x)∩ S = (X = x)∩⋃all y(Y = y)=⋃all y[(X = x)∩ (Y = y)], so

pX (x) = P(X = x)= P

⎛⎝⋃
all y

[(X = x)∩ (Y = y)]
⎞⎠

=
∑
all y

P(X = x,Y = y)=
∑
all y

pX,Y (x, y)

�

Definition 3.7.2. An individual pdf obtained by summing a joint pdf over all
values of the other random variable is called a marginal pdf.

Continuous Joint Pdfs

If X and Y are both continuous random variables, Definition 3.7.1 does not apply
because P(X = x,Y = y) will be identically 0 for all (x, y). As was the case in single-
variable situations, the joint pdf for two continuous random variables will be defined
as a function that when integrated yields the probability that (X,Y ) lies in a specified
region of the xy-plane.
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Definition 3.7.3. Two random variables defined on the same set of real num-
bers are jointly continuous if there exists a function fX,Y (x, y) such that for any
region R in the xy-plane, P[(X,Y ) ∈ R] = ∫ ∫R fX,Y (x, y) dx dy. The function
fX,Y (x, y) is the joint pdf of X and Y.

Comment Any function fX,Y (x, y) for which

1. fX,Y (x, y)≥ 0 for all x and y

2.
∫ ∞

−∞

∫ ∞

−∞
fX,Y (x, y) dx dy = 1

qualifies as a joint pdf. We shall employ the convention of naming the domain only
where the joint pdf is nonzero; everywhere else it will be assumed to be zero. This is
analogous, of course, to the notation used earlier in describing the domain of single
random variables.

Example
3.7.3

Suppose that the variation in two continuous random variables, X and Y , can be
modeled by the joint pdf fX,Y (x, y)= cxy, for 0 < y < x < 1. Find c.

By inspection, fX,Y (x, y) will be nonnegative as long as c ≥ 0. The particular
c that qualifies fX,Y (x, y) as a joint pdf, though, is the one that makes the volume
under fX,Y (x, y) equal to 1. But∫ ∫

S
cxy dy dx = 1 = c

∫ 1

0

[∫ x

0
(xy) dy

]
dx = c

∫ 1

0
x

(
y2

2

∣∣∣x
0

)
dx

= c
∫ 1

0

(
x3

2

)
dx = c

x4

8

∣∣∣1
0
=
(

1

8

)
c

Therefore, c = 8.

Example
3.7.4

A study claims that the daily number of hours, X , a teenager watches television and
the daily number of hours, Y , he works on his homework are approximated by the
joint pdf

fX,Y (x, y)= xye−(x+y), x > 0, y > 0

What is the probability that a teenager chosen at random spends at least twice as
much time watching television as he does working on his homework?

The region, R, in the xy-plane corresponding to the event “X ≥ 2Y ” is shown
in Figure 3.7.1. It follows that P(X ≥ 2Y ) is the volume under fX,Y (x, y) above the
region R:

P(X ≥ 2Y )=
∫ ∞

0

∫ x/2

0
xye−(x+y) dy dx

Separating variables, we can write

P(X ≥ 2Y )=
∫ ∞

0
xe−x

[∫ x/2

0
ye−ydy

]
dx
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0
x

x = 2y

y

R

Figure 3.7.1

and the double integral reduces to 7
27 :

P(X ≥ 2Y ) =
∫ ∞

0
xe−x
[
1 −
( x

2
+ 1
)

e−x/2
]

dx

=
∫ ∞

0
xe−x dx −

∫ ∞

0

x2

2
e−3x/2 dx −

∫ ∞

0
xe−3x/2dx

= 1 − 16

54
− 4

9

= 7

27

Geometric Probability

One particularly important special case of Definition 3.7.3 is the joint uniform pdf,
which is represented by a surface having a constant height everywhere above a
specified rectangle in the xy-plane. That is,

fX,Y (x, y)= 1

(b − a)(d − c)
, a ≤ x ≤ b, c ≤ y ≤ d

If R is some region in the rectangle where X and Y are defined, P((X,Y ) ∈ R)

reduces to a simple ratio of areas:

P((X,Y )∈ R)= area of R

(b − a)(d − c)
(3.7.1)

Calculations based on Equation 3.7.1 are referred to as geometric probabilities.

Example
3.7.5

Two friends agree to meet on the University Commons “sometime around 12:30.”
But neither of them is particularly punctual—or patient. What will actually happen
is that each will arrive at random sometime in the interval from 12:00 to 1:00. If one
arrives and the other is not there, the first person will wait fifteen minutes or until
1:00, whichever comes first, and then leave. What is the probability that the two will
get together?

To simplify notation, we can represent the time period from 12:00 to 1:00 as the
interval from zero to sixty minutes. Then if x and y denote the two arrival times, the
sample space is the 60 × 60 square shown in Figure 3.7.2. Furthermore, the event
M , “The two friends meet,” will occur if and only if |x − y| ≤ 15 or, equivalently,
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0
x

y

60

(45, 60)

(15, 0)

x – y = –15

x – y = 15

60

(60, 45)

(0, 15)
M

Figure 3.7.2

if and only if −15 ≤ x − y ≤ 15. These inequalities appear as the shaded region in
Figure 3.7.2.

Notice that the areas of the triangles above and below M are each equal to
1
2 (45)(45). It follows that the two friends have a 44% chance of meeting:

P(M)= area of M

area of S

= (60)2 − 2
[

1
2 (45)(45)

]
(60)2

= 0.44

Example
3.7.6

A carnival operator wants to set up a ringtoss game. Players will throw a ring
of diameter d onto a grid of squares, the side of each square being of length s
(see Figure 3.7.3). If the ring lands entirely inside a square, the player wins a
prize. To ensure a profit, the operator must keep the player’s chances of winning
down to something less than one in five. How small can the operator make the
ratio d/s?

d s
s

Figure 3.7.3

s

s
d
2

Figure 3.7.4
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First, assume that the player is required to stand far enough away that no skill is
involved and the ring is falling at random on the grid. From Figure 3.7.4, we see that
in order for the ring not to touch any side of the square, the ring’s center must be
somewhere in the interior of a smaller square, each side of which is a distance d/2
from one of the grid lines.

Since the area of a grid square is s2 and the area of an interior square is (s − d)2,
the probability of a winning toss can be written as the ratio:

P(Ring touches no lines)= (s − d)2

s2

But the operator requires that

(s − d)2

s2
≤ 0.20

Solving for d/s gives

d

s
≥ 1 −√

0.20 = 0.55

That is, if the diameter of the ring is at least 55% as long as the side of one of the
squares, the player will have no more than a 20% chance of winning.

Questions

3.7.1. If pX,Y (x, y) = cxy at the points (1,1), (2,1), (2,2),
and (3,1), and equals 0 elsewhere, find c.

3.7.2. Let X and Y be two continuous random vari-
ables defined over the unit square. What does c equal if
fX,Y (x, y)= c(x2 + y2)?

3.7.3. Suppose that random variables X and Y vary in
accordance with the joint pdf, fX,Y (x, y)= c(x + y),0< x <

y < 1. Find c.

3.7.4. Find c if fX,Y (x, y) = cxy for X and Y defined over
the triangle whose vertices are the points (0,0), (0,1), and
(1,1).

3.7.5. An urn contains four red chips, three white chips,
and two blue chips. A random sample of size 3 is drawn
without replacement. Let X denote the number of white
chips in the sample and Y the number of blue chips. Write
a formula for the joint pdf of X and Y .

3.7.6. Four cards are drawn from a standard poker deck.
Let X be the number of kings drawn and Y the number of
queens. Find pX,Y (x, y).

3.7.7. An advisor looks over the schedules of his fifty stu-
dents to see how many math and science courses each has
registered for in the coming semester. He summarizes his
results in a table. What is the probability that a student
selected at random will have signed up for more math
courses than science courses?

Number of math courses, X

0 1 2

Number 0 11 6 4
of science
courses, Y 1 9 10 3

2 5 0 2

3.7.8. Consider the experiment of tossing a fair coin three
times. Let X denote the number of heads on the last flip,
and let Y denote the total number of heads on the three
flips. Find pX,Y (x, y).

3.7.9. Suppose that two fair dice are tossed one time. Let
X denote the number of 2’s that appear, and Y the number
of 3’s. Write the matrix giving the joint probability density
function for X and Y . Suppose a third random variable, Z ,
is defined, where Z = X + Y. Use pX,Y (x, y) to find pZ (z).

3.7.10. Suppose that X and Y have a bivariate uniform
density over the unit square:

fX,Y (x, y)=
{

c, 0 < x < 1, 0 < y < 1

0, elsewhere

(a) Find c.
(b) Find P

(
0 < X < 1

2
,0 < Y < 1

4

)
.
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3.7.11. Let X and Y have the joint pdf

fX,Y (x, y)= 2e−(x+y), 0 < x < y, 0 < y

Find P(Y < 3X).

3.7.12. A point is chosen at random from the interior of
a circle whose equation is x2 + y2 ≤ 4. Let the random
variables X and Y denote the x- and y-coordinates of the
sampled point. Find fX,Y (x, y).

3.7.13. Find P(X < 2Y ) if fX,Y (x, y) = x + y for X and Y
each defined over the unit interval.

3.7.14. Suppose that five independent observations are
drawn from the continuous pdf fT (t) = 2t,0 ≤ t ≤ 1. Let X
denote the number of t ’s that fall in the interval 0 ≤ t < 1

3
and let Y denote the number of t ’s that fall in the interval
1
3
≤ t < 2

3
. Find pX,Y (1,2).

3.7.15. A point is chosen at random from the interior
of a right triangle with base b and height h. What is the
probability that the y value is between 0 and h/2?

Marginal Pdfs for Continuous Random Variables

The notion of marginal pdfs in connection with discrete random variables was intro-
duced in Theorem 3.7.1 and Definition 3.7.2. An analogous relationship holds in
the continuous case—integration, though, replaces the summation that appears in
Theorem 3.7.1.

Theorem
3.7.2

Suppose X and Y are jointly continuous with joint pdf fX,Y (x, y). Then the marginal
pdfs, fX (x) and fY (y), are given by

fX (x)=
∫ ∞

−∞
fX,Y (x, y) dy and fY (y)=

∫ ∞

−∞
fX,Y (x, y)dx

Proof It suffices to verify the first of the theorem’s two equalities. As is often the
case with proofs for continuous random variables, we begin with the cdf:

FX (x)= P(X ≤ x)=
∫ ∞

−∞

∫ x

−∞
fX,Y (t, y)dt dy =

∫ x

−∞

∫ ∞

−∞
fX,Y (x, y)dy dt

Differentiating both ends of the equation above gives

fX (x)=
∫ ∞

−∞
fX,Y (x, y)dy

(recall Theorem 3.4.1). �

Example
3.7.7

Suppose that two continuous random variables, X and Y , have the joint uniform pdf

fX,Y (x, y)= 1

6
, 0 ≤ x ≤ 3, 0 ≤ y ≤ 2

Find fX (x).
Applying Theorem 3.7.2 gives

fX (x)=
∫ 2

0
fX,Y (x, y) dy =

∫ 2

0

1

6
dy = 1

3
, 0 ≤ x ≤ 3

Notice that X , by itself, is a uniform random variable defined over the interval [0, 3];
similarly, we would find that fY (y) has a uniform pdf over the interval [0, 2].

Example
3.7.8

Consider the case where X and Y are two continuous random variables, jointly
distributed over the first quadrant of the xy-plane according to the joint pdf,
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fX,Y (x, y)=
{

y2e−y(x+1), x ≥ 0, y ≥ 0

0, elsewhere

Find the two marginal pdfs.
First, consider fX (x). By Theorem 3.7.2,

fX (x)=
∫ ∞

−∞
fX,Y (x, y)dy =

∫ ∞

0
y2e−y(x+1) dy

In the integrand, substitute

u = y(x + 1)

making du = (x + 1)dy. This gives

fX (x)= 1

x + 1

∫ ∞

0

u2

(x + 1)2
e−u du = 1

(x + 1)3

∫ ∞

0
u2e−u du

After applying integration by parts (twice) to
∫∞

0 u2e−u du, we get

fX (x) = 1

(x + 1)3

[−u2e−u − 2ue−u − 2e−u
]∣∣∞

0

= 1

(x + 1)3

[
2 − lim

u→∞

(
u2

eu
+ 2u

eu
+ 2

eu

)]
= 2

(x + 1)3
, x ≥ 0

Finding fY (y) is a bit easier:

fY (y) =
∫ ∞

−∞
fX,Y (x, y)dx =

∫ ∞

0
y2e−y(x+1) dx

= y2e−y
∫ ∞

0
e−yx dx = y2e−y

(
1

y

)(
−e−yx

∣∣∣∣∞
0

)
= ye−y, y ≥ 0

Questions

3.7.16. Find the marginal pdf of X for the joint pdf derived
in Question 3.7.5.

3.7.17. Find the marginal pdfs of X and Y for the joint pdf
derived in Question 3.7.8.

3.7.18. The campus recruiter for an international con-
glomerate classifies the large number of students she inter-
views into three categories—the lower quarter, the middle
half, and the upper quarter. If she meets six students on a
given morning, what is the probability that they will be
evenly divided among the three categories? What is the

marginal probability that exactly two will belong to the
middle half?

3.7.19. For each of the following joint pdfs, find fX (x) and
fY (y).

(a) fX,Y (x, y)= 1
2
, 0 ≤ x ≤ 2, 0 ≤ y ≤ 1

(b) fX,Y (x, y)= 3
2

y2, 0 ≤ x ≤ 2, 0 ≤ y ≤ 1
(c) fX,Y (x, y)= 2

3
(x + 2y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

(d) fX,Y (x, y)= c(x + y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
(e) fX,Y (x, y)= 4xy, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
(f) fX,Y (x, y)= xye−(x+y), 0 ≤ x , 0 ≤ y
(g) fX,Y (x, y)= ye−xy−y , 0 ≤ x , 0 ≤ y
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3.7.20. For each of the following joint pdfs, find fX (x) and
fY (y).

(a) fX,Y (x, y)= 1
2
, 0 ≤ x ≤ y ≤ 2

(b) fX,Y (x, y)= 1
x
, 0 ≤ y ≤ x ≤ 1

(c) fX,Y (x, y)= 6x , 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 − x

3.7.21. Suppose that fX,Y (x, y) = 6(1 − x − y) for x and y
defined over the unit square, subject to the restriction that
0 ≤ x + y ≤ 1. Find the marginal pdf for X .

3.7.22. Find fY (y) if fX,Y (x, y) = 2e−x e−y for x and y
defined over the shaded region pictured.

0
x

y

y = x

3.7.23. Suppose that X and Y are discrete random vari-
ables with

pX,Y (x, y)= 4!
x !y!(4 − x − y)!

(
1

2

)x (1

3

)y (1

6

)4−x−y

,

0 ≤ x + y ≤ 4

Find pX (x) and pY (x).

3.7.24. A generalization of the binomial model occurs
when there is a sequence of n independent trials with
three outcomes, where p1 = P(outcome 1) and p2 =
P(outcome 2). Let X and Y denote the number of tri-
als (out of n) resulting in outcome 1 and outcome 2,
respectively.

(a) Show that pX,Y (x, y) = n!
x !y!(n − x − y)! px

1 py
2

(1− p1 − p2)
n−x−y , 0 ≤ x + y ≤ n

(b) Find pX (x) and pY (x).

(Hint: See Question 3.7.23.)

Joint Cdfs

For a single random variable X , the cdf of X evaluated at some point x—that is,
FX (x)—is the probability that the random variable X takes on a value less than or
equal to x . Extended to two variables, a joint cdf [evaluated at the point (u, v)] is
the probability that X ≤ u and, simultaneously, that Y ≤ v.

Definition 3.7.4. Let X and Y be any two random variables. The joint cumu-
lative distribution function of X and Y (or joint cdf ) is denoted FX,Y (u, v),
where

FX,Y (u, v)= P(X ≤ u and Y ≤ v)

Example
3.7.9

Find the joint cdf, FX,Y (u, v), for the two random variables X and Y whose joint pdf
is given by fX,Y (x, y)= 4

3 (x + xy), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.
If Definition 3.7.4 is applied, the probability that X ≤ u and Y ≤ v becomes a

double integral of fX,Y (x, y):

FX,Y (u, v)= 4

3

∫ v

0

∫ u

0
(x + xy)dxdy = 4

3

∫ v

0

[∫ u

0
(x + xy)dx

]
dy

= 4

3

∫ v

0

[
x2

2
(1 + y)

∣∣∣∣u
0

]
dy = 4

3

∫ v

0

u2

2
(1 + y)dy

= 4

3

u2

2

(
y + y2

2

)∣∣∣∣v
0

= 4

3

u2

2

(
v + v2

2

)
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which simplifies to

FX,Y (u, v)= 1

3
u2(2v + v2)

[For what values of u and v is FX,Y (u, v) defined?]

Theorem
3.7.3

Let FX,Y (u, v) be the joint cdf associated with the continuous random variables X and
Y . Then the joint pdf of X and Y , fX,Y (x, y), is a second partial derivative of the joint

cdf—that is, fX,Y (x, y) = ∂2

∂x∂y
FX,Y (x, y), provided FX,Y (x, y) has continuous second

partial derivatives.

Example
3.7.10

What is the joint pdf of the random variables X and Y whose joint cdf is FX,Y (x, y)=
1
3 x2(2y + y2)?

By Theorem 3.7.3,

fX,Y (x, y) = ∂2

∂x ∂y
FX,Y (x, y)= ∂2

∂x ∂y

1

3
x2(2y + y2)

= ∂

∂y

2

3
x(2y + y2)= 2

3
x(2 + 2y)= 4

3
(x + xy)

Notice the similarity between Examples 3.7.9 and 3.7.10— fX,Y (x, y) is the same in
both examples; so is FX,Y (x, y).

Multivariate Densities

The definitions and theorems in this section extend in a very straightforward way
to situations involving more than two variables. The joint pdf for n discrete random
variables, for example, is denoted pX1,...,Xn (x1, . . . , xn) where

pX1,...,Xn (x1, . . . , xn)= P(X1 = x1, . . . , Xn = xn)

For n continuous random variables, the joint pdf is that function fX1,...,Xn (x1, . . . , xn)

having the property that for any region R in n-space,

P[(X1, . . . , Xn)∈ R] =
∫∫

R
· · ·
∫

fX1,...,Xn (x1, . . . , xn) dx1 · · ·dxn

And if FX1,...,Xn (x1, . . . , xn) is the joint cdf of continuous random variables
X1, . . . , Xn—that is, FX1,...,Xn (x1, . . . , xn)= P(X1 ≤ x1, . . . , Xn ≤ xn)—then

fX1,...,Xn (x1, . . . , xn)= ∂n

∂x1 · · · ∂xn
FX1,...,Xn (x1, . . . , xn)

The notion of a marginal pdf also extends readily, although in the n-variate case, a
marginal pdf can, itself, be a joint pdf. Given X1, . . . , Xn , the marginal pdf of any sub-
set of r of those variables (Xi1 , Xi2 , . . . , Xir ) is derived by integrating (or summing)
the joint pdf with respect to the remaining n − r variables (X j1 , X j2 , . . . , X jn−r ). If the
Xi ’s are all continuous, for example,

fXi1,...,Xir
(xi1 , . . . , xir )=

∫ ∞

−∞

∫ ∞

−∞
· · ·
∫ ∞

−∞
fX1,...,Xn (x1, . . . , xn) dx j1 · · ·dx jn−r
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Questions

3.7.25. Consider the experiment of simultaneously toss-
ing a fair coin and rolling a fair die. Let X denote the
number of heads showing on the coin and Y the number
of spots showing on the die.

(a) List the outcomes in S.
(b) Find FX,Y (1,2).

3.7.26. An urn contains twelve chips—four red, three
black, and five white. A sample of size 4 is to be drawn
without replacement. Let X denote the number of white
chips in the sample, Y the number of red. Find FX,Y (1,2).

3.7.27. For each of the following joint pdfs, find FX,Y (u, v).

(a) fX,Y (x, y)= 3
2

y2, 0 ≤ x ≤ 2, 0 ≤ y ≤ 1
(b) fX,Y (x, y)= 2

3
(x + 2y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

(c) fX,Y (x, y)= 4xy, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

3.7.28. For each of the following joint pdfs, find FX,Y (u, v).

(a) fX,Y (x, y)= 1
2
, 0 ≤ x ≤ y ≤ 2

(b) fX,Y (x, y)= 1
x
, 0 ≤ y ≤ x ≤ 1

(c) fX,Y (x, y)= 6x , 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 − x

3.7.29. Find and graph fX,Y (x, y) if the joint cdf for
random variables X and Y is

FX,Y (x, y)= xy, 0 < x < 1, 0 < y < 1

3.7.30. Find the joint pdf associated with two random
variables X and Y whose joint cdf is

FX,Y (x, y)= (1 − e−λy)(1 − e−λx), x > 0, y > 0

3.7.31. Given that FX,Y (x, y) = k(4x2 y2 + 5xy4),0 < x <

1,0 < y < 1, find the corresponding pdf and use it to
calculate P(0 < X < 1

2
, 1

2
< Y < 1).

3.7.32. Prove that

P(a < X ≤ b, c < Y ≤ d)=FX,Y (b,d)− FX,Y (a,d)

− FX,Y (b, c)+ FX,Y (a, c)

3.7.33. A certain brand of fluorescent bulbs will last, on
the average, 1000 hours. Suppose that four of these bulbs
are installed in an office. What is probability that all four
are still functioning after 1050 hours? If Xi denotes the ith
bulb’s life, assume that

fX1,X2,X3,X4(x1, x2, x3, x4)=
4∏

i=1

(
1

1000

)
e−x/1000

for xi > 0, i = 1,2,3,4.

3.7.34. A hand of six cards is dealt from a standard poker
deck. Let X denote the number of aces, Y the number of
kings, and Z the number of queens.

(a) Write a formula for pX,Y,Z (x, y, z).
(b) Find pX,Y (x, y) and pX,Z (x, z).

3.7.35. Calculate pX,Y (0,1) if pX,Y,Z (x, y, z) =
3!

x !y!z!(3−x−y−z)!
(

1
2

)x ( 1
12

)y ( 1
6

)z · ( 1
4

)3−x−y−z
for x, y, z = 0,1,2,3

and 0 ≤ x + y + z ≤ 3.

3.7.36. Suppose that the random variables X , Y , and Z
have the multivariate pdf

fX,Y,Z (x, y, z)= (x + y)e−z

for 0 < x < 1,0 < y < 1, and z > 0. Find (a) fX,Y (x, y), (b)
fY,Z (y, z), and (c) fZ (z).

3.7.37. The four random variables W , X , Y , and Z have
the multivariate pdf

fW,X,Y,Z (w, x, y, z)= 16wxyz

for 0 < w < 1,0 < x < 1,0 < y < 1, and 0 < z < 1. Find the
marginal pdf, fW,X (w, x), and use it to compute P(0 < W <
1
2
, 1

2
< X < 1).

Independence of Two Random Variables

The concept of independent events that was introduced in Section 2.5 leads quite
naturally to a similar definition for independent random variables.

Definition 3.7.5. Two random variables X and Y are said to be independent
if for every interval A and every interval B, P(X ∈ A and Y ∈ B) = P(X ∈
A)P(Y ∈ B).
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Theorem
3.7.4

The continuous random variables X and Y are independent if and only if there are
functions g(x) and h(y) such that

fX,Y (x, y)= g(x)h(y) (3.7.2)

If Equation 3.7.2 holds, there is a constant k such that fX (x) = kg(x) and fY (y) =
(1/k)h(y).

Proof First, suppose that X and Y are independent. Then FX,Y (x, y) = P(X ≤ x and
Y ≤ y)= P(X ≤ x)P(Y ≤ y)= FX (x)FY (y), and we can write

fX,Y (x, y)= ∂2

∂x ∂y
FX,Y (x, y)= ∂2

∂x ∂y
FX (x)FY (y)= d

dx
FX (x)

d

dy
FY (y)= fX (x) fY (y)

Next we need to show that Equation 3.7.2 implies that X and Y are independent.
To begin, note that

fX (x)=
∫ ∞

−∞
fX,Y (x, y) dy =

∫ ∞

−∞
g(x)h(y) dy = g(x)

∫ ∞

−∞
h(y) dy

Set k = ∫∞
−∞ h(y)dy, so fX (x) = kg(x). Similarly, it can be shown that fY (y) =

(1/k)h(y). Therefore,

P(X ∈ A and Y ∈ B) =
∫

A

∫
B

fX,Y (x, y)dx dy =
∫

A

∫
B

g(x)h(y)dx dy

=
∫

A

∫
B

kg(x)(1/k)h(y)dx dy =
∫

A
fX (x)dx

∫
B

fY (y)dy

= P(X ∈ A)P(Y ∈ B)

and the theorem is proved. �

Comment Theorem 3.7.4 can be adapted to the case that X and Y are discrete.

Example
3.7.11

Suppose that the probabilistic behavior of two random variables X and Y is
described by the joint pdf fX,Y (x, y)= 12xy(1 − y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Are X and Y
independent? If they are, find fX (x) and fY (y).

According to Theorem 3.7.4, the answer to the independence question is “yes”
if fX,Y (x, y) can be factored into a function of x times a function of y. There are such
functions. Let g(x)= 12x and h(y)= y(1 − y).

To find fX (x) and fY (y) requires that the “12” appearing in fX,Y (x, y) be
factored in such a way that g(x) · h(y)= fX (x) · fY (y). Let

k =
∫ ∞

−∞
h(y) dy =

∫ 1

0
y(1 − y) dy =[y2/2 − y3/3]

∣∣∣∣1
0

= 1

6

Therefore, fX (x)= kg(x)= 1
6 (12x)= 2x , 0 ≤ x ≤ 1 and fY (y)= (1/k)h(y)= 6y(1 − y),

0 ≤ y ≤ 1.

Independence of n (>2) Random Variables

In Chapter 2, extending the notion of independence from two events to n events
proved to be something of a problem. The independence of each subset of the n
events had to be checked separately (recall Definition 2.5.2). This is not necessary
in the case of n random variables. We simply use the extension of Theorem 3.7.4 to
n random variables as the definition of independence in the multidimensional case.
The theorem that independence is equivalent to the factorization of the joint pdf
holds in the multidimensional case.
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Definition 3.7.6. The n random variables X1, X2, . . . , Xn are said to be inde-
pendent if there are functions g1(x1), g2(x2), . . . , gn(xn) such that for every
x1, x2, . . . , xn

fX1,X2,...,Xn (x1, x2, . . . , xn)= g1(x1)g2(x2) · · · gn(xn)

A similar statement holds for discrete random variables, in which case f is
replaced with p.

Comment Analogous to the result for n =2 random variables, the expression on the
right-hand side of the equation in Definition 3.7.6 can also be written as the product
of the marginal pdfs of X1, X2, . . . , and Xn .

Example
3.7.12

Consider k urns, each holding n chips numbered 1 through n. A chip is to be drawn
at random from each urn. What is the probability that all k chips will bear the same
number?

If X1, X2, . . . , Xk denote the numbers on the 1st, 2nd, . . ., and kth chips, respec-
tively, we are looking for the probability that X1 = X2 =· · ·= Xk . In terms of the joint
pdf,

P(X1 = X2 = · · ·= Xk)=
∑

x1=x2=···=xk

pX1,X2,...,Xk (x1, x2, . . . , xk)

Each of the selections here is obviously independent of all the others, so the joint
pdf factors according to Definition 3.7.6, and we can write

P(X1 = X2 = · · ·= Xk)=
n∑

i=1

pX1(xi ) · pX2(xi ) · · · pXk (xi )

= n ·
(

1

n
· 1

n
· · · · · 1

n

)
= 1

nk−1

Random Samples

Definition 3.7.6 addresses the question of independence as it applies to n random
variables having marginal pdfs—say, fX1(x1), fX2(x2), . . . , fXn (xn)—that might be
quite different. A special case of that definition occurs for virtually every set of
data collected for statistical analysis. Suppose an experimenter takes a set of n mea-
surements, x1, x2, . . . , xn , under the same conditions. Those Xi ’s, then, qualify as a
set of independent random variables—moreover, each represents the same pdf. The
special—but familiar—notation for that scenario is given in Definition 3.7.7. We will
encounter it often in the chapters ahead.

Definition 3.7.7. Let X1, X2, . . . , Xn be a set of n independent random vari-
ables, all having the same pdf. Then X1, X2, . . . , Xn are said to be a random
sample of size n.



176 Chapter 3 Random Variables

Questions

3.7.38. Two fair dice are tossed. Let X denote the number
appearing on the first die and Y the number on the second.
Show that X and Y are independent.

3.7.39. Let fX,Y (x, y) = λ2e−λ(x+y), 0 ≤ x , 0 ≤ y. Show that
X and Y are independent. What are the marginal pdfs in
this case?

3.7.40. Suppose that each of two urns has four chips, num-
bered 1 through 4. A chip is drawn from the first urn and
bears the number X . That chip is added to the second
urn. A chip is then drawn from the second urn. Call its
number Y .

(a) Find pX,Y (x, y).
(b) Show that pX (k)= pY (k)= 1

4
, k = 1,2,3,4.

(c) Show that X and Y are not independent.

3.7.41. Let X and Y be random variables with joint pdf

fX,Y (x, y)= k, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ x + y ≤ 1

Give a geometric argument to show that X and Y are not
independent.

3.7.42. Are the random variables X and Y independent if
fX,Y (x, y)= 2

3
(x + 2y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1?

3.7.43. Suppose that random variables X and Y are inde-
pendent with marginal pdfs fX (x) = 2x , 0 ≤ x ≤ 1, and
fY (y)= 3y2, 0 ≤ y ≤ 1. Find P(Y < X).

3.7.44. Find the joint cdf of the independent random vari-

ables X and Y , where fX (x)= x

2
, 0 ≤ x ≤ 2, and fY (y)= 2y,

0 ≤ y ≤ 1.

3.7.45. If two random variables X and Y are independent
with marginal pdfs fX (x) = 2x , 0 ≤ x ≤ 1, and fY (y) = 1,
0 ≤ y ≤ 1, calculate P

(
Y
X

> 2
)
.

3.7.46. Suppose fX,Y (x, y) = xye−(x+y), x > 0, y > 0. Prove
for any real numbers a, b, c, and d that

P(a < X < b, c < Y < d)= P(a < X < b) · P(c < Y < d)

thereby establishing the independence of X and Y .

3.7.47. Given the joint pdf fX,Y (x, y) = 2x + y − 2xy, 0 <

x < 1, 0 < y < 1, find numbers a, b, c, and d such that

P(a < X < b, c < Y < d) �= P(a < X < b) · P(c < Y < d)

thus demonstrating that X and Y are not independent.

3.7.48. Prove that if X and Y are two independent ran-
dom variables, then U = g(X) and V = h(Y ) are also
independent.

3.7.49. If two random variables X and Y are defined over
a region in the XY -plane that is not a rectangle (possibly
infinite) with sides parallel to the coordinate axes, can X
and Y be independent?

3.7.50. Write down the joint probability density function
for a random sample of size n drawn from the exponential
pdf, fX (x)= (1/λ)e−x/λ, x ≥ 0.

3.7.51. Suppose that X1, X2, X3, and X4 are independent
random variables, each with pdf fXi (xi ) = 4x3

i , 0 ≤ xi ≤ 1.
Find

(a) P
(
X1 < 1

2

)
.

(b) P
(
exactly one Xi < 1

2

)
.

(c) fX1,X2,X3,X4(x1, x2, x3, x4).
(d) FX2,X3(x2, x3).

3.7.52. A random sample of size n = 2k is taken from
a uniform pdf defined over the unit interval. Calculate
P
(
X1 < 1

2
, X2 > 1

2
, X3 < 1

2
, X4 > 1

2
, . . . , X2k > 1

2

)
.

3.8 Transforming and Combining Random
Variables
Transformations

Transforming a variable from one scale to another is a problem that is comfortably
familiar. If a thermometer says the temperature outside is 83◦F, we know that the
temperature in degrees Celsius is 28:

◦C =
(

5

9

)
(◦F − 32)=

(
5

9

)
(83 − 32)= 28

An analogous question arises in connection with random variables. Suppose that
X is a discrete random variable with pdf pX (k). If a second random variable, Y , is
defined to be aX + b, where a and b are constants, what can be said about the pdf
for Y ?
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Theorem
3.8.1

Suppose X is a discrete random variable. Let Y =aX +b, where a and b are constants.

Then pY (y)= pX

(
y−b

a

)
.

Proof pY (y)= P(Y = y)= P(aX + b = y)= P

(
X = y − b

a

)
= pX

(
y − b

a

)
�

Example
3.8.1

Let X be a random variable for which pX (k) = 1
10 , for k = 1,2, . . . ,10. What is the

probability distribution associated with the random variable Y , where Y = 4X − 1?
That is, find pY (y).

From Theorem 3.8.1, P(Y = y) = P(4X − 1 = y) = P[X = (y + 1)/4] = pX

(
y+1

4

)
,

which implies that pY (y) = 1
10 for the ten values of (y + 1)/4 that equal 1, 2, . . ., 10.

But (y + 1)/4 = 1 when y = 3, (y + 1)/4 = 2 when y = 7, . . . , (y + 1)/4 = 10 when
y = 39. Therefore, pY (y)= 1

10 , for y = 3,7, . . . ,39.

Next we give the analogous result for a linear transformation of a continuous
random variable.

Theorem
3.8.2

Suppose X is a continuous random variable. Let Y = aX + b, where a �= 0 and b is a
constant. Then

fY (y)= 1

|a| fx

(
y − b

a

)
Proof We begin by writing an expression for the cdf of Y :

FY (y)= P(Y ≤ y)= P(aX + b ≤ y)= P(aX ≤ y − b)

At this point we need to consider two cases, the distinction being the sign of a.
Suppose, first, that a > 0. Then

FY (y)= P(aX ≤ y − b)= P

(
X ≤ y − b

a

)
and differentiating FY (y) yields fY (y):

fY (y)= d

dy
FY (y)= d

dy
Fx

(
y − b

a

)
= 1

a
fX

(
y − b

a

)
= 1

|a| fX

(
y − b

a

)
If a < 0,

FY (y)= P(aX ≤ y − b)= P

(
X >

y − b

a

)
= 1 − P

(
X ≤ y − b

a

)
Differentiation in this case gives

fY (y)= d

dy
FY (y)= d

dy

[
1 − Fx

(
y − b

a

)]
=−1

a
fX

(
y − b

a

)
= 1

|a| fX

(
y − b

a

)
and the theorem is proved. �

Now, armed with the multivariable concepts and techniques covered in
Section 3.7, we can extend the investigation of transformations to functions defined
on sets of random variables. In statistics, the most important combination of a set of
random variables is often their sum, so we continue this section with the problem of
finding the pdf of X + Y .
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Finding the Pdf of a Sum

Theorem
3.8.3

Suppose that X and Y are independent random variables. Let W = X + Y . Then

1. If X and Y are discrete random variables with pdfs pX (x) and pY (y), respectively,

pW (w)=
∑
all x

pX (x)pY (w − x)

2. If X and Y are continuous random variables with pdfs fX (x) and fY (y),
respectively,

fW (w)=
∫ ∞

−∞
fX (x) fY (w − x)dx

Proof

1. pW (w)= P(W =w)= P(X + Y =w)

= P
(⋃

all x

(X = x,Y =w − x)
)

=
∑
all x

P(X = x,Y =w − x)

=
∑
all x

P(X = x)P(Y =w − x)

=
∑
all x

pX (x)pY (w − x)

where the next-to-last equality derives from the independence of X and Y .
2. Since X and Y are continuous random variables, we can find fW (w) by differ-

entiating the corresponding cdf, FW (w). Here, FW (w) = P(X + Y ≤ w) is found
by integrating fX,Y (x, y) = fX (x) · fY (y) over the shaded region R, as pictured
in Figure 3.8.1.

0
x

w = x + y

y

R

w

w

Figure 3.8.1

By inspection,

Fw(w)=
∫ ∞

−∞

∫ w−x

−∞
fX (x) fY (y)dy dx =

∫ ∞

−∞
fX (x)

[∫ w−x

−∞
fY (y)dy

]
dx

=
∫ ∞

−∞
fX (x)FY (w − x)dx

Assume that the integrand in the above equation is sufficiently smooth so that
differentiation and integration can be interchanged. Then we can write
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fW (w)= d

dw
FW (w)= d

dw

∫ ∞

−∞
fX (x)FY (w − x)dx =

∫ ∞

−∞
fX (x)

[
d

dw
FY (w − x)

]
dx

=
∫ ∞

−∞
fX (x) fY (w − x)dx

and the theorem is proved. �

Comment The integral in part (2) above is referred to as the convolution of
the functions fX and fY . Besides their frequent appearances in random variable
problems, convolutions turn up in many areas of mathematics and engineering.

Example
3.8.2

Suppose that X and Y are two independent binomial random variables, each with
the same success probability but defined on m and n trials, respectively. Specifically,

pX (k)=
(

m

k

)
pk(1 − p)m−k, k = 0,1, . . . ,m

and

pY (k)=
(

n

k

)
pk(1 − p)n−k, k = 0,1, . . . ,n

Find pW (w), where W = X + Y .
By Theorem 3.8.3, pW (w)=∑

all x
pX (x)pY (w − x), but the summation over “all x”

needs to be interpreted as the set of values for x and w − x such that pX (x) and
pY (w − x), respectively, are both nonzero. But that will be true for all integers x
from 0 to w. Therefore,

pW (w)=
w∑

x=0

pX (x)pY (w − x) =
w∑

x=0

(
m

x

)
px (1 − p)m−x

(
n

w − x

)
pw−x (1 − p)n−(w−x)

=
w∑

x=0

(
m

x

)(
n

w − x

)
pw(1 − p)n+m−w

Now, consider an urn having m red chips and n white chips. If w chips are
drawn out—without replacement—the probability that exactly x red chips are in
the sample is given by the hypergeometric distribution,

P(x reds in sample) =
(m

x

)( n
w−x

)(m+n
w

) (3.8.1)

Summing Equation 3.8.1 from x = 0 to x =w must equal 1 (why?), in which case
w∑

x=0

(
m

x

)(
n

w − x

)
=
(

m + n

w

)
so

pW (w)=
(

m + n

w

)
pw(1 − p)n+m−w, w = 0,1, . . . ,n + m

Should we recognize pW (w)? Definitely. Compare the structure of pW (w) to the
statement of Theorem 3.2.1: The random variable W has a binomial distribution
where the probability of success at any given trial is p and the total number of trials
is n + m.
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Comment Example 3.8.2 shows that the binomial distribution “reproduces”
itself—that is, if X and Y are independent binomial random variables with the same
value for p, their sum is also a binomial random variable. Not all random variables
share that property. The sum of two independent uniform random variables, for
example, is not a uniform random variable (see Question 3.8.3).

Example
3.8.3

Suppose a radiation monitor relies on an electronic sensor, whose lifetime X is mod-
eled by the exponential pdf, fX (x) = λe−λx , x > 0. To improve the reliability of the
monitor, the manufacturer has included an identical second sensor that is activated
only in the event the first sensor malfunctions. (This is called cold redundancy.)
Let the random variable Y denote the operating lifetime of the second sensor, in
which case the lifetime of the monitor can be written as the sum W = X + Y . Find
fW (w).

Since X and Y are both continuous random variables,

fW (w)=
∫ ∞

−∞
fX (x) fY (w − x)dx (3.8.2)

Notice that fX (x) > 0 only if x > 0 and that fY (w − x) > 0 only if x < w. Therefore,
the integral in Equation 3.8.2 that goes from −∞ to ∞ reduces to an integral from
0 to w, and we can write

fW (w)=
∫ w

0
fX (x) fY (w − x)dx =

∫ w

0
λe−λxλe−λ(w−x) dx = λ2

∫ w

0
e−λx e−λ(w−x) dx

= λ2e−λw

∫ w

0
dx = λ2we−λw, w ≥ 0

Comment By integrating fX (x) and fW (w), we can assess the improvement in the
monitor’s reliability afforded by the cold redundancy. Since X is an exponential ran-
dom variable, E(X) = 1/λ (recall Question 3.5.11). How different, for example, are
P(X ≥ 1/λ) and P(W ≥ 1/λ)? A simple calculation shows that the latter is actually
twice the magnitude of the former:

P(X ≥ 1/λ)=
∫ ∞

1/λ

λe−λx dx =−e−u
∣∣∞
1 = e−1 = 0.37

P(W ≥ 1/λ)=
∫ ∞

1/λ

λ2we−λw dw = e−u(−u − 1)
∣∣∞
1 = 2e−1 = 0.74

Finding the Pdfs of Quotients and Products

We conclude this section by considering the pdfs for the quotient and product of two
independent random variables. That is, given X and Y , we are looking for fW (w),
where (1) W = Y/X and (2) W = XY . Neither of the resulting formulas is as impor-
tant as the pdf for the sum of two random variables, but both formulas will play key
roles in several derivations in Chapter 7.
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Theorem
3.8.4

Let X and Y be independent continuous random variables, with pdfs fX (x) and fY (y),
respectively. Assume that X is zero for at most a set of isolated points. Let W = Y/X .
Then

fW (w)=
∫ ∞

−∞
|x | fX (x) fY (wx)dx

Proof

FW (w)= P(Y/X ≤w)

= P(Y/X ≤w and X ≥ 0)+ P(Y/X ≥w and X < 0)

= P(Y ≤ wX and X ≥ 0)+ P(Y ≥wX and X < 0)

= P(Y ≤ wX and X ≥ 0)+ 1 − P(Y ≤wX and X < 0)

=
∫ ∞

0

∫ wx

−∞
fX (x) fY (y)dy dx + 1 −

∫ 0

−∞

∫ wx

−∞
fX (x) fY (y)dy dx

Then we differentiate FW (w) to obtain

fW (w)= d

dw
FW (w)= d

dw

∫ ∞

0

∫ wx

−∞
fX (x) fY (y)dy dx − d

dw

∫ 0

−∞

∫ wx

−∞
fX (x) fY (y)dy dx

=
∫ ∞

0
fX (x)

(
d

dw

∫ wx

−∞
fY (y)dy

)
dx −

∫ 0

−∞
fX (x)

(
d

dw

∫ wx

−∞
fY (y)dy

)
dx

(3.8.3)

(Note that we are assuming sufficient regularity of the functions to permit inter-
change of integration and differentiation.)

To proceed, we need to differentiate the function G(w) = ∫ wx
−∞ fY (y)dy with

respect to w. By the Fundamental Theorem of Calculus and the chain rule, we find

d

dw
G(w)= d

dw

∫ wx

−∞
fY (y)dy = fY (wx)

d

dw
wx = x fY (wx)

Putting this result into Equation 3.8.3 gives

fW (w)=
∫ ∞

0
x fX (x) fY (wx)dx −

∫ 0

−∞
x fX (x) fY (wx)dx

=
∫ ∞

0
x fX (x) fY (wx)dx +

∫ 0

−∞
(−x) fX (x) fY (wx)dx

=
∫ ∞

0
|x | fX (x) fY (wx)dx +

∫ 0

−∞
|x | fX (x) fY (wx)dx

=
∫ ∞

−∞
|x | fX (x) fY (wx)dx

which completes the proof. �

Example
3.8.4

Let X and Y be independent random variables with pdfs fX (x) = λe−λx , x > 0, and
fY (y)= λe−λy , y > 0, respectively. Define W = Y/X . Find fW (w).

Substituting into the formula given in Theorem 3.8.4, we can write

fW (w)=
∫ ∞

0
x(λe−λx )(λe−λxw)dx = λ2

∫ ∞

0
xe−λ(1+w)x dx

= λ2

λ(1 +w)

∫ ∞

0
xλ(1 +w)e−λ(1+w)x dx
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Notice that the integral is the expected value of an exponential random variable
with parameter λ(1 +w), so it equals 1/λ(1 +w) (recall Example 3.5.6). Therefore,

fW (w)= λ2

λ(1 +w)

1

λ(1 +w)
= 1

(1 +w)2
, w ≥ 0

Theorem
3.8.5

Let X and Y be independent continuous random variables with pdfs fX (x) and fY (y),
respectively. Let W = XY . Then

fW (w)=
∫ ∞

−∞
1

|x | fX (x) fY (w/x)dx =
∫ ∞

−∞
1

|x | fX (w/x) fY (x)dx

Proof A line-by-line, straightforward modification of the proof of Theorem 3.8.4
will provide a proof of Theorem 3.8.5. The details are left to the reader. �

Example
3.8.5

Suppose that X and Y are independent random variables with pdfs fX (x) = 1, 0 ≤
x ≤ 1, and fY (y)= 2y, 0 ≤ y ≤ 1, respectively. Find fW (w), where W = XY .

According to Theorem 3.8.5,

fW (w)=
∫ ∞

−∞
1

|x | fX (x) fY (w/x)dx

The region of integration, though, needs to be restricted to values of x for which the
integrand is positive. But fY (w/x) is positive only if 0 ≤ w/x ≤ 1, which implies that
x ≥ w. Moreover, for fX (x) to be positive requires that 0 ≤ x ≤ 1. Any x , then, from
w to 1 will yield a positive integrand. Therefore,

fW (w)=
∫ 1

w

1

x
(1)(2w/x)dx = 2w

∫ 1

w

1

x2
dx = 2 − 2w, 0 ≤w ≤ 1

Comment Theorems 3.8.3, 3.8.4, and 3.8.5 can be adapted to situations where X
and Y are not independent by replacing the product of the marginal pdfs with the
joint pdf.

Questions

3.8.1. Let X and Y be two independent random vari-
ables. Given the marginal pdfs shown below, find the pdf
of X + Y . In each case, check to see if X + Y belongs to the
same family of pdfs as do X and Y .

(a) pX (k)= e−λ
λk

k! and pY (k)= e−μ
μk

k! , k = 0,1,2, . . .

(b) pX (k)= pY (k)= (1 − p)k−1 p, k = 1,2, . . .

3.8.2. Suppose fX (x)= xe−x , x ≥ 0, and fY (y)= e−y , y ≥ 0,
where X and Y are independent. Find the pdf of X + Y .

3.8.3. Let X and Y be two independent random vari-
ables, whose marginal pdfs are given below. Find the pdf of
X + Y . (Hint: Consider two cases, 0 ≤w <1 and 1≤w ≤2.)

fX (x)= 1, 0 ≤ x ≤ 1, and fY (y)= 1, 0 ≤ y ≤ 1

3.8.4. If a random variable V is independent of two
independent random variables X and Y , prove that V is
independent of X + Y .

3.8.5. Let Y be a continuous nonnegative random vari-
able. Show that W = Y 2 has pdf fW (w)= 1

2
√

w
fY (

√
w).

[Hint: First find FW (w).]

3.8.6. Let Y be a uniform random variable over the
interval [0,1]. Find the pdf of W = Y 2.

3.8.7. Let Y be a random variable with fY (y) = 6y(1 − y),
0 ≤ y ≤ 1. Find the pdf of W = Y 2.

3.8.8. Suppose the velocity of a gas molecule of mass m is
a random variable with pdf fY (y) = ay2e−by2

, y ≥ 0, where
a and b are positive constants depending on the gas. Find
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the pdf of the kinetic energy, W = (m/2)Y 2, of such a
molecule.

3.8.9. Given that X and Y are independent random vari-
ables, find the pdf of XY for the following two sets of
marginal pdfs:

(a) fX (x)= 1, 0 ≤ x ≤ 1, and fY (y)= 1, 0 ≤ y ≤ 1
(b) fX (x)= 2x , 0 ≤ x ≤ 1, and fY (y)= 2y, 0 ≤ y ≤ 1

3.8.10. Let X and Y be two independent random
variables. Given the marginal pdfs indicated below, find

the cdf of Y/X . (Hint: Consider two cases, 0 ≤ w ≤ 1 and
1 <w.)

(a) fX (x)= 1, 0 ≤ x ≤ 1, and fY (y)= 1, 0 ≤ y ≤ 1
(b) fX (x)= 2x , 0 ≤ x ≤ 1, and fY (y)= 2y, 0 ≤ y ≤ 1

3.8.11. Suppose that X and Y are two independent ran-
dom variables, where fX (x)= xe−x , x ≥ 0, and fY (y) = e−y ,
y ≥ 0. Find the pdf of Y/X .

3.9 Further Properties of the Mean and Variance
Sections 3.5 and 3.6 introduced the basic definitions related to the expected value
and variance of single random variables. We learned how to calculate E(W ),
E[g(W )], E(aW + b), Var(W ), and Var(aW + b), where a and b are any constants
and W could be either a discrete or a continuous random variable. The purpose of
this section is to examine certain multivariable extensions of those results, based on
the joint pdf material covered in Section 3.7.

We begin with a theorem that generalizes E[g(W )]. While it is stated here for
the case of two random variables, it extends in a very straightforward way to include
functions of n random variables.

Theorem
3.9.1

1. Suppose X and Y are discrete random variables with joint pdf pX,Y (x, y), and
let g(X,Y ) be a function of X and Y . Then the expected value of the random
variable g(X,Y ) is given by

E[g(X,Y )] =
∑
all x

∑
all y

g(x, y) · pX,Y (x, y)

provided
∑
all x

∑
all y

|g(x, y)| · pX,Y (x, y) <∞.

2. Suppose X and Y are continuous random variables with joint pdf fX,Y (x, y),
and let g(X,Y ) be a continuous function. Then the expected value of the random
variable g(X,Y ) is given by

E[g(X,Y )] =
∫ ∞

−∞

∫ ∞

−∞
g(x, y) · fX,Y (x, y)dx dy

provided
∫∞
−∞
∫∞
−∞ |g(x, y)| · fX,Y (x, y) dx dy <∞.

Proof The basic approach taken in deriving this result is similar to the method
followed in the proof of Theorem 3.5.3. See (128) for details. �

Example
3.9.1

Consider the two random variables X and Y whose joint pdf is detailed in the 2 × 4
matrix shown in Table 3.9.1. Let

g(X,Y )= 3X − 2XY + Y

Find E[g(X,Y )] two ways—first, by using the basic definition of an expected value,
and second, by using Theorem 3.9.1.

Let Z = 3X − 2XY + Y . By inspection, Z takes on the values 0, 1, 2, and 3
according to the pdf fZ (z) shown in Table 3.9.2. Then from the basic definition
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Table 3.9.1

Y

0 1 2 3

0
1

8

1

4

1

8
0

X

1 0
1

8

1

4

1

8

Table 3.9.2

z 0 1 2 3

fZ (z) 1
4

1
2

1
4

0

that an expected value is a weighted average, we see that E[g(X,Y )] is equal
to 1:

E[g(X,Y )] = E(Z) =
∑
all z

z · fZ (z)

= 0 · 1

4
+ 1 · 1

2
+ 2 · 1

4
+ 3 · 0

= 1

The same answer is obtained by applying Theorem 3.9.1 to the joint pdf given in
Figure 3.9.1:

E[g(X,Y )] = 0 · 1

8
+ 1 · 1

4
+ 2 · 1

8
+ 3 · 0 + 3 · 0 + 2 · 1

8
+ 1 · 1

4
+ 0 · 1

8

= 1

The advantage, of course, enjoyed by the latter solution is that we avoid the
intermediate step of having to determine fZ (z).

Example
3.9.2

An electrical circuit has three resistors, RX , RY , and RZ , wired in parallel (see
Figure 3.9.1). The nominal resistance of each is fifteen ohms, but their actual
resistances, X , Y , and Z , vary between ten and twenty according to the joint pdf

fX,Y,Z (x, y, z)= 1

675,000
(xy + xz + yz),

10 ≤ x ≤ 20
10 ≤ y ≤ 20
10 ≤ z ≤ 20

What is the expected resistance for the circuit?

XR

YR

ZR

Figure 3.9.1
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Let R denote the circuit’s resistance. A well-known result in physics holds that

1

R
= 1

X
+ 1

Y
+ 1

Z

or, equivalently,

R = XY Z

XY + X Z + Y Z
= R(X,Y, Z)

Integrating R(x, y, z) · fX,Y,Z (x, y, z) shows that the expected resistance is five:

E(R) =
∫ 20

10

∫ 20

10

∫ 20

10

xyz

xy + xz + yz
· 1

675,000
(xy + xz + yz)dx dy dz

= 1

675,000

∫ 20

10

∫ 20

10

∫ 20

10
xyz dx dy dz

= 5.0

Theorem
3.9.2

Let X and Y be any two random variables (discrete or continuous, dependent or
independent), and let a and b be any two constants. Then

E(aX + bY )= aE(X)+ bE(Y )

provided E(X) and E(Y ) are both finite.

Proof Consider the continuous case (the discrete case is proved much the same
way). Let fX,Y (x, y) be the joint pdf of X and Y , and define g(X,Y ) = aX + bY .
By Theorem 3.9.1,

E(aX + bY ) =
∫ ∞

−∞

∫ ∞

−∞
(ax + by) fX,Y (x, y)dx dy

=
∫ ∞

−∞

∫ ∞

−∞
(ax) fX,Y (x, y)dx dy +

∫ ∞

−∞

∫ ∞

−∞
(by) fX,Y (x, y)dx dy

= a
∫ ∞

−∞
x

[∫ ∞

−∞
fX,Y (x, y)dy

]
dx + b

∫ ∞

−∞
y

[∫ ∞

−∞
fX,Y (x, y)dx

]
dy

= a
∫ ∞

−∞
x fX (x)dx + b

∫ ∞

−∞
y fY (y)dy

= aE(X)+ bE(Y ) �

Corollary
3.9.1

Let W1, W2, . . . , Wn be any random variables for which E(Wi ) < ∞, i = 1,2, . . . ,n,
and let a1,a2, . . . ,an be any set of constants. Then

E(a1W1 + a2W2 + · · ·+ an Wn)= a1 E(W1)+ a2 E(W2)+ · · ·+ an E(Wn) �

Example
3.9.3

Let X be a binomial random variable defined on n independent trials, each trial
resulting in success with probability p. Find E(X).

Note, first, that X can be thought of as a sum, X = X1 + X2 + · · · + Xn , where Xi

represents the number of successes occurring at the ith trial:

Xi =
{

1 if the ith trial produces a success
0 if the ith trial produces a failure
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(Any Xi defined in this way on an individual trial is called a Bernoulli random
variable. Every binomial random variable, then, can be thought of as the sum of
n independent Bernoullis.) By assumption, pXi (1) = p and pXi (0) = 1 − p, i = 1,
2, . . . ,n. Using the corollary,

E(X) = E(X1)+ E(X2)+ · · · + E(Xn)

= n · E(X1)

the last step being a consequence of the Xi ’s having identical distributions. But

E(X1)= 1 · p + 0 · (1 − p)= p

so E(X)= np, which is what we found before (recall Theorem 3.5.1).

Comment The problem-solving implications of Theorem 3.9.2 and its corollary
should not be underestimated. There are many real-world events that can be mod-
eled as a linear combination a1W1 + a2W2 +· · ·+ an Wn , where the Wi ’s are relatively
simple random variables. Finding E(a1W1 + a2W2 + · · ·+ an Wn) directly may be pro-
hibitively difficult because of the inherent complexity of the linear combination. It
may very well be the case, though, that calculating the individual E(Wi )’s is easy.
Compare, for instance, Example 3.9.3 with Theorem 3.5.1. Both derive the formula
that E(X) = np when X is a binomial random variable. However, the approach
taken in Example 3.9.3 (i.e., using Theorem 3.9.2) is much easier. The next several
examples further explore the technique of using linear combinations to facilitate the
calculation of expected values.

Example
3.9.4

A disgruntled secretary is upset about having to stuff envelopes. Handed a box of
n letters and n envelopes, she vents her frustration by putting the letters into the
envelopes at random. How many people, on the average, will receive their correct
mail?

If X denotes the number of envelopes properly stuffed, what we want is E(X).
However, applying Definition 3.5.1 here would prove formidable because of the
difficulty in getting a workable expression for pX (k) [see (95)]. By using the corollary
to Theorem 3.9.2, though, we can solve the problem quite easily.

Let Xi denote a random variable equal to the number of correct letters put into
the ith envelope, i = 1,2, . . . ,n. Then Xi equals 0 or 1, and

pXi (k)= P(Xi = k)=

⎧⎪⎨⎪⎩
1

n
for k = 1

n − 1

n
for k = 0

But X = X1 + X2 + · · ·+ Xn and E(X)= E(X1)+ E(X2)+ · · ·+ E(Xn). Furthermore,
each of the Xi ’s has the same expected value, 1/n:

E(Xi )=
1∑

k=0

k · P(Xi = k)= 0 · n − 1

n
+ 1 · 1

n
= 1

n

It follows that

E(X) =
n∑

i=1

E(Xi )= n ·
(

1

n

)
= 1

showing that, regardless of n, the expected number of properly stuffed envelopes is
one. (Are the Xi ’s independent? Does it matter?)
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Example
3.9.5

Ten fair dice are rolled. Calculate the expected value of the sum of the faces showing.
If the random variable X denotes the sum of the faces showing on the ten dice,

then

X = X1 + X2 + · · ·+ X10

where Xi is the number showing on the ith die, i = 1,2, . . . ,10. By assumption,

pXi (k) = 1
6 for k = 1,2,3,4,5,6, so E(Xi ) =

6∑
k=1

k · 1
6 = 1

6

6∑
k=1

k = 1
6 · 6(7)

2 = 3.5. By the

corollary to Theorem 3.9.2,

E(X) = E(X1)+ E(X2)+ · · ·+ E(X10)

= 10(3.5)

= 35

Notice that E(X) can also be deduced here by appealing to the notion that
expected values are centers of gravity. It should be clear from our work with combi-
natorics that P(X =10)= P(X =60), P(X =11)= P(X =59), P(X =12)= P(X =58),
and so on. In other words, the probability function pX (k) is symmetric, which implies
that its center of gravity is the midpoint of the range of its X -values. It must be the
case, then, that E(X) equals 10+60

2 or 35.

Example
3.9.6

The honor count in a (thirteen-card) bridge hand can vary from zero to thirty-seven
according to the formula:

honor count = 4·(number of aces)+3·(number of kings)+2·(number of queens)

+ 1 · (number of jacks)

What is the expected honor count of North’s hand?
The solution here is a bit unusual in that we use the corollary to Theorem 3.9.2

backward. If Xi , i =1,2,3,4, denotes the honor count for players North, South, East,
and West, respectively, and if X denotes the analogous sum for the entire deck, we
can write

X = X1 + X2 + X3 + X4

But

X = E(X)= 4 · 4 + 3 · 4 + 2 · 4 + 1 · 4 = 40

By symmetry, E(Xi ) = E(X j ), i �= j , so it follows that 40 = 4 · E(X1), which implies
that ten is the expected honor count of North’s hand. (Try doing this problem
directly, without making use of the fact that the deck’s honor count is forty.)

Expected Values of Products: A Special Case

We know from Theorem 3.9.1 that for any two random variables X and Y ,

E(XY )=

⎧⎪⎪⎨⎪⎪⎩
∑
all x

∑
all y

xypX,Y (x, y) if X and Y are discrete∫ ∞

−∞

∫ ∞

−∞
xy fX,Y (x, y) dx dy if X and Y are continuous

If, however, X and Y are independent, there is an easier way to calculate E(XY ).
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Theorem
3.9.3

If X and Y are independent random variables,

E(XY )= E(X) · E(Y )

provided E(X) and E(Y ) both exist.

Proof Suppose X and Y are both discrete random variables. Then their joint pdf,
pX,Y (x, y), can be replaced by the product of their marginal pdfs, pX (x) · pY (y), and
the double summation required by Theorem 3.9.1 can be written as the product of
two single summations:

E(XY ) =
∑
all x

∑
all y

xy · pX,Y (x, y)

=
∑
all x

∑
all y

xy · pX (x) · pY (y)

=
∑
all x

x · pX (x) ·
⎡⎣∑

all y

y · pY (y)

⎤⎦
= E(X) · E(Y )

The proof when X and Y are both continuous random variables is left as an
exercise. �

Questions

3.9.1. Suppose that r chips are drawn with replace-
ment from an urn containing n chips, numbered 1
through n. Let V denote the sum of the numbers drawn.
Find E(V ).

3.9.2. Suppose that fX,Y (x, y) = λ2e−λ(x+y), 0 ≤ x , 0 ≤ y.
Find E(X + Y ).

3.9.3. Suppose that fX,Y (x, y) = 2
3
(x + 2y), 0 ≤ x ≤ 1, 0 ≤

y ≤ 1 [recall Question 3.7.19(c)]. Find E(X + Y ).

3.9.4. Marksmanship competition at a certain level
requires each contestant to take ten shots with each of two
different handguns. Final scores are computed by taking
a weighted average of 4 times the number of bull’s-eyes
made with the first gun plus 6 times the number gotten
with the second. If Cathie has a 30% chance of hitting
the bull’s-eye with each shot from the first gun and a 40%
chance with each shot from the second gun, what is her
expected score?

3.9.5. Suppose that Xi is a random variable for which
E(Xi ) = μ, i = 1,2, . . . ,n. Under what conditions will the
following be true?

E

(
n∑

i=1

ai Xi

)
=μ

3.9.6. Suppose that the daily closing price of stock goes up
an eighth of a point with probability p and down an eighth
of a point with probability q , where p > q . After n days
how much gain can we expect the stock to have achieved?
Assume that the daily price fluctuations are independent
events.

3.9.7. An urn contains r red balls and w white balls. A
sample of n balls is drawn in order and without replace-
ment. Let Xi be 1 if the ith draw is red and 0 otherwise,
i = 1,2, . . . ,n.

(a) Show that E(Xi )= E(X1), i = 2,3, . . . ,n.
(b) Use the corollary to Theorem 3.9.2 to show

that the expected number of red balls is
nr/(r +w).

3.9.8. Suppose two fair dice are tossed. Find the expected
value of the product of the faces showing.

3.9.9. Find E(R) for a two-resistor circuit similar to the
one described in Example 3.9.2, where fX,Y (x, y) = k(x +
y), 10 ≤ x ≤ 20, 10 ≤ y ≤ 20.

3.9.10. Suppose that X and Y are both uniformly dis-
tributed over the interval [0, 1]. Calculate the expected
value of the square of the distance of the random point
(X,Y ) from the origin; that is, find E(X 2 + Y 2). (Hint: See
Question 3.8.6.)
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3.9.11. Suppose X represents a point picked at random
from the interval [0,1] on the x-axis, and Y is a point
picked at random from the interval [0,1] on the y-axis.
Assume that X and Y are independent. What is the
expected value of the area of the triangle formed by the
points (X,0), (0,Y ), and (0, 0)?

3.9.12. Suppose Y1,Y2, . . . ,Yn is a random sample from
the uniform pdf over [0, 1]. The geometric mean of the
numbers is the random variable n

√
Y1Y2 · · · · · Yn . Compare

the expected value of the geometric mean to that of the
arithmetic mean Ȳ .

Calculating the Variance of a Sum of Random Variables

When random variables are not independent, a measure of the relationship between
them, their covariance, enters into the picture.

Definition 3.9.1. Given random variables X and Y with finite variances, define
the covariance of X and Y , written Cov(X,Y ), as

Cov(X,Y )= E(XY )− E(X)E(Y )

Theorem
3.9.4

If X and Y are independent, then Cov(X,Y )= 0.

Proof If X and Y are independent, by Theorem 3.9.3, E(XY )= E(X)E(Y ). Then

Cov(X,Y )= E(XY )− E(X)E(Y )= E(X)E(Y )− E(X)E(Y )= 0

The converse of Theorem 3.9.4 is not true. Just because Cov(X,Y )=0, we cannot
conclude that X and Y are independent. Example 3.9.7 is a case in point. �

Example
3.9.7

Consider the sample space S = {(−2,4), (−1,1), (0,0), (1,1), (2,4)}, where each
point is assumed to be equally likely. Define the random variable X to be the first
component of a sample point and Y , the second. Then X (−2,4) = −2,Y (−2,4) = 4,
and so on.

Notice that X and Y are dependent:

1

5
= P(X = 1,Y = 1) �= P(X = 1) · P(Y = 1)= 1

5
· 2

5
= 2

25
However, the convariance of X and Y is zero:

E(XY ) =[(−8)+ (−1)+ 0 + 1 + 8] · 1

5
= 0

E(X) =[(−2)+ (−1)+ 0 + 1 + 2] · 1

5
= 0

and

E(Y )= (4 + 1 + 0 + 1 + 4) · 1

5
= 2

so

Cov(X,Y )= E(XY )− E(X) · E(Y )= 0 − 0 · 2 = 0

Theorem 3.9.5 demonstrates the role of the covariance in finding the variance
of a sum of random variables that are not necessarily independent.

Theorem
3.9.5

Suppose X and Y are random variables with finite variances, and a and b are
constants. Then

Var(aX + bY )= a2Var(X)+ b2Var(Y )+ 2ab Cov(X,Y )
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Proof For convenience, denote E(X) by μX and E(Y ) by μY . Then E(aX + bY ) =
aμX + bμY and

Var(aX + bY ) = E[(aX + bY )2] − (aμX + bμY )2

= E(a2 X2 + b2Y 2 + 2abXY )− (a2μ2
X + b2μ2

Y + 2abμXμY )

=[E(a2 X2)− a2μ2
X ]+ [E(b2Y 2)− b2μ2

Y ]+ [2abE(XY )− 2abμXμY ]
= a2[E(X2)−μ2

X ] + b2[E(Y 2)−μ2
Y ] + 2ab[E(XY )−μXμY ]

= a2 Var(X)+ b2 Var(Y)+ 2abCov(X,Y) �

Example
3.9.8

For the joint pdf fX,Y (x, y)= x + y, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, find the variance of X + Y .
Since X and Y are not independent,

Var(X + Y )= Var(X)+ Var(Y )+ 2Cov(X,Y )

The pdf is symmetric in X and Y , so Var(X)= Var(Y ), and we can write Var(X + Y )=
2[Var(X)+ Cov(X,Y )].

To calculate Var(X), the marginal pdf of X is needed. But

fX (x)=
∫ 1

0
(x + y)dy = x + 1

2

μX =
∫ 1

0
x(x + 1

2
)dx =

∫ 1

0
(x2 + x

2
)dx = 7

12

E(X2)=
∫ 1

0
x2(x + 1

2
)dx =

∫ 1

0
(x3 + x2

2
)dx = 5

12

Var(X)= E(X2)−μ2
X = 5

12
−
(

7

12

)2

= 11

144

Then

E(XY )=
∫ 1

0

∫ 1

0
xy(x + y)dydx =

∫ 1

0

(
x2

2
+ x

3

)
dx = x3

6
+ x2

6

∣∣∣∣1
0

= 1

3

so, putting all of the pieces together,

Cov(X,Y )= 1/3 − (7/12)(7/12)=−1/144

and, finally, Var(X + Y )= 2[11/144 + (−1/144)] = 5/36

The two corollaries that follow are straightforward extensions of Theorem 3.9.5
to n variables. The details of the proof will be left as an exercise.

Corollary Suppose that W1, W2, . . . , Wn are random variables with finite variances. Then

Var

(
a∑

i=1

ai Wi

)
=

n∑
i=1

a2
i Var(Wi )+ 2

∑
i< j

ai a j Cov(Wi , W j )

�

Corollary Suppose that W1, W2, . . . , Wn are independent random variables with finite variances.
Then

Var(W1 + W2 + · · ·+ Wn)= Var(W1)+ Var(W2)+ · · · + Var(Wn)

More discussion of the covariance and its role in measuring the relationship between
random variables occurs in Section 11.4. �
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Example
3.9.9

The binomial random variable, being a sum of n independent Bernoullis, is an obvi-
ous candidate for the corollary to Theorem 3.9.5 on the sum of independent random
variables. Let Xi denote the number of successes occurring on the ith trial. Then

Xi =
{

1 with probability p

0 with probability 1 − p

and

X = X1 + X2 + · · ·+ Xn = total number of successes in n trials

Find Var(X).
Note that

E(Xi )= 1 · p + 0 · (1 − p)= p

and

E
(
X2

i

)= (1)2 · p + (0)2 · (1 − p)= p

so

Var(Xi ) = E
(
X2

i

)−[E(Xi )]2 = p − p2

= p(1 − p)

It follows, then, that the variance of a binomial random variable is np(1 − p):

Var(X)=
n∑

i=1

Var(Xi )= np(1 − p)

Example
3.9.10

Recall the hypergeometric model—an urn contains N chips, r red and w white (r +
w = N); a random sample of size n is selected without replacement and the random
variable X is defined to be the number of red chips in the sample. As in the previous
example, write X as a sum of simple random variables.

Xi =
{

1 if the ith chip drawn is red
0 otherwise

Then X = X1 + X2 + · · · + Xn . Clearly,

E(Xi )= 1 · r

N
+ 0 · w

N
= r

N

and E(X)= n
(

r
N

)= np, where p = r
N .

Since X2
i = Xi , E(X2

i )= E(Xi )= r
N and

Var(Xi )= E(X2
i )−[E(Xi )]2 = r

N
−
( r

N

)2 = p(1 − p)

Also, for any j �= k,

Cov(X j , Xk)= E(X j Xk)− E(X j )E(Xk)

= 1 · P(X j Xk = 1)−
( r

N

)2

= r

N
· r − 1

N − 1
− r2

N 2
=− r

N
· N − r

N
· 1

N − 1
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From the first corollary to Theorem 3.9.5, then,

Var(X)=
n∑

i=1

Var(Xi )+ 2
∑
j<k

Cov(X j , Xk)

= np(1 − p)− 2

(
n
2

)
p(1 − p) · 1

N − 1

= p(1 − p)

[
n − n(n − 1)

N − 1

]
= np(1 − p) · N − n

N − 1

Example
3.9.11

In statistics, it is often necessary to draw inferences based on W , the average com-
puted from a random sample of n observations. Two properties of W are especially
important. First, if the Wi ’s come from a population where the mean is μ, the corol-
lary to Theorem 3.9.2 implies that E(W ) = μ. Second, if the Wi ’s come from a
population whose variance is σ 2, then Var(W ) = σ 2/n. To verify the latter, we can
appeal again to Theorem 3.9.5. Write

W = 1

n

n∑
i=1

Wi = 1

n
· W1 + 1

n
· W2 + · · ·+ 1

n
· Wn

Then

Var(W ) =
(

1

n

)2

· Var(W1)+
(

1

n

)2

· Var(W2)+ · · · +
(

1

n

)2

· Var(Wn)

=
(

1

n

)2

σ 2 +
(

1

n

)2

σ 2 + · · ·+
(

1

n

)2

σ 2

= σ 2

n

Questions

3.9.13. Suppose that two dice are thrown. Let X be the
number showing on the first die and let Y be the larger of
the two numbers showing. Find Cov(X,Y ).

3.9.14. Show that

Cov(aX + b, cY + d)= acCov(X,Y )

for any constants a,b, c, and d .

3.9.15. Let U be a random variable uniformly distributed
over [0,2π]. Define X = cosU and Y = sinU . Show that X
and Y are dependent but that Cov(X,Y )= 0.

3.9.16. Let X and Y be random variables with

fX,Y (x, y)=
{

1, −y < x < y, 0 < y < 1
0, elsewhere

Show that Cov(X,Y )= 0 but that X and Y are dependent.

3.9.17. Suppose that fX,Y (x, y) = λ2e−λ(x+y), 0 ≤ x , 0 ≤ y.
Find Var(X + Y ). (Hint: See Questions 3.6.11 and 3.9.2.)

3.9.18. Suppose that fX,Y (x, y) = 2
3
(x + 2y), 0 ≤ x ≤ 1,

0 ≤ y ≤ 1. Find Var(X + Y ). (Hint: See Question 3.9.3.)

3.9.19. For the uniform pdf defined over [0, 1], find the
variance of the geometric mean when n = 2 (see Ques-
tion 3.9.12).

3.9.20. Let X be a binomial random variable based on
n trials and a success probability of px ; let Y be an inde-
pendent binomial random variable based on m trials and
a success probability of pY . Find E(W ) and Var(W ), where
W = 4X + 6Y .

3.9.21. Let the Poisson random variable U (see p. 227) be
the number of calls for technical assistance received by a
computer company during the firm’s nine normal work-
day hours. Suppose the average number of calls per hour
is 7.0 and that each call costs the company $50. Let V be a
Poisson random variable representing the number of calls
for technical assistance received during a day’s remaining
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fifteen hours. Suppose the average number of calls per
hour is 4.0 for that time period and that each such call costs
the company $60. Find the expected cost and the vari-
ance of the cost associated with the calls received during a
twenty-four-hour day.

3.9.22. A mason is contracted to build a patio retaining
wall. Plans call for the base of the wall to be a row of
fifty 10-inch bricks, each separated by 1

2
-inch-thick mortar.

Suppose that the bricks used are randomly chosen from a
population of bricks whose mean length is 10 inches and
whose standard deviation is 1

32
inch. Also, suppose that the

mason, on the average, will make the mortar 1
2

inch thick,
but that the actual dimension will vary from brick to brick,
the standard deviation of the thicknesses being 1

16
inch.

What is the standard deviation of L , the length of the first
row of the wall? What assumption are you making?

3.9.23. An electric circuit has six resistors wired in series,
each nominally being five ohms. What is the maximum
standard deviation that can be allowed in the manufac-
ture of these resistors if the combined circuit resistance is
to have a standard deviation no greater than 0.4 ohm?

3.9.24. A gambler plays n hands of poker. If he wins the
kth hand, he collects k dollars; if he loses the kth hand,
he collects nothing. Let T denote his total winnings in n
hands. Assuming that his chances of winning each hand
are constant and independent of his success or failure at
any other hand, find E(T ) and Var(T ).

3.10 Order Statistics
The single-variable transformation taken up in Section 3.4 involved a standard linear
operation, Y = aX + b. The bivariate transformations in Section 3.8 were similarly
arithmetic, typically being concerned with either sums or products. In this section
we will consider a different sort of transformation, one involving the ordering of
an entire set of random variables. This particular transformation has wide applica-
bility in many areas of statistics, and we will see some of its consequences in later
chapters.

Definition 3.10.1. Let Y be a continuous random variable for which
y1, y2, . . . , yn are the values of a random sample of size n. Reorder the yi ’s from
smallest to largest:

y′
1 < y′

2 < · · ·< y′
n

(No two of the yi ’s are equal, except with probability zero, since Y is contin-
uous.) Define the random variable Y ′

i to have the value y′
i , 1 ≤ i ≤ n. Then Y ′

i
is called the ith order statistic. Sometimes Y ′

n and Y ′
1 are denoted Ymax and Ymin,

respectively.

Example
3.10.1

Suppose that four measurements are made on the random variable Y : y1 = 3.4, y2 =
4.6, y3 = 2.6, and y4 = 3.2. The corresponding ordered sample would be

2.6 < 3.2 < 3.4 < 4.6

The random variable representing the smallest observation would be denoted Y ′
1,

with its value for this particular sample being 2.6. Similarly, the value for the second
order statistic, Y ′

2, is 3.2, and so on.

The Distribution of Extreme Order Statistics

By definition, every observation in a random sample has the same pdf. For example,
if a set of four measurements is taken from a normal distribution with μ = 80 and
σ = 15, then fY1(y), fY2(y), fY3(y), and fY4(y) are all the same—each is a normal
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pdf with μ = 80 and σ = 15. The pdf describing an ordered observation, though, is
not the same as the pdf describing a random observation. Intuitively, that makes
sense. If a single observation is drawn from a normal distribution with μ = 80 and
σ =15, it would not be surprising if that observation were to take on a value near 80.
On the other hand, if a random sample of n = 100 observations is drawn from that
same distribution, we would not expect the smallest observation—that is, Ymin—to
be anywhere near 80. Common sense tells us that that smallest observation is likely
to be much smaller than 80, just as the largest observation, Ymax, is likely to be much
larger than 80.

It follows, then, that before we can do any probability calculations—or any
applications whatsoever—involving order statistics, we need to know the pdf of Y ′

i
for i = 1,2, . . . ,n. We begin by investigating the pdfs of the “extreme” order statis-
tics, fYmax(y) and fYmin(y). These are the simplest to work with. At the end of the
section we return to the more general problems of finding (1) the pdf of Y ′

i for any i
and (2) the joint pdf of Y ′

i and Y ′
j , where i < j .

Theorem
3.10.1

Suppose that Y1, Y2, . . ., Yn is a random sample of continuous random variables, each
having pdf fY (y) and cdf FY (y). Then

a. The pdf of the largest order statistic is

fYmax(y)= fY ′
n
(y)= n[FY (y)]n−1 fY (y)

b. The pdf of the smallest order statistic is

fYmin(y)= fY ′
1
(y)= n[1 − FY (y)]n−1 fY (y)

Proof Finding the pdfs of Ymax and Ymin is accomplished by using the now-familiar
technique of differentiating a random variable’s cdf. Consider, for example, the case
of the largest order statistic, Y ′

n :

FY ′
n
(y) = FYmax(y)= P(Ymax ≤ y)

= P(Y1 ≤ y,Y2 ≤ y, · · · ,Yn ≤ y)

= P(Y1 ≤ y) · P(Y2 ≤ y) · · · P(Yn ≤ y) (why?)

=[FY (y)]n

Therefore,

fY ′
n
(y)= d/dy[[FY (y)]n] = n[FY (y)]n−1 fY (y)

Similarly, for the smallest order statistic (i = 1),

FY ′
1
(y) = FYmin(y)= P(Ymin ≤ y)

= 1 − P(Ymin > y)= 1 − P(Y1 > y) · P(Y2 > y) · · · P(Yn > y)

= 1 −[1 − FY (y)]n

Therefore,

fY ′
1
(y)= d/dy[1 −[1 − FY (y)]n] = n[1 − FY (y)]n−1 fY (y) �

Example
3.10.2

Suppose a random sample of n = 3 observations—Y1, Y2, and Y3—is taken from the
exponential pdf, fY (y) = e−y , y ≥ 0. Compare fY1(y) with fY ′

1
(y). Intuitively, which

will be larger, P(Y1 < 1) or P(Y ′
1 < 1)?
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The pdf for Y1, of course, is just the pdf of the distribution being
sampled—that is,

fY1(y)= fY (y)= e−y, y ≥ 0

To find the pdf for Y ′
1 requires that we apply the formula given in the proof of

Theorem 3.10.1 for fYmin(y). Note, first of all, that

FY (y)=
∫ y

0
e−t dt =−e−t

∣∣y
0 = 1 − e−y

Then, since n = 3 (and i = 1), we can write

fY ′
1
(y) = 3[1 − (1 − e−y)]2e−y

= 3e−3y, y ≥ 0

3

2

1

0 1 2

Probability
density

3 4 5

f    (y) = 3eY'1

–3y

f    (y) = eY1

–y

y

Figure 3.10.1

Figure 3.10.1 shows the two pdfs plotted on the same set of axes. Compared
to fY1(y), the pdf for Y ′

1 has more of its area located above the smaller values of
y (where Y ′

1 is more likely to lie). For example, the probability that the smallest
observation (out of three) is less than 1 is 95%, while the probability that a random
observation is less than 1 is only 63%:

P(Y ′
1 < 1) =

∫ 1

0
3e−3y dy =

∫ 3

0
e−u du =−e−u

∣∣∣∣3
0

= 1 − e−3

= 0.95

P(Y1 < 1) =
∫ 1

0
e−y dy =−e−y

∣∣∣∣1
0

= 1 − e−1

= 0.63

Example
3.10.3

Suppose a random sample of size 10 is drawn from a continuous pdf fY (y). What is
the probability that the largest observation, Y ′

10, is less than the pdf’s median, m?
Using the formula for fY ′

10
(y) = fYmax(y) given in the proof of Theorem 3.10.1, it

is certainly true that

P(Y ′
10 < m)=

∫ m

−∞
10 fY (y)[FY (y)]9dy (3.10.1)

but the problem does not specify fY (y), so Equation 3.10.1 is of no help.
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Fortunately, a much simpler solution is available, even if fY (y) were specified:
The event “Y ′

10 < m” is equivalent to the event “Y1 < m ∩ Y2 < m ∩ · · · ∩ Y10 < m.”
Therefore,

P(Y ′
10 < m)= P(Y1 < m,Y2 < m, . . . ,Y10 < m) (3.10.2)

But the ten observations here are independent, so the intersection probability
implicit on the right-hand side of Equation 3.10.2 factors into a product of ten terms.
Moreover, each of those terms equals 1

2 (by definition of the median), so

P(Y ′
10 < m) = P(Y1 < m) · P(Y2 < m) · · · P(Y10 < m)

= ( 1
2

)10

= 0.00098

Example
3.10.4

To find order statistics for discrete pdfs, the probability arguments of the type used
in the proof of Theorem 3.10.1 can be be employed. The example of finding the pdf
of Xmin for the discrete density function pX (k), k = 0,1,2, . . . suffices to demonstrate
this point.

Given a random sample X1, X2, . . . , Xn from pX (k), choose an arbitrary nonneg-

ative integer m. Recall that the cdf in this case is given by FX (m)=
m∑

k=0
pk .

Consider the events

A =(m ≤ X1 ∩ m ≤ X2 ∩ · · · ∩ m ≤ Xn) and

B =(m + 1 ≤ X1 ∩ m + 1 ≤ X2 ∩ · · · ∩ m + 1 ≤ Xn)

Then pXmin(m) = P(A ∩ BC) = P(A) − P(A ∩ B) = P(A) − P(B), where A ∩ B = B,
since B ⊂ A.

Now P(A) = P(m ≤ X1) · P(m ≤ X2) · . . . · P(m ≤ Xn) = [1 − FX (m − 1)]n by the
independence of the Xi . Similarly P(B)=[1 − FX (m)]n , so

pYmin(m)=[1 − FX (m − 1)]n −[1 − FX (m)]n

A General Formula for fY
′′
i
(y)

Having discussed two special cases of order statistics, Ymin and Ymax, we now turn to
the more general problem of finding the pdf for the ith order statistic, where i can
be any integer from 1 through n.

Theorem
3.10.2

Let Y1,Y2, . . . ,Yn be a random sample of continuous random variables drawn from a
distribution having pdf fY (y) and cdf FY (y). The pdf of the ith order statistic is given
by

fY ′
i
(y)= n!

(i − 1)!(n − i)! [FY (y)]i−1[1 − FY (y)]n−i fY (y)

for 1 ≤ i ≤ n.

Proof We will give a heuristic argument that draws on the similarity between the
statement of Theorem 3.10.2 and the binomial distribution. For a formal induction
proof verifying the expression given for fY ′

i
(y), see (97).

Recall the derivation of the binomial probability function, pX (k) = P(X = k) =(
n

k

)
pk(1 − p)n−k , where X is the number of successes in n independent trials, and p
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is the probability that any given trial ends in success. Central to that derivation was
the recognition that the event “X = k” is actually a union of all the different (mutu-
ally exclusive) sequences having exactly k successes and n − k failures. Because the
trials are independent, the probability of any such sequence is pk(1 − p)n−k and the

number of such sequences (by Theorem 2.6.2) is n!/[k!(n − k)!] (or
(

n

k

)
), so the

probability that X = k is the product
(

n

k

)
pk(1 − p)n−k .

Here we are looking for the pdf of the ith order statistic at some point y—that
is, fY ′

i
(y). As was the case with the binomial, that pdf will reduce to a combinatorial

term times the probability associated with an intersection of independent events.
The only fundamental difference is that Y ′

i is a continuous random variable, whereas
the binomial X is discrete, which means that what we find here will be a probability
density function.

Y-axis
y

i – 1 obs. 1 obs. n – i obs.

Figure 3.10.2

By Theorem 2.6.2, there are n!/[(i − 1)!1!(n − i)!] ways that n observations
can be parceled into three groups such that the ith largest is at the point y (see
Figure 3.10.2). Moreover, the likelihood associated with any particular set of points
having the configuration pictured in Figure 3.10.2 will be the probability that i − 1
(independent) observations are all less than y, n − i observations are greater than y,
and one observation is at y. The probability density associated with those constraints
for a given set of points would be [FY (y)]i−1[1 − FY (y)]n−i fY (y). The probability
density, then, that the ith order statistic is located at the point y is the product

fY ′
i
(y)= n!

(i − 1)!(n − i)! [FY (y)]i−1[1 − FY (y)]n−i fY (y)
�

Example
3.10.5

Suppose that many years of observation have confirmed that the annual maximum
flood tide Y (in feet) for a certain river can be modeled by the pdf

fY (y)= 1

20
, 20 < y < 40

(Note: It is unlikely that flood tides would be described by anything as simple as a
uniform pdf. We are making that choice here solely to facilitate the mathematics.)
The Army Corps of Engineers is planning to build a levee along a certain portion
of the river, and they want to make it high enough so that there is only a 30%
chance that the second worst flood in the next thirty-three years will overflow the
embankment. How high should the levee be? (We assume that there will be only
one potential flood per year.)

Let h be the desired height. If Y1,Y2, . . . ,Y33 denote the flood tides for the next
n = 33 years, what we require of h is that

P(Y ′
32 > h)= 0.30

As a starting point, notice that for 20 < y < 40,

FY (y)=
∫ y

20

1

20
dy = y

20
− 1
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Therefore,

fY ′
32
(y)= 33!

31!1!
( y

20
− 1
)31 (

2 − y

20

)1 · 1

20

and h is the solution of the integral equation∫ 40

h
(33)(32)

( y

20
− 1
)31 (

2 − y

20

)1 · dy

20
= 0.30 (3.10.3)

If we make the substitution

u = y

20
− 1

Equation 3.10.3 simplifies to

P(Y ′
32 > h) = 33(32)

∫ 1

(h/20)−1
u31(1 − u) du

= 1 − 33

(
h

20
− 1

)32

+ 32

(
h

20
− 1

)33

(3.10.4)

Setting the right-hand side of Equation 3.10.4 equal to 0.30 and solving for h by trial
and error gives

h = 39.3 feet

Joint Pdfs of Order Statistics

Finding the joint pdf of two or more order statistics is easily accomplished by gen-
eralizing the argument that derived from Figure 3.10.2. Suppose, for example, that
each of n observations in a random sample has pdf fY (y) and cdf FY (y). The joint
pdf for order statistics Y ′

i and Y ′
j at points u and v, where i < j and u < v, can be

deduced from Figure 3.10.3, which shows how the n points must be distributed if the
ith and jth order statistics are to be located at points u and v, respectively.

Figure 3.10.3

Y-axis
u v

i – 1 obs. Y � i Y� jj – i – 1 obs. n – j obs.

By Theorem 2.6.2, the number of ways to divide a set of n observations into
groups of sizes i − 1, 1, j − i − 1, 1, and n − j is the quotient

n!
(i − 1)!1!( j − i − 1)!1!(n − j)!

Also, given the independence of the n observations, the probability that i −1 are less
than u is [FY (u)]i−1, the probability that j − i − 1 are between u and v is [FY (v) −
FY (u)] j−i−1, and the probability that n − j are greater than v is [1− FY (v)]n− j . Multi-
plying, then, by the pdfs describing the likelihoods that Y ′

i and Y ′
j would be at points

u and v, respectively, gives the joint pdf of the two order statistics:

fY ′
i ,Y

′
j
(u, v)= n!

(i − 1)!( j − i − 1)!(n − j)! [FY (u)]i−1[FY (v)− FY (u)] j−i−1.

[1 − FY (v)]n− j fY (u) fY (v) (3.10.5)

for i < j and u <v.
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Example
3.10.6

Let Y1, Y2, and Y3 be a random sample of size n = 3 from the uniform pdf defined
over the unit interval, fY (y)= 1, 0 ≤ y ≤ 1. By definition, the range, R, of a sample is
the difference between the largest and smallest order statistics—in this case,

R = range = Ymax − Ymin = Y ′
3 − Y ′

1

Find fR(r), the pdf for the range.
We will begin by finding the joint pdf of Y ′

1 and Y ′
3. Then fY ′

1,Y
′
3
(u, v) is integrated

over the region Y ′
3 − Y ′

1 ≤ r to find the cdf, FR(r) = P(R ≤ r). The final step is to
differentiate the cdf and make use of the fact that fR(r)= F ′

R(r).
If fY (y)= 1, 0 ≤ y ≤ 1, it follows that

FY (y)= P(Y ≤ y)=

⎧⎪⎨⎪⎩
0, y < 0

y, 0 ≤ y ≤ 1

1. y > 1

Applying Equation 3.10.5, then, with n = 3, i = 1, and j = 3, gives the joint pdf of Y ′
1

and Y ′
3. Specifically,

fY ′
1,Y

′
3
(u, v) = 3!

0!1!0!u0(v − u)1(1 − v)0 · 1 · 1

= 6(v − u), 0 ≤ u <v ≤ 1

Moreover, we can write the cdf for R in terms of Y ′
1 and Y ′

3:

FR(r)= P(R ≤ r)= P(Y ′
3 − Y ′

1 ≤ r)= P(Y ′
3 ≤ Y ′

1 + r)

Figure 3.10.4 shows the region in the Y ′
1Y ′

3-plane corresponding to the event that
R ≤ r . Integrating the joint pdf of Y ′

1 and Y ′
3 over the shaded region gives

FR(r)= P(R ≤ r)=
∫ 1−r

0

∫ u+r

u
6(v − u) dv du +

∫ 1

1−r

∫ 1

u
6(v − u) dv du

0
u-axis

ν-axis

1Y1
’
 = 1 – r

r

R≤r

Y3
’
 = Y1

’

γ 3
’= Y1

’
 + r

1

Figure 3.10.4

The first double integral equals 3r2 − 3r3; the second equals r3. Therefore,

FR(r)= 3r2 − 3r3 + r3 = 3r2 − 2r3

which implies that

fR(r)= F ′
R(r)= 6r − 6r2, 0 ≤ r ≤ 1
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Questions

3.10.1. Suppose the length of time, in minutes, that you
have to wait at a bank teller’s window is uniformly dis-
tributed over the interval (0, 10). If you go to the bank
four times during the next month, what is the probabil-
ity that your second longest wait will be less than five
minutes?

3.10.2. A random sample of size n = 6 is taken from the
pdf fY (y)= 3y2, 0 ≤ y ≤ 1. Find P(Y ′

5 > 0.75).

3.10.3. What is the probability that the larger of two ran-
dom observations drawn from any continuous pdf will
exceed the sixtieth percentile?

3.10.4. A random sample of size 5 is drawn from the pdf
fY (y) = 2y, 0 ≤ y ≤ 1. Calculate P(Y ′

1 < 0.6 < Y ′
5). (Hint:

Consider the complement.)

3.10.5. Suppose that Y1, Y2, . . ., Yn is a random sample of
size n drawn from a continuous pdf, fY (y), whose median
is m. Is P(Y ′

1 > m) less than, equal to, or greater than
P(Y ′

n > m)?

3.10.6. Let Y1, Y2, . . ., Yn be a random sample from the
exponential pdf fy(y) = e−y , y ≥ 0. What is the smallest n
for which P(Ymin < 0.2)> 0.9?

3.10.7. Calculate P(0.6 < Y ′
4 < 0.7) if a random sample

of size 6 is drawn from the uniform pdf defined over the
interval [0, 1].

3.10.8. A random sample of size n = 5 is drawn from the
pdf fY (y) = 2y, 0 ≤ y ≤ 1. On the same set of axes, graph
the pdfs for Y2, Y ′

1, and Y ′
5.

3.10.9. Suppose that n observations are taken at random
from the pdf

fY (y)= 1√
2π(6)

e− 1
2

(
y−20

6

)2

, −∞ < y <∞

What is the probability that the smallest observation is
larger than twenty?

3.10.10. Suppose that n observations are chosen at ran-
dom from a continuous pdf fY (y). What is the probability
that the last observation recorded will be the smallest
number in the entire sample?

3.10.11. In a certain large metropolitan area, the pro-
portion, Y , of students bused varies widely from school
to school. The distribution of proportions is roughly
described by the following pdf:

0
y

1

1

2

f  (y)Y

Suppose the enrollment figures for five schools selected
at random are examined. What is the probability that the
school with the fourth highest proportion of bused chil-
dren will have a Y value in excess of 0.75? What is the
probability that none of the schools will have fewer than
10% of their students bused?

3.10.12. Consider a system containing n components,
where the lifetimes of the components are indepen-
dent random variables and each has pdf fY (y) = λe−λy ,
y > 0. Show that the average time elapsing before the first
component failure occurs is 1/nλ.

3.10.13. Let Y1, Y2, . . ., Yn be a random sample from a
uniform pdf over [0, 1]. Use Theorem 3.10.2 to show that∫ 1

0 yi−1(1 − y)n−i dy = (i − 1)!(n − i)!
n! .

3.10.14. Use Question 3.10.13 to find the expected value
of Y ′

i , where Y1, Y2, . . ., Yn is a random sample from a
uniform pdf defined over the interval [0, 1].

3.10.15. Suppose three points are picked randomly from
the unit interval. What is the probability that the three are
within a half unit of one another?

3.10.16. Suppose a device has three independent compo-
nents, all of whose lifetimes (in months) are modeled by
the exponential pdf, fY (y)= e−y , y > 0. What is the proba-
bility that all three components will fail within two months
of one another?

3.11 Conditional Densities
We have already seen that many of the concepts defined in Chapter 2 relating to the
probabilities of events—for example, independence—have random variable coun-
terparts. Another of these carryovers is the notion of a conditional probability, or,
in what will be our present terminology, a conditional probability density function.
Applications of conditional pdfs are not uncommon. The height and girth of a tree,



3.11 Conditional Densities 201

for instance, can be considered a pair of random variables. While it is easy to mea-
sure girth, it can be difficult to determine height; thus it might be of interest to a
lumberman to know the probabilities of a ponderosa pine’s attaining certain heights
given a known value for its girth. Or consider the plight of a school board member
agonizing over which way to vote on a proposed budget increase. Her task would be
that much easier if she knew the conditional probability that x additional tax dol-
lars would stimulate an average increase of y points among twelfth graders taking a
standardized proficiency exam.

Finding Conditional Pdfs for Discrete Random Variables

In the case of discrete random variables, a conditional pdf can be treated in the
same way as a conditional probability. Note the similarity between Definitions 3.11.1
and 2.4.1.

Definition 3.11.1. Let X and Y be discrete random variables. The conditional
probability density function of Y given x—that is, the probability that Y takes
on the value y given that X is equal to x—is denoted pY |x (y) and given by

pY |x (y)= P(Y = y | X = x)= pX,Y (x, y)

pX (x)

for pX (x) �= 0.

Example
3.11.1

A fair coin is tossed five times. Let the random variable Y denote the total number
of heads that occur, and let X denote the number of heads occurring on the last two
tosses. Find the conditional pdf pY |x(y) for all x and y.

Clearly, there will be three different conditional pdfs, one for each possible value
of X (x =0, x =1, and x =2). Moreover, for each value of x there will be four possible
values of Y , based on whether the first three tosses yield zero, one, two, or three
heads.

For example, suppose no heads occur on the last two tosses. Then X = 0, and

pY |0(y)= P(Y = y | X = 0) = P(y heads occur on first three tosses)

=
(

3

y

)(
1

2

)y (
1 − 1

2

)3−y

=
(

3

y

)(
1

2

)3

, y = 0,1,2,3

Now, suppose that X = 1. The corresponding conditional pdf in that case
becomes

pY |x (y)= P(Y = y | X = 1)

Notice that Y =1 if zero heads occur in the first three tosses, Y =2 if one head occurs
in the first three trials, and so on. Therefore,

pY |1(y) =
(

3

y − 1

)(
1

2

)y−1(
1 − 1

2

)3−(y−1)

=
(

3

y − 1

)(
1

2

)3

, y = 1,2,3,4
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Similarly,

pY |2(y)= P(Y = y | X = 2)=
(

3
y − 2

)(
1

2

)3

, y = 2,3,4,5

Figure 3.11.1 shows the three conditional pdfs. Each has the same shape, but the
possible values of Y are different for each value of X .

0 1 2 3 4

pY|2(y)

pY|1(y)

pY|0(y)

5
Y-axis

x = 2

x = 1

x = 0

3
8
1
8

3
8
1
8

3
8

1
8

Figure 3.11.1

Example
3.11.2

Assume that the probabilistic behavior of a pair of discrete random variables X and
Y is described by the joint pdf

pX,Y (x, y)= xy2/39

defined over the four points (1, 2), (1, 3), (2, 2), and (2, 3). Find the conditional
probability that X = 1 given that Y = 2.

By definition,

pX |2(1)= P(X = 1 given that Y = 2)

= pX,Y (1,2)

pY (2)

= 1 · 22/39

1 · 22/39 + 2 · 22/39

= 1/3

Example
3.11.3

Suppose that X and Y are two independent binomial random variables, each defined
on n trials and each having the same success probability p. Let Z = X +Y . Show that
the conditional pdf pX |z(x) is a hypergeometric distribution.

We know from Example 3.8.2 that Z has a binomial distribution with parameters
2n and p. That is,

pZ (z)= P(Z = z)=
(

2n

z

)
pz(1 − p)2n−z, z = 0,1, . . . ,2n.



3.11 Conditional Densities 203

By Definition 3.11.1,

pX |z(x) = P(X = x |Z = z)= pX,Z (x, z)

pZ (z)

= P(X = x and Z = z)

P(Z = z)

= P(X = x and Y = z − x)

P(Z = z)

= P(X = x) · P(Y = z − x)

P(Z = z)
(because X and Y are independent)

=

(
n

x

)
px (1 − p)n−x ·

(
n

z − x

)
pz−x (1 − p)n−(z−x)(

2n

z

)
pz(1 − p)2n−z

=

(
n

x

)(
n

z − x

)
(

2n

z

)
which we recognize as being the hypergeometric distribution.

Comment The notion of a conditional pdf generalizes easily to situations involving
more than two discrete random variables. For example, if X , Y , and Z have the joint
pdf pX,Y,Z (x, y, z), the joint conditional pdf of, say, X and Y given that Z = z is the
ratio

pX,Y |z(x, y)= pX,Y,Z (x, y, z)

pZ (z)

Example
3.11.4

Suppose that random variables X , Y , and Z have the joint pdf

pX,Y,Z (x, y, z)= xy/9z

for points (1, 1, 1), (2, 1, 2), (1, 2, 2), (2, 2, 2), and (2, 2, 1). Find pX,Y |z(x, y) for all
values of z.

To begin, we see from the points for which pX,Y,Z (x, y, z) is defined that Z has
two possible values, 1 and 2. Suppose z = 1. Then

pX,Y |1(x, y)= pX,Y,Z (x, y,1)

pZ (1)

But

pZ (1)= P(Z = 1) = P[(1,1,1)∪ (2,2,1)]

= 1 · 1

9
· 1 + 2 · 2

9
· 1

= 5

9

Therefore,

pX,Y |1(x, y)= xy/9
5
9

= xy/5 for (x, y)= (1,1) and (2,2)
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Suppose z = 2. Then

pZ (2)= P(Z = 2) = P[(2,1,2)∪ (1,2,2)∪ (2,2,2)]

= 2 · 1

18
+ 1 · 2

18
+ 2 · 2

18

= 8

18

so

pX,Y |2(x, y) = pX,Y,Z (x, y,2)

pZ (2)

= x · y/18
8

18

= xy

8
for (x, y)= (2,1), (1,2), and (2,2)

Questions

3.11.1. Suppose X and Y have the joint pdf pX,Y (x, y) =
x+y+xy

21
for the points (1, 1), (1, 2), (2, 1), (2, 2), where X

denotes a “message” sent (either x = 1 or x = 2) and Y
denotes a “message” received. Find the probability that
the message sent was the message received—that is, find
pY |x(y).

3.11.2. Suppose a die is rolled six times. Let X be the total
number of 4’s that occur and let Y be the number of 4’s in
the first two tosses. Find pY |x(y).

3.11.3. An urn contains eight red chips, six white chips,
and four blue chips. A sample of size 3 is drawn with-
out replacement. Let X denote the number of red chips
in the sample and Y , the number of white chips. Find an
expression for pY |x(y).

3.11.4. Five cards are dealt from a standard poker deck.
Let X be the number of aces received, and Y the number
of kings. Compute P(X = 2|Y = 2).

3.11.5. Given that two discrete random variables X and Y
follow the joint pdf pX,Y (x, y)= k(x + y), for x =1,2,3 and
y = 1,2,3,

(a) Find k.
(b) Evaluate pY |x(1) for all values of x for which px(x)>0.

3.11.6. Let X denote the number on a chip drawn at ran-
dom from an urn containing three chips, numbered 1, 2,
and 3. Let Y be the number of heads that occur when a
fair coin is tossed X times.

(a) Find pX,Y (x, y).

(b) Find the marginal pdf of Y by summing out the x
values.

3.11.7. Suppose X , Y , and Z have a trivariate distribution
described by the joint pdf

pX,Y,Z (x, y, z)= xy + xz + yz

54

where x , y, and z can be 1 or 2. Tabulate the joint condi-
tional pdf of X and Y given each of the two values of z.

3.11.8. In Question 3.11.7 define the random variable
W to be the “majority” of x , y, and z. For example,
W (2,2,1)= 2 and W (1,1,1)= 1. Find the pdf of W |x .

3.11.9. Let X and Y be independent random variables
where px(k) = e−λ λk

k! and pY (k) = e−μ μk

k! for k = 0, 1, . . . .
Show that the conditional pdf of X given that X + Y = n
is binomial with parameters n and λ

λ+μ
. (Hint: See Ques-

tion 3.8.1.)

3.11.10. Suppose Compositor A is preparing a manuscript
to be published. Assume that she makes X errors on a
given page, where X has the Poisson pdf, pX (k)= e−22k/k!,
k = 0,1,2, . . . . A second compositor, B, is also work-
ing on the book. He makes Y errors on a page, where
pY (k) = e−33k/k!, k = 0,1,2, . . . . Assume that Composi-
tor A prepares the first one hundred pages of the text
and Compositor B, the last one hundred pages. After the
book is completed, reviewers (with too much time on their
hands!) find that the text contains a total of 520 errors.
Write a formula for the exact probability that fewer than
half of the errors are due to Compositor A.
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Finding Conditional Pdfs for Continuous Random Variables

If the variables X and Y are continuous, we can still appeal to the quotient
fX,Y (x, y)/ fX (x) as the definition of fY |x (y) and argue its propriety by analogy. A
more satisfying approach, though, is to arrive at the same conclusion by taking the
limit of Y ’s “conditional” cdf.

If X is continuous, a direct evaluation of FY |x (y) = P(Y ≤ y|X = x), via Defini-
tion 2.4.1, is impossible, since the denominator would be zero. Alternatively, we can
think of P(Y ≤ y|X = x) as a limit:

P(Y ≤ y|X = x) = lim
h→0

P(Y ≤ y|x ≤ X ≤ x + h)

= lim
h→∞

∫ x+h

x

∫ y

−∞
fX,Y (t,u)du dt∫ x+h

x
fX (t)dt

Evaluating the quotient of the limits gives 0
0 , so l’Hôpital’s rule is indicated:

P(Y ≤ y|X = x)= lim
h→0

d
dh

∫ x+h

x

∫ y

−∞
fX,Y (t,u)du dt

d
dh

∫ x+h

x
fX (t)dt

(3.11.1)

By the Fundamental Theorem of Calculus,

d

dh

∫ x+h

x
g(t) dt = g(x + h)

which simplifies Equation 3.11.1 to

P(Y ≤ y|X = x) = lim
h→0

∫ y

−∞
fX,Y [(x + h),u] du

fX (x + h)

=

∫ y

−∞
lim
h→0

fX,Y (x + h,u) du

lim
h→0

fX (x + h)
=
∫ y

−∞
fX,Y (x,u)

fX (x)
du

provided that the limit operation and the integration can be interchanged [see (8)
for a discussion of when such an interchange is valid]. It follows from this last
expression that fX,Y (x, y)/ fX (x) behaves as a conditional probability density func-
tion should, and we are justified in extending Definition 3.11.1 to the continuous
case.

Example
3.11.5

Let X and Y be continuous random variables with joint pdf

fX,Y (x, y)=
⎧⎨⎩
(

1

8

)
(6 − x − y), 0 ≤ x ≤ 2, 2 ≤ y ≤ 4

0, elsewhere

Find (a) fX (x), (b) fY |x (y), and (c) P(2 < Y < 3|x = 1).



206 Chapter 3 Random Variables

a. From Theorem 3.7.2,

fX (x) =
∫ ∞

−∞
fX,Y (x, y) dy =

∫ 4

2

(
1

8

)
(6 − x − y) dy

=
(

1

8

)
(6 − 2x), 0 ≤ x ≤ 2

b. Substituting into the “continuous” statement of Definition 3.11.1, we can write

fY |x (y)= fX,Y (x, y)

fX (x)
=
(

1
8

)
(6 − x − y)(

1
8

)
(6 − 2x)

= 6 − x − y

6 − 2x
, 0 ≤ x ≤ 2, 2 ≤ y ≤ 4

c. To find P(2<Y <3|x =1), we simply integrate fY |1(y) over the interval 2<Y <3:

P(2 < Y < 3|x = 1) =
∫ 3

2
fY |1(y) dy

=
∫ 3

2

5 − y

4
dy

= 5

8

[A partial check that the derivation of a conditional pdf is correct can be performed
by integrating fY |x (y) over the entire range of Y . That integral should be 1. Here, for
example, when x = 1,

∫∞
−∞ fY |1(y) dy = ∫ 4

2 [(5 − y)/4] dy does equal 1.]

Questions

3.11.11. Let X be a nonnegative random variable. We say
that X is memoryless if

P(X > s + t |X > t)= P(X > s) for all s, t ≥ 0

Show that a random variable with pdf fX (x) =
(1/λ)e−x/λ, x > 0, is memoryless.

3.11.12. Given the joint pdf

fX,Y (x, y)= 2e−(x+y), 0 ≤ x ≤ y, y ≥ 0

find

(a) P(Y < 1|X < 1).
(b) P(Y < 1|X = 1).
(c) fY |x(y).
(d) E(Y |x).

3.11.13. Find the conditional pdf of Y given x if

fX,Y (x, y)= x + y

for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1.

3.11.14. If

fX,Y (x, y)= 2, x ≥ 0, y ≥ 0, x + y ≤ 1

show that the conditional pdf of Y given x is uniform.

3.11.15. Suppose that

fY |x(y)= 2y + 4x

1 + 4x
and fX (x)= 1

3
· (1 + 4x)

for 0 < x < 1 and 0 < y < 1. Find the marginal pdf for Y .

3.11.16. Suppose that X and Y are distributed according
to the joint pdf

fX,Y (x, y)= 2

5
· (2x + 3y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

Find

(a) fX (x).
(b) fY |x(y).
(c) P

(
1
4
≤ Y ≤ 3

4
|X = 1

2

)
.

(d) E(Y |x).



3.12 Moment-Generating Functions 207

3.11.17. If X and Y have the joint pdf

fX,Y (x, y)= 2, 0 ≤ x < y ≤ 1

find P
(
0 < X < 1

2
|Y = 3

4

)
.

3.11.18. Find P
(
X < 1|Y = 1 1

2

)
if X and Y have the

joint Pdf

fX,Y (x, y)= xy/2, 0 ≤ x < y ≤ 2

3.11.19. Suppose that X1, X2, X3, X4, and X5 have the
joint pdf

fX1,X2,X3,X4,X5(x1, x2, x3, x4, x5)= 32x1x2x3x4x5

for 0 < xi < 1, i = 1,2, . . . ,5. Find the joint conditional pdf
of X1, X2, and X3 given that X4 = x4 and X5 = x5.

3.11.20. Suppose the random variables X and Y are
jointly distributed according to the Pdf

fX,Y (x, y)= 6

7

(
x2 + xy

2

)
, 0 ≤ x ≤ 1, 0 ≤ y ≤ 2

Find

(a) fX (x).
(b) P(X > 2Y ).
(c) P

(
Y > 1|X > 1

2

)
.

3.12 Moment-Generating Functions
Finding moments of random variables directly, particularly the higher moments
defined in Section 3.6, is conceptually straightforward but can be quite problematic:
Depending on the nature of the pdf, integrals and sums of the form

∫∞
−∞ yr fY (y)dy

and
∑
all k

kr pX (k) can be very difficult to evaluate. Fortunately, an alternative method is

available. For many pdfs, we can find a moment-generating function (or mgf), MW (t),
one of whose properties is that the r th derivative of MW (t) evaluated at zero is equal
to E(W r ).

Calculating a Random Variable’s Moment-Generating Function

In principle, what we call a moment-generating function is a direct application of
Theorem 3.5.3.

Definition 3.12.1. Let W be a random variable. The moment-generating func-
tion (mgf) for W is denoted MW (t) and given by

MW (t)= E(etW )=

⎧⎪⎪⎨⎪⎪⎩
∑
all k

etk pW (k) if W is discrete∫ ∞

−∞
etw fW (w) dw if W is continuous

at all values of t for which the expected value exists.

Example
3.12.1

Suppose the random variable X has a geometric pdf,

pX (k)= (1 − p)k−1 p, k = 1,2, . . .

[In practice, this is the pdf that models the occurrence of the first success in a series
of independent trials, where each trial has a probability p of ending in success (recall
Example 3.3.2)]. Find MX (t), the moment-generating function for X .

Since X is discrete, the first part of Definition 3.12.1 applies, so

MX (t)= E(et X ) =
∞∑

k=1

etk(1 − p)k−1 p

= p

1 − p

∞∑
k=1

etk(1 − p)k = p

1 − p

∞∑
k=1

[(1 − p)et ]k (3.12.1)
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The t in MX (t) can be any number in a neighborhood of zero, as long as MX (t)<∞.
Here, MX (t) is an infinite sum of the terms [(1 − p)et ]k , and that sum will be finite
only if (1 − p)et < 1, or, equivalently, if t < ln[1/(1 − p)]. It will be assumed, then, in
what follows that 0 < t < ln[1/(1 − p)].

Recall that
∞∑

k=0

rk = 1

1 − r

provided 0 < r < 1. This formula can be used on Equation 3.12.1, where r = (1 − p)et

and 0 < t < ln
[

1
(1−p)

]
. Specifically,

MX (t)= p

1 − p

[ ∞∑
k=0

[(1 − p)et ]k −[(1 − p)et ]0

]

= p

1 − p

[
1

1 − (1 − p)et
− 1

]
= pet

1 − (1 − p)et

Example
3.12.2

Suppose that X is a binomial random variable with pdf

pX (k)=
(

n

k

)
pk(1 − p)n−k, k = 0,1, . . . ,n

Find MX (t).
By Definition 3.12.1,

MX (t)= E(et X )=
n∑

k=0

etk
(n

k

)
pk(1 − p)n−k

=
n∑

k=0

(n

k

)
(pet )k(1 − p)n−k (3.12.2)

To get a closed-form expression for MX (t)—that is, to evaluate the sum indicated in
Equation 3.12.2—requires a (hopefully) familiar formula from algebra: According
to Newton’s binomial expansion,

(x + y)n =
n∑

k=0

(
n

k

)
xk yn−k (3.12.3)

for any x and y. Suppose we let x = pet and y = 1 − p. It follows from Equa-
tions 3.12.2 and 3.12.3, then, that

MX (t)= (1 − p + pet )n

[Notice in this case that MX (t) is defined for all values of t .]

Example
3.12.3

Suppose that Y has an exponential pdf, where fY (y)= λe−λy , y > 0. Find MY (t).
Since the exponential pdf describes a continuous random variable, MY (t) is an

integral:
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MY (t)= E(etY )=
∫ ∞

0
ety · λe−λy dy

=
∫ ∞

0
λe−(λ−t)y dy

After making the substitution u = (λ − t)y, we can write

MY (t)=
∫ ∞

u=0
λe−u du

λ − t

= λ

λ − t

[−e−u
∣∣∞
u=0

]
= λ

λ − t

[
1 − lim

u→∞ e−u
]
= λ

λ − t

Here, MY (t) is finite and nonzero only when u = (λ − t)y > 0, which implies that t
must be less than λ. For t ≥ λ, MY (t) fails to exist.

Example
3.12.4

The normal (or bell-shaped) curve was introduced in Example 3.4.3. Its pdf is the
rather cumbersome function

fY (y)= (1/
√

2πσ
)

exp

[
−1

2

(
y −μ

σ

)2
]

, −∞< y <∞

where μ = E(Y ) and σ 2 = Var(Y ). Derive the moment-generating function for this
most important of all probability models.

Since Y is a continuous random variable,

MY (t)= E(etY )= (1/
√

2πσ
) ∞∫
−∞

exp(t y) exp

[
−1

2

(
y −μ

σ

)2
]

dy

= (1/
√

2πσ
) ∞∫
−∞

exp

[
− y2 − 2μy − 2σ 2t y +μ2

2σ 2

]
dy (3.12.4)

Evaluating the integral in Equation 3.12.4 is best accomplished by completing the
square of the numerator of the exponent (which means that the square of half the
coefficient of y is added and subtracted). That is, we can write

y2 − (2μ+ 2σ 2t)y + (μ+ σ 2t)2 − (μ+ σ 2t)2 +μ2

=[y − (μ+ σ 2t)]2 − σ 4t2 + 2μtσ 2 (3.12.5)

The last two terms on the right-hand side of Equation 3.12.5, though, do not
involve y, so they can be factored out of the integral, and Equation 3.12.4 reduces
to

MY (t)= exp

(
μt + σ 2t2

2

)(
1/

√
2πσ
) ∞∫
−∞

exp

[
−1

2

[
y − (μ+ tσ 2)

σ

]2
]

dy

But, together, the latter two factors equal 1 (why?), implying that the moment-
generating function for a normally distributed random variable is given by

MY (t)= eμt+σ 2t2/2
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Questions

3.12.1. Let X be a random variable with pdf pX (k) = 1/n,
for k =0,1,2, . . . ,n −1 and 0 otherwise. Show that MX (t)=

1−ent

n(1−et )
.

3.12.2. Two chips are drawn at random and without
replacement from an urn that contains five chips, num-
bered 1 through 5. If the sum of the chips drawn is
even, the random variable X equals 5; if the sum of the
chips drawn is odd, X = −3. Find the moment-generating
function for X .

3.12.3. Find the expected value of e3X if X is a binominal
random variable with n = 10 and p = 1

3
.

3.12.4. Find the moment-generating function for the dis-
crete random variable X whose probability function is
given by

pX (k)=
(

3

4

)k (1

4

)
, k = 0,1,2, . . .

3.12.5. Which pdfs would have the following moment-
generating functions?

(a) MY (t)= e6t2

(b) MY (t)= 2/(2 − t)
(c) MX (t)= ( 1

2
+ 1

2
et
)4

(d) MX (t)= 0.3et/(1 − 0.7et)

3.12.6. Let Y have pdf

fY (y)=

⎧⎪⎨⎪⎩
y, 0 ≤ y ≤ 1

2 − y, 1 ≤ y ≤ 2

0, elsewhere

Find MY (t).

3.12.7. A random variable X is said to have a Poisson
distribution if pX (k) = P(X = k) = e−λλk/k!, k = 0,1,2, . . . .
Find the moment-generating function for a Poisson ran-
dom variable. Recall that

er =
∞∑

k=0

r k

k!
3.12.8. Let Y be a continuous random variable with
fY (y)= ye−y , 0 ≤ y. Show that MY (t)= 1

(1−t)2 .

Using Moment-Generating Functions to Find Moments

Having practiced finding the functions MX (t) and MY (t), we now turn to the theorem
that spells out their relationship to Xr and Y r .

Theorem
3.12.1

Let W be a random variable with probability density function fW (w). [If W is con-
tinuous, fW (w) must be sufficiently smooth to allow the order of differentiation and
integration to be interchanged.] Let MW (t) be the moment-generating function for W .
Then, provided the r th moment exists,

M (r)
W (0)= E(W r )

Proof We will verify the theorem for the continuous case where r is either 1 or 2.
The extensions to discrete random variables and to an arbitrary positive integer r
are straightforward.

For r = 1,

M (1)
Y (0) = d

dt

∫ ∞

−∞
ety fY (y)dy

∣∣∣∣
t=0

=
∫ ∞

−∞
d

dt
ety fY (y)dy

∣∣∣∣
t=0

=
∫ ∞

−∞
yety fY (y)dy

∣∣∣∣
t=0

=
∫ ∞

−∞
ye0·y fY (y)dy

=
∫ ∞

−∞
y fY (y)dy = E(Y )
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For r = 2,

M (2)
Y (0)= d2

dt2

∫ ∞

−∞
ety fY (y)dy

∣∣∣∣
t=0

=
∫ ∞

−∞
d2

dt2
ety fY (y)dy

∣∣∣∣
t=0

=
∫ ∞

−∞
y2ety fY (y)dy

∣∣∣∣
t=0

=
∫ ∞

−∞
y2e0 · y fY (y)dy

=
∫ ∞

−∞
y2 fY (y) dy = E(Y 2)

�

Example
3.12.5

For a geometric random variable X with pdf

pX (k)= (1 − p)k−1 p, k = 1,2, . . .

we saw in Example 3.12.1 that

MX (t)= pet [1 − (1 − p)et ]−1

Find the expected value of X by differentiating its moment-generating function.
Using the product rule, we can write the first derivative of MX (t) as

M (1)
X (t)= pet (−1)[1 − (1 − p)et ]−2(−1)(1 − p)et +[1 − (1 − p)et ]−1 pet

= p(1 − p)e2t

[1 − (1 − p)et ]2
+ pet

1 − (1 − p)et

Setting t = 0 shows that E(X)= 1
p :

M (1)
X (0)= E(X) = p(1 − p)e2 ·0

[1 − (1 − p)e0]2
+ pe0

1 − (1 − p)e0

= p(1 − p)

p2
+ p

p

= 1

p

Example
3.12.6

Find the expected value of an exponential random variable with pdf

fY (y)= λe−λy, y > 0

Use the fact that

MY (t)= λ(λ − t)−1

(as shown in Example 3.12.3).
Differentiating MY (t) gives

M (1)
Y (t)= λ(−1)(λ − t)−2(−1)

= λ

(λ − t)2

Set t = 0. Then

M (1)
Y (0)= λ

(λ − 0)2

implying that

E(Y )= 1

λ
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Example
3.12.7

Find an expression for E(Xk) if the moment-generating function for X is given by

MX (t)= (1 − p1 − p2)+ p1et + p2e2t

The only way to deduce a formula for an arbitrary moment such as E(Xk) is to
calculate the first couple moments and look for a pattern that can be generalized.
Here,

M (1)
X (t)= p1et + 2p2e2t

so

E(X)= M (1)
X (0)= p1e0 + 2p2e2 ·0

= p1 + 2p2

Taking the second derivative, we see that

M (2)
X (t)= p1et + 22 p2e2t

implying that

E(X2)= M (2)
X (0)= p1e0 + 22 p2e2 ·0

= p1 + 22 p2

Clearly, each successive differentiation will leave the p1 term unaffected but will
multiply the p2 term by 2. Therefore,

E(Xk)= M (k)
X (0)= p1 + 2k p2

Using Moment-Generating Functions to Find Variances

In addition to providing a useful technique for calculating E(W r ), moment-
generating functions can also find variances, because

Var(W )= E(W 2)−[E(W )]2 (3.12.6)

for any random variable W (recall Theorem 3.6.1). Other useful “descriptors”
of pdfs can also be reduced to combinations of moments. The skewness of a
distribution, for example, is a function of E[(W −μ)3], where μ= E(W ). But

E[(W −μ)3] = E(W 3)− 3E(W 2)E(W )+ 2[E(W )]3

In many cases, finding E[(W − μ)2] or E[(W − μ)3] could be quite difficult if
moment-generating functions were not available.

Example
3.12.8

We know from Example 3.12.2 that if X is a binomial random variable with
parameters n and p, then

MX (t)= (1 − p + pet )n

Use MX (t) to find the variance of X .
The first two derivatives of MX (t) are

M (1)
X (t)= n(1 − p + pet )n−1 · pet
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and

M (2)
X (t)= pet · n(n − 1)(1 − p + pet )n−2 · pet + n(1 − p + pet )n−1 · pet

Setting t = 0 gives

M (1)
X (0)= np = E(X)

and

M (2)
X (0)= n(n − 1)p2 + np = E(X2)

From Equation 3.12.6, then,

Var(X) = n(n − 1)p2 + np − (np)2

= np(1 − p)

(the same answer we found in Example 3.9.9).

Example
3.12.9

A discrete random variable X is said to have a Poisson distribution if

pX (k)= P(X = k)= e−λλk

k! , k = 0,1,2, . . .

(An example of such a distribution is the mortality data described in Case
Study 3.3.1.) It can be shown (see Question 3.12.7) that the moment-generating
function for a Poisson random variable is given by

MX (t)= e−λ+λet

Use MX (t) to find E(X) and Var(X).
Taking the first derivative of MX (t) gives

M (1)
X (t)= e−λ+λet · λet

so

E(X)= M (1)
X (0) = e−λ+λe0 · λe0

= λ

Applying the product rule to M (1)
X (t) yields the second derivative,

M (2)
X (t)= e−λ+λet · λet + λet e−λ+λet · λet

For t = 0,

M (2)
X (0)= E(X2)= e−λ+λe0 · λe0 + λe0 · e−λ+λe0 · λe0

= λ + λ2

The variance of a Poisson random variable, then, proves to be the same as its mean:

Var(X) = E(X2)−[E(X)]2

= M (2)
X (0)− [M (1)

X (0)
]2

= λ2 + λ − λ2

= λ
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Questions

3.12.9. Calculate E(Y 3) for a random variable whose
moment-generating function is MY (t)= et2/2.

3.12.10. Find E(Y 4) if Y is an exponential random vari-
able with fY (y)= λe−λy , y > 0.

3.12.11. The form of the moment-generating function
for a normal random variable is MY (t) = eat+b2 t2/2 (recall
Example 3.12.4). Differentiate MY (t) to verify that a =
E(Y ) and b2 = Var(Y ).

3.12.12. What is E(Y 4) if the random variable Y has
moment-generating function MY (t)= (1 −αt)−k?

3.12.13. Find E(Y 2) if the moment-generating function
for Y is given by MY (t) = e−t+4t2

. Use Example 3.12.4 to
find E(Y 2) without taking any derivatives. (Hint: Recall
Theorem 3.6.1.)

3.12.14. Find an expression for E(Y k) if MY (t) = (1 −
t/λ)−r , where λ is any positive real number and r is a
positive integer.

3.12.15. Use MY (t) to find the expected value of the
uniform random variable described in Question 3.12.1.

3.12.16. Find the variance of Y if MY (t)= e2t/(1 − t2).

Using Moment-Generating Functions to Identify Pdfs

Finding moments is not the only application of moment-generating functions. They
are also used to identify the pdf of sums of random variables—that is, finding fW (w),
where W = W1 + W2 +· · ·+ Wn . Their assistance in the latter is particularly important
for two reasons: (1) Many statistical procedures are defined in terms of sums, and
(2) alternative methods for deriving fW1+W2+···+Wn (w) are extremely cumbersome.

The next two theorems give the background results necessary for deriving
fW (w). Theorem 3.12.2 states a key uniqueness property of moment-generating
functions: If W1 and W2 are random variables with the same mgfs, they must nec-
essarily have the same pdfs. In practice, applications of Theorem 3.12.2 typically
rely on one or both of the algebraic properties cited in Theorem 3.12.3.

Theorem
3.12.2

Suppose that W1 and W2 are random variables for which MW1(t) = MW2(t) for some
interval of t ’s containing 0. Then fW1(w)= fW2(w).

Proof See (95). �

Theorem
3.12.3

a. Let W be a random variable with moment-generating function MW (t). Let V =
aW + b. Then

MV (t)= ebt MW (at)

b. Let W1, W2, . . . , Wn be independent random variables with moment-generating
functions MW1(t), MW2(t), . . . , and MWn (t), respectively. Let W = W1 + W2 +· · ·+
Wn . Then

MW (t)= MW1(t) · MW2(t) · · · MWn (t)

Proof The proof is left as an exercise. �

Example
3.12.10

Suppose that X1 and X2 are two independent Poisson random variables with
parameters λ1 and λ2, respectively. That is,

pX1(k)= P(X1 = k)= e−λ1λ1k

k! , k = 0,1,2, . . .
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and

pX2(k)= P(X2 = k)= e−λ2λ2k

k! , k = 0,1,2 . . .

Let X = X1 + X2. What is the pdf for X?
According to Example 3.12.9, the moment-generating functions for X1 and

X2 are

MX1(t)= e−λ1+λ1et

and

MX2(t)= e−λ2+λ2et

Moreover, if X = X1 + X2, then by part (b) of Theorem 3.12.3,

MX (t)= MX1(t) · MX2(t)

= e−λ1+λ1et · e−λ2+λ2et

= e−(λ1+λ2)+(λ1+λ2)et
(3.12.7)

But, by inspection, Equation 3.12.7 is the moment-generating function that a Poisson
random variable with λ=λ1 +λ2 would have. It follows, then, by Theorem 3.12.2 that

pX (k)= e−(λ1+λ2)(λ1 + λ2)
k

k! , k = 0,1,2, . . .

Comment The Poisson random variable reproduces itself in the sense that the sum
of independent Poissons is also a Poisson. A similar property holds for independent
normal random variables (see Question 3.12.19) and, under certain conditions, for
independent binomial random variables (recall Example 3.8.2).

Example
3.12.11

We saw in Example 3.12.4 that a normal random variable, Y , with mean μ and
variance σ 2 has pdf

fY (y)= (1/
√

2πσ
)

exp

[
−1

2

(
y −μ

σ

)2
]

, −∞< y <∞

and mgf

MY (t)= eμt+σ 2t2/2

By definition, a standard normal random variable is a normal random variable for
which μ = 0 and σ = 1. Denoted Z , the pdf and mgf for a standard normal random
variable are fZ (z) = (1/

√
2π)e−z2/2, −∞ < z < ∞, and MZ (t) = et2/2, respectively.

Show that the ratio
Y −μ

σ

is a standard normal random variable, Z .
Write Y−μ

σ
as 1

σ
Y − μ

σ
. By part (a) of Theorem 3.12.3,

M(Y−μ)/σ (t)= e−μt/σ MY

(
t

σ

)
= e−μt/σ e[μt/σ+σ 2(t/σ)2/2]

= et2/2
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But MZ (t) = et2/2 so it follows from Theorem 3.12.2 that the pdf for Y−μ

σ
is the same

as the pdf for fz(z). (We call Y−μ

σ
a Z transformation. Its importance will become

evident in Chapter 4.)

Questions

3.12.17. Use Theorem 3.12.3(a) and Question 3.12.8 to
find the moment-generating function of the random vari-
able Y , where fY (y)= λye−λy , y ≥ 0.

3.12.18. Let Y1, Y2, and Y3 be independent random vari-
ables, each having the pdf of Question 3.12.17. Use The-
orem 3.12.3(b) to find the moment-generating function
of Y1 + Y2 + Y3. Compare your answer to the moment-
generating function in Question 3.12.14.

3.12.19. Use Theorems 3.12.2 and 3.12.3 to determine
which of the following statements is true:

(a) The sum of two independent Poisson random vari-
ables has a Poisson distribution.

(b) The sum of two independent exponential random
variables has an exponential distribution.

(c) The sum of two independent normal random vari-
ables has a normal distribution.

3.12.20. Calculate P(X ≤ 2) if MX (t)= ( 1
4
+ 3

4
et
)5

.

3.12.21. Suppose that Y1, Y2, . . ., Yn is a random sample
of size n from a normal distribution with mean μ and
standard deviation σ . Use moment-generating functions

to deduce the pdf of Ȳ = 1

n

n∑
i=1

Yi .

3.12.22. Suppose the moment-generating function for a
random variable W is given by

MW (t)= e−3+3et ·
(

2

3
+ 1

3
et

)4

Calculate P(W ≤ 1). (Hint: Write W as a sum.)

3.12.23. Suppose that X is a Poisson random variable,
where pX (k)= e−λλk/k!, k = 0,1, . . . .

(a) Does the random variable W = 3X have a Poisson
distribution?

(b) Does the random variable W = 3X + 1 have a Poisson
distribution?

3.12.24. Suppose that Y is a normal variable, where

fY (y)= (1/
√

2πσ) exp
[
− 1

2

(
y−μ

σ

)2]
, −∞ < y <∞.

(a) Does the random variable W = 3Y have a normal
distribution?

(b) Does the random variable W = 3Y + 1 have a normal
distribution?

3.13 Taking a Second Look at Statistics
(Interpreting Means)
One of the most important ideas coming out of Chapter 3 is the notion of the
expected value (or mean) of a random variable. Defined in Section 3.5 as a number
that reflects the “center” of a pdf, the expected value (μ) was originally introduced
for the benefit of gamblers. It spoke directly to one of their most fundamental
questions—How much will I win or lose, on the average, if I play a certain game?
(Actually, the real question they probably had in mind was “How much are you
going to lose, on the average?”) Despite having had such a selfish, materialis-
tic, gambling-oriented raison d’etre, the expected value was quickly embraced by
(respectable) scientists and researchers of all persuasions as a preeminently useful
descriptor of a distribution. Today, it would not be an exaggeration to claim that the
majority of all statistical analyses focus on either (1) the expected value of a sin-
gle random variable or (2) comparing the expected values of two or more random
variables.
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In the lingo of applied statistics, there are actually two fundamentally differ-
ent types of “means”—population means and sample means. The term “population
mean” is a synonym for what mathematical statisticians would call an expected
value—that is, a population mean (μ) is a weighted average of the possible values
associated with a theoretical probability model, either pX (k) or fY (y), depending on
whether the underlying random variable is discrete or continuous. A sample mean
is the arithmetic average of a set of measurements. If, for example, n observations—
y1, y2, . . ., yn—are taken on a continuous random variable Y , the sample mean is
denoted ȳ, where

ȳ = 1

n

n∑
i=1

yi

Conceptually, sample means are estimates of population means, where the “quality”
of the estimation is a function of (1) the sample size and (2) the standard deviation
(σ ) associated with the individual measurements. Intuitively, as the sample size gets
larger and/or the standard deviation gets smaller, the approximation will tend to get
better.

Interpreting means (either ȳ or μ) is not always easy. To be sure, what they
imply in principle is clear enough—both ȳ and μ are measuring the centers of their
respective distributions. Still, many a wrong conclusion can be traced directly to
researchers misunderstanding the value of a mean. Why? Because the distributions
that ȳ and/or μ are actually representing may be dramatically different from the
distributions we think they are representing.

An interesting case in point arises in connection with SAT scores. Each fall
the average SATs earned by students in each of the fifty states and the Dis-
trict of Columbia are released by the Educational Testing Service (ETS). With
“accountability” being one of the new paradigms and buzzwords associated with
K–12 education, SAT scores have become highly politicized. At the national level,
Democrats and Republicans each campaign on their own versions of education
reform, fueled in no small measure by scores on standardized exams, SATs included;
at the state level, legislatures often modify education budgets in response to how
well or how poorly their students performed the year before. Does it make sense,
though, to use SAT averages to characterize the quality of a state’s education sys-
tem? Absolutely not! Averages of this sort refer to very different distributions
from state to state. Any attempt to interpret them at face value will necessarily be
misleading.

One such state-by-state SAT comparison that appeared in the mid-90s is repro-
duced in Table 3.13.1. Notice that Tennessee’s entry is 1023, which is the tenth
highest average listed. Does it follow that Tennessee’s educational system is among
the best in the nation? Probably not. Most independent assessments of K–12 edu-
cation rank Tennessee’s schools among the weakest in the nation, not among the
best. If those opinions are accurate, why do Tennessee’s students do so well on
the SAT?

The answer to that question lies in the academic profiles of the students
who take the SAT in Tennessee. Most college-bound students in that state
apply exlusively to schools in the South and the Midwest, where admissions are
based on the ACT, not the SAT. The SAT is primarily used by private schools,
where admissions tend to be more competitive. As a result, the students in Ten-
nessee who take the SAT are not representative of the entire population of
students in that state. A disproportionate number are exceptionally strong aca-
demically, those being the students who feel that they have the ability to be
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Table 3.13.1

State Average
SAT Score

State Average
SAT Score

AK 911 MT 986
AL 1011 NE 1025
AZ 939 NV 913
AR 935 NH 924
CA 895 NJ 893
CO 969 NM 1003
CT 898 NY 888
DE 892 NC 860
DC 849 ND 1056
FL 879 OH 966
GA 844 OK 1019
HI 881 OR 927
ID 969 PA 879
IL 1024 RI 882
IN 876 SC 838
IA 1080 SD 1031
KS 1044 TN 1023
KY 997 TX 886
LA 1011 UT 1067
ME 883 VT 899
MD 908 VA 893
MA 901 WA 922
MI 1009 WV 921
MN 1057 WI 1044
MS 1013 WY 980
MO 1017

competitive at Ivy League–type schools. The number 1023, then, is the aver-
age of something (in this case, an elite subset of all Tennessee students), but
it does not correspond to the center of the SAT distribution for all Tennessee
students.

The moral here is that analyzing data effectively requires that we look beyond
the obvious. What we have learned in Chapter 3 about random variables and prob-
ability distributions and expected values will be helpful only if we take the time to
learn about the context and the idiosyncrasies of the phenomenon being studied. To
do otherwise is likely to lead to conclusions that are, at best, superficial and, at worst,
incorrect.

Appendix 3.A.1 Minitab Applications

Numerous software packages are available for performing a variety of probability
and statistical calculations. Among the first to be developed, and one that continues
to be very popular, is Minitab. Beginning here, we will include at the ends of certain
chapters a short discussion of Minitab solutions to some of the problems that were
discussed in the chapter. What other software packages can do and the ways their
outputs are formatted are likely to be quite similar.
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Contained in Minitab are subroutines that can do some of the more important
pdf and cdf computations described in Sections 3.3 and 3.4. In the case of binomial
random variables, for instance, the statements

MTB > pdf k;
SUBC > binomial n p.

and

MTB > cdf k;
SUBC > binomial n p.

will calculate
(n

k

)
pk(1 − p)n−k and

k∑
r=0

(n
r

)
pr (1 − p)n−r , respectively. Figure 3.A.1.1

shows the Minitab program for doing the cdf calculation [= P(X ≤ 15)] asked for
in part (a) of Example 3.2.2.

The commands pdf k and cdf k can be run on many of the probability mod-
els most likely to be encountered in real-world problems. Those on the list that
we have already seen are the binomial, Poisson, normal, uniform, and exponential
distributions.

Figure 3.A.1.1 MTB > cdf 15;
SUBC > binomial 30 0.60.
Cumulative Distribution Function
Binomial with n = 30 and p = 0.600000

x P(X <= x)

15.00 0.1754

For discrete random variables, the cdf can be printed out in its entirety (that is,
for every integer) by deleting the argument k and using the command MTB < cdf;.
Typical is the output in Figure 3.A.1.2, corresponding to the cdf for a binomial
random variable with n = 4 and p = 1

6 .

Figure 3.A.1.2 MTB > cdf;
SUBC > binomial 4 0.167.
Cumulative Distribution Function
Binomial with n = 4 and p =0.167000

x P( X <= x)
0 0.4815
1 0.8676
2 0.9837
3 0.9992
4 1.0000

Figure 3.A.1.3 MTB > invcdf 0.60;
SUBC > exponential 1.
Inverse Cumulative Distribution Function
Exponential with mean = 1.00000

P(X <= x) x
0.6000 0.9163

Also available is an inverse cdf command, which in the case of a continuous
random variable Y and a specified probability p identifies the value y having the
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property that P(Y ≤ y)= FY (Y )= p. For example, if p =0.60 and Y is an exponential
random variable with pdf fY (y) = e−y , y > 0, the value y = 0.9163 has the property
that P(Y ≤ 0.9163)= FY (0.9163)= 0.60. That is,

FY (0.9163)=
∫ 0.9163

0
e−y dy = 0.60

With Minitab the number 0.9163 is found by using the command MTB>invcdf
0.60 (see Figure 3.A.1.3).
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Theorem

Although he maintained lifelong literary and artistic interests, Quetelet’s
mathematical talents led him to a doctorate from the University of Ghent and from
there to a college teaching position in Brussels. In 1833 he was appointed astronomer
at the Brussels Royal Observatory after having been largely responsible for its
founding. His work with the Belgian census marked the beginning of his pioneering
efforts in what today would be called mathematical sociology. Quetelet was well
known throughout Europe in scientific and literary circles: At the time of his death he
was a member of more than one hundred learned societies.

—Lambert Adolphe Jacques Quetelet (1796–1874)

4.1 Introduction
To “qualify” as a probability model, a function defined over a sample space S
needs to satisfy only two criteria: (1) It must be nonnegative for all outcomes in S,
and (2) it must sum or integrate to 1. That means, for example, that fY (y) = y

4 +
7y3

2 , 0 ≤ y ≤ 1, can be considered a pdf because fY (y) ≥ 0 for all 0 ≤ y ≤ 1 and∫ 1
0

(
y
4 + 7y3

2

)
dy = 1.

It certainly does not follow, though, that every fY (y) and pX (k) that satisfy
these two criteria would actually be used as probability models. A pdf has practical
significance only if it does, indeed, model the probabilistic behavior of real-world
phenomena. In point of fact, only a handful of functions do [and fY (y) = y

4 + 7y3

2 ,
0 ≤ y ≤ 1, is not one of them!].

Whether a probability function—say, fY (y)—adequately models a given phe-
nomenon ultimately depends on whether the physical factors that influence the
value of Y parallel the mathematical assumptions implicit in fY (y). Surprisingly,
many measurements (i.e., random variables) that seem to be very different are actu-
ally the consequence of the same set of assumptions (and will, therefore, be modeled

221



222 Chapter 4 Special Distributions

by the same pdf). That said, it makes sense to single out these “real-world” pdfs and
investigate their properties in more detail. This, of course, is not an idea we are see-
ing for the first time—recall the attention given to the binomial and hypergeometric
distributions in Section 3.2.

Chapter 4 continues in the spirit of Section 3.2 by examining five other widely
used models. Three of the five are discrete; the other two are continuous. One of
the continuous pdfs is the normal (or Gaussian) distribution, which, by far, is the
most important of all probability models. As we will see, the normal “curve” figures
prominently in every chapter from this point on.

Examples play a major role in Chapter 4. The only way to appreciate fully the
generality of a probability model is to look at some of its specific applications. Thus,
included in this chapter are case studies ranging from the discovery of alpha-particle
radiation to an early ESP experiment to an analysis of volcanic eruptions to counting
bug parts in peanut butter.

4.2 The Poisson Distribution
The binomial distribution problems that appeared in Section 3.2 all had relatively
small values for n, so evaluating pX (k) = P(X = k) = ( n

k

)
pk(1 − p)n−k was not par-

ticularly difficult. But suppose n were 1000 and k, 500. Evaluating pX (500) would
be a formidable task for many handheld calculators, even today. Two hundred years
ago, the prospect of doing cumbersome binomial calculations by hand was a cat-
alyst for mathematicians to develop some easy-to-use approximations. One of the
first such approximations was the Poisson limit, which eventually gave rise to the
Poisson distribution. Both are described in Section 4.2.

Simeon Denis Poisson (1781–1840) was an eminent French mathematician and
physicist, an academic administrator of some note, and, according to an 1826 let-
ter from the mathematician Abel to a friend, a man who knew “how to behave
with a great deal of dignity.” One of Poisson’s many interests was the application of
probability to the law, and in 1837 he wrote Recherches sur la Probabilite de Juge-
ments. Included in the latter is a limit for pX (k) = ( n

k

)
pk(1 − p)n−k that holds when

n approaches ∞, p approaches 0, and np remains constant. In practice, Poisson’s
limit is used to approximate hard-to-calculate binomial probabilities where the val-
ues of n and p reflect the conditions of the limit—that is, when n is large and p
is small.

The Poisson Limit

Deriving an asymptotic expression for the binomial probability model is a straight-
forward exercise in calculus, given that np is to remain fixed as n increases.

Theorem
4.2.1

Suppose X is a binomial random variable, where

P(X = k)= pX (k)=
(n

k

)
pk(1 − p)n−k, k = 0,1, . . . ,n

If n → ∞ and p → 0 in such a way that λ = np remains constant, then

lim
n→∞
p→0

np = const.

P(X = k)= lim
n→∞
p→0

np = const.

(n

k

)
pk(1 − p)n−k = e−np(np)k

k!
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Proof We begin by rewriting the binomial probability in terms of λ:

lim
n→∞

(n

k

)
pk(1 − p)n−k = lim

n→∞

(n

k

)(λ

n

)k (
1 − λ

n

)n−k

= lim
n→∞

n!
k!(n − k)!λ

k

(
1

nk

)(
1 − λ

n

)−k (
1 − λ

n

)n

= λk

k! lim
n→∞

n!
(n − k)!

1

(n − λ)k

(
1 − λ

n

)n

But since [1 − (λ/n)]n → e−λ as n → ∞, we need show only that

n!
(n − k)!(n − λ)k

→ 1

to prove the theorem. However, note that

n!
(n − k)!(n − λ)k

= n(n − 1) · · · (n − k + 1)

(n − λ)(n − λ) · · · (n − λ)

a quantity that, indeed, tends to 1 as n → ∞ (since λ remains constant). �

Example
4.2.1

Theorem 4.2.1 is an asymptotic result. Left unanswered is the question of the rele-
vance of the Poisson limit for finite n and p. That is, how large does n have to be and
how small does p have to be before e−np(np)k/k! becomes a good approximation to
the binomial probability, pX (k)?

Since “good approximation” is undefined, there is no way to answer that ques-
tion in any completely specific way. Tables 4.2.1 and 4.2.2, though, offer a partial
solution by comparing the closeness of the approximation for two particular sets of
values for n and p.

In both cases λ = np is equal to 1, but in the former, n is set equal to 5—in the
latter, to 100. We see in Table 4.2.1 (n = 5) that for some k the agreement between
the binomial probability and Poisson’s limit is not very good. If n is as large as 100,
though (Table 4.2.2), the agreement is remarkably good for all k.

Table 4.2.1 Binomial Probabilities and Poisson
Limits; n = 5 and p = 1

5 (λ= 1)

k

(
5

k

)
(0.2)k(0.8)5−k e−1(1)k

k!
0 0.328 0.368
1 0.410 0.368
2 0.205 0.184
3 0.051 0.061
4 0.006 0.015
5 0.000 0.003
6+ 0 0.001

1.000 1.000
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Table 4.2.2 Binomial Probabilities and Poisson
Limits; n = 100 and p = 1

100
(λ= 1)

k

(
100

k

)
(0.01)k(0.99)100−k e−1(1)k

k!
0 0.366032 0.367879
1 0.369730 0.367879
2 0.184865 0.183940
3 0.060999 0.061313
4 0.014942 0.015328
5 0.002898 0.003066
6 0.000463 0.000511
7 0.000063 0.000073
8 0.000007 0.000009
9 0.000001 0.000001

10 0.000000 0.000000

1.000000 0.999999

Example
4.2.2

According to the IRS, 137.8 million individual tax returns were filed in 2008. Out of
that total, 1.4 million taxpayers, or 1.0%, had the good fortune of being audited. Not
everyone had the same chance of getting caught in the IRS’s headlights: millionaires
had the considerably higher audit rate of 5.6% (and that number might even go up
a bit more if the feds find out about your bank accounts in the Caymans and your
vacation home in Rio). Criminal investigations were initiated against 3749 of all
those audited, and 1735 of that group were eventually convicted of tax fraud and
sent to jail.

Suppose your hometown has 65,000 taxpayers, whose income profile and pro-
clivity for tax evasion are similar to those of citizens of the United States as a whole,
and suppose the IRS enforcement efforts remain much the same in the foreseeable
future. What is the probability that at least three of your neighbors will be house
guests of Uncle Sam next year?

Let X denote the number of your neighbors who will be incarcerated. Note
that X is a binomial random variable based on a very large n (= 65,000) and a very
small p (= 1735/137,800,000 = 0.0000126), so Poisson’s limit is clearly applicable
(and helpful). Here,

P(At least three neighbors go to jail)= P(X ≥ 3)

= 1 − P(X ≤ 2)

= 1 −
2∑

k=0

(
65,000

k

)
(0.0000126)k(0.9999874)65,000−k

=̇1 −
2∑

k=0

e−0.819 (0.819)k

k! = 0.050

where λ = np = 65,000(0.0000126)= 0.819.
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Case Study 4.2.1

Leukemia is a rare form of cancer whose cause and mode of transmission
remain largely unknown. While evidence abounds that excessive exposure to
radiation can increase a person’s risk of contracting the disease, it is at the same
time true that most cases occur among persons whose history contains no such
overexposure. A related issue, one maybe even more basic than the causality
question, concerns the spread of the disease. It is safe to say that the prevailing
medical opinion is that most forms of leukemia are not contagious—still, the
hypothesis persists that some forms of the disease, particularly the childhood
variety, may be. What continues to fuel this speculation are the discoveries of
so-called “leukemia clusters,” aggregations in time and space of unusually large
numbers of cases.

To date, one of the most frequently cited leukemia clusters in the medical
literature occurred during the late 1950s and early 1960s in Niles, Illinois, a sub-
urb of Chicago (75). In the 5 1

3 -year period from 1956 to the first four months
of 1961, physicians in Niles reported a total of eight cases of leukemia among
children less than fifteen years of age. The number at risk (that is, the number of
residents in that age range) was 7076. To assess the likelihood of that many cases
occurring in such a small population, it is necessary to look first at the leukemia
incidence in neighboring towns. For all of Cook County, excluding Niles, there
were 1,152,695 children less than fifteen years of age—and among those, 286
diagnosed cases of leukemia. That gives an average 5 1

3 -year leukemia rate of
24.8 cases per 100,000:

286 cases for 5 1
3 years

1,152,695 children
× 100,000

100,000
= 24.8 cases/100,000 children in 5 1

3 years

Now, imagine the 7076 children in Niles to be a series of n = 7076 (indepen-
dent) Bernoulli trials, each having a probability of p = 24.8/100,000 = 0.000248
of contracting leukemia. The question then becomes, given an n of 7076 and
a p of 0.000248, how likely is it that eight “successes” would occur? (The
expected number, of course, would be 7076 × 0.000248 = 1.75.) Actually, for
reasons that will be elaborated on in Chapter 6, it will prove more meaningful
to consider the related event, eight or more cases occurring in a 5 1

3 -year span.
If the probability associated with the latter is very small, it could be argued that
leukemia did not occur randomly in Niles and that, perhaps, contagion was a
factor.

Using the binomial distribution, we can express the probability of eight or
more cases as

P(8 or more cases)=
7076∑
k=8

(
7076

k

)
(0.000248)k(0.999752)7076−k (4.2.1)

Much of the computational unpleasantness implicit in Equation 4.2.1 can be
avoided by appealing to Theorem 4.2.1. Given that np =7076 × 0.000248=1.75,

(Continued on next page)
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(Case Study 4.2.1 continued)

P(X ≥ 8) = 1 − P(X ≤ 7)

=̇1 −
7∑

k=0

e−1.75(1.75)k

k!
= 1 − 0.99953

= 0.00047

How close can we expect 0.00047 to be to the “true” binomial sum? Very
close. Considering the accuracy of the Poisson limit when n is as small as one
hundred (recall Table 4.2.2), we should feel very confident here, where n is 7076.

Interpreting the 0.00047 probability is not nearly as easy as assessing its
accuracy. The fact that the probability is so very small tends to denigrate the
hypothesis that leukemia in Niles occurred at random. On the other hand, rare
events, such as clusters, do happen by chance. The basic difficulty of putting
the probability associated with a given cluster into any meaningful perspective
is not knowing in how many similar communities leukemia did not exhibit a
tendency to cluster. That there is no obvious way to do this is one reason the
leukemia controversy is still with us.

About the Data Publication of the Niles cluster led to a number of research efforts
on the part of biostatisticians to find quantitative methods capable of detecting
clustering in space and time for diseases having low epidemicity. Several tech-
niques were ultimately put forth, but the inherent “noise” in the data—variations in
population densities, ethnicities, risk factors, and medical practices—often proved
impossible to overcome.

Questions

4.2.1. If a typist averages one misspelling in every 3250
words, what are the chances that a 6000-word report is
free of all such errors? Answer the question two ways—
first, by using an exact binomial analysis, and second, by
using a Poisson approximation. Does the similarity (or
dissimilarity) of the two answers surprise you? Explain.

4.2.2. A medical study recently documented that 905 mis-
takes were made among the 289,411 prescriptions written
during one year at a large metropolitan teaching hospi-
tal. Suppose a patient is admitted with a condition serious
enough to warrant 10 different prescriptions. Approxi-
mate the probability that at least one will contain an
error.

4.2.3. Five hundred people are attending the first annual
“I was Hit by Lighting” Club. Approximate the proba-
bility that at most one of the five hundred was born on
Poisson’s birthday.

4.2.4. A chromosome mutation linked with colorblind-
ness is known to occur, on the average, once in every ten
thousand births.

(a) Approximate the probability that exactly three of
the next twenty thousand babies born will have the
mutation.

(b) How many babies out of the next twenty thou-
sand would have to be born with the mutation
to convince you that the “one in ten thousand”
estimate is too low? [Hint: Calculate P(X ≥ k) =
1 − P(X ≤ k − 1) for various k. (Recall Case
Study 4.2.1.)]

4.2.5. Suppose that 1% of all items in a supermarket are
not priced properly. A customer buys ten items. What is
the probability that she will be delayed by the cashier
because one or more of her items require a price check?
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Calculate both a binomial answer and a Poisson answer. Is
the binomial model “exact” in this case? Explain.

4.2.6. A newly formed life insurance company has under-
written term policies on 120 women between the ages of
forty and forty-four. Suppose that each woman has a 1/150
probability of dying during the next calendar year, and
that each death requires the company to pay out $50,000
in benefits. Approximate the probability that the company
will have to pay at least $150,000 in benefits next year.

4.2.7. According to an airline industry report (178),
roughly 1 piece of luggage out of every 200 that are
checked is lost. Suppose that a frequent-flying business-
woman will be checking 120 bags over the course of the
next year. Approximate the probability that she will lose
2 of more pieces of luggage.

4.2.8. Electromagnetic fields generated by power trans-
mission lines are suspected by some researchers to be a
cause of cancer. Especially at risk would be telephone line-
men because of their frequent proximity to high-voltage
wires. According to one study, two cases of a rare form
of cancer were detected among a group of 9500 linemen
(174). In the general population, the incidence of that par-
ticular condition is on the order of one in a million. What
would you conclude? (Hint: Recall the approach taken in
Case Study 4.2.1.)

4.2.9. Astronomers estimate that as many as one hundred
billion stars in the Milky Way galaxy are encircled by plan-
ets. If so, we may have a plethora of cosmic neighbors. Let
p denote the probability that any such solar system con-
tains intelligent life. How small can p be and still give a
fifty-fifty chance that we are not alone?

The Poisson Distribution

The real significance of Poisson’s limit theorem went unrecognized for more than
fifty years. For most of the latter part of the nineteenth century, Theorem 4.2.1
was taken strictly at face value: It provides a convenient approximation for pX (k)

when X is binomial, n is large, and p is small. But then in 1898 a German professor,
Ladislaus von Bortkiewicz, published a monograph entitled Das Gesetz der Kleinen
Zahlen (The Law of Small Numbers) that would quickly transform Poisson’s “limit”
into Poisson’s “distribution.”

What is best remembered about Bortkiewicz’s monograph is the curious set of
data described in Question 4.2.10. The measurements recorded were the numbers of
Prussian cavalry soldiers who had been kicked to death by their horses. In analyzing
those figures, Bortkiewicz was able to show that the function e−λλk/k! is a useful
probability model in its own right, even when (1) no explicit binomial random vari-
able is present and (2) values for n and p are unavailable. Other researchers were
quick to follow Bortkiewicz’s lead, and a steady stream of Poisson distribution appli-
cations began showing up in technical journals. Today the function pX (k)= e−λλk/k!
is universally recognized as being among the three or four most important data
models in all of statistics.

Theorem
4.2.2

The random variable X is said to have a Poisson distribution if

pX (k)= P(X = k)= e−λλk

k! , k = 0,1,2, . . .

where λ is a positive constant. Also, for any Poisson random variable, E(X) = λ and
Var(X)= λ.

Proof To show that pX (k) qualifies as a probability function, note, first of all, that
pX (k)≥ 0 for all nonnegative integers k. Also, pX (k) sums to 1:

∞∑
k=0

pX (k)=
∞∑

k=0

e−λλk

k! = e−λ

∞∑
k=0

λk

k! = e−λ · eλ = 1

since
∞∑

k=0

λk

k! is the Taylor series expansion of eλ. Verifying that E(X) = λ and

Var(X) = λ has already been done in Example 3.12.9, using moment-generating
functions. �
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Fitting the Poisson Distribution to Data

Poisson data invariably refer to the numbers of times a certain event occurs during
each of a series of “units” (often time or space). For example, X might be the weekly
number of traffic accidents reported at a given intersection. If such records are kept
for an entire year, the resulting data would be the sample k1, k2, . . . , k52, where each
ki is a nonnegative integer.

Whether or not a set of ki ’s can be viewed as Poisson data depends on whether
the proportions of 0’s, 1’s, 2’s, and so on, in the sample are numerically similar to the
probabilities that X = 0, 1, 2, and so on, as predicted by pX (k) = e−λλk/k!. The next
two case studies show data sets where the variability in the observed ki ’s is consistent
with the probabilities predicted by the Poisson distribution. Notice in each case that

the λ in pX (k) is replaced by the sample mean of the ki ’s—that is, by k̄ = (1/n)
n∑

c=1
ki .

Why these phenomena are described by the Poisson distribution will be discussed
later in this section; why λ is replaced by k̄ will be explained in Chapter 5.

Case Study 4.2.2

Among the early research projects investigating the nature of radiation was a
1910 study of α-particle emission by Ernest Rutherford and Hans Geiger (152).
For each of 2608 eighth-minute intervals, the two physicists recorded the num-
ber of α particles emitted from a polonium source (as detected by what would
eventually be called a Geiger counter). The numbers and proportions of times
that k such particles were detected in a given eighth-minute (k = 0,1,2, . . .) are
detailed in the first three columns of Table 4.2.3. Two α particles, for example,
were detected in each of 383 eighth-minute intervals, meaning that X = 2 was
the observation recorded 15% (= 383/2608 × 100) of the time.

Table 4.2.3

No. Detected, k Frequency Proportion pX (k)= e−3.87(3.87)k/k!

0 57 0.02 0.02
1 203 0.08 0.08
2 383 0.15 0.16
3 525 0.20 0.20
4 532 0.20 0.20
5 408 0.16 0.15
6 273 0.10 0.10
7 139 0.05 0.05
8 45 0.02 0.03
9 27 0.01 0.01

10 10 0.00 0.00
11+ 6 0.00 0.00

2608 1.0 1.0

(Continued on next page)
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To see whether a probability function of the form pX (k) = e−λλk/k! can
adequately model the observed proportions in the third column, we first need
to replace λ with the sample’s average value for X . Suppose the six observations
comprising the “11+” category are each assigned the value 11. Then

k̄ = 57(0)+ 203(1)+ 383(2)+ · · · + 6(11)

2608
= 10,092

2608

= 3.87

and the presumed model is pX (k) = e−3.87(3.87)k/k!, k = 0,1,2, . . .. Notice how
closely the entries in the fourth column [i.e., pX (0), pX (1), pX (2), . . .] agree with
the sample proportions appearing in the third column. The conclusion here is
inescapable: The phenomenon of radiation can be modeled very effectively by
the Poisson distribution.

About the Data The most obvious (and frequent) application of the Pois-
son/radioactivity relationship is to use the former to describe and predict the
behavior of the latter. But the relationship is also routinely used in reverse. Work-
ers responsible for inspecting areas where radioactive contamination is a potential
hazard need to know that their monitoring equipment is functioning properly. How
do they do that? A standard safety procedure before entering what might be a life-
threatening “hot zone” is to take a series of readings on a known radioactive source
(much like the Rutherford/Geiger experiment itself). If the resulting set of counts
does not follow a Poisson distribution, the meter is assumed to be broken and must
be repaired or replaced.

Case Study 4.2.3

In the 432 years from 1500 to 1931, war broke out somewhere in the world
a total of 299 times. By definition, a military action was a war if it either was
legally declared, involved over fifty thousand troops, or resulted in significant
boundary realignments. To achieve greater uniformity from war to war, major
confrontations were split into smaller “subwars”: World War I, for example, was
treated as five separate conflicts (143).

Let X denote the number of wars starting in a given year. The first two
columns in Table 4.2.4 show the distribution of X for the 432-year period in
question. Here the average number of wars beginning in a given year was 0.69:

k̄ = 0(223)+ 1(142)+ 2(48)+ 3(15)+ 4(4)

432
= 0.69

The last two columns in Table 4.2.4 compare the observed proportions of years
for which X = k with the proposed Poisson model

pX (k)= e−0.69 (0.69)k

k! , k = 0,1,2, . . .

(Continued on next page)
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(Case Study 4.2.3 continued)

Table 4.2.4

Number of Wars, k Frequency Proportion pX (k)= e−0.69 (0.69)k

k!
0 223 0.52 0.50
1 142 0.33 0.35
2 48 0.11 0.12
3 15 0.03 0.03
4+ 4 0.01 0.00

432 1.00 1.00

Clearly, there is a very close agreement between the two—the number of wars
beginning in a given year can be considered a Poisson random variable.

The Poisson Model: The Law of Small Numbers

Given that the expression e−λλk/k! models phenomena as diverse as α-radiation and
outbreak of war raises an obvious question: Why is that same pX (k) describing such
different random variables? The answer is that the underlying physical conditions
that produce those two sets of measurements are actually much the same, despite
how superficially different the resulting data may seem to be. Both phenomena are
examples of a set of mathematical assumptions known as the Poisson model. Any
measurements that are derived from conditions that mirror those assumptions will
necessarily vary in accordance with the Poisson distribution.

Suppose a series of events is occurring during a time interval of length T . Imag-
ine dividing T into n nonoverlapping subintervals, each of length T

n , where n is large
(see Figure 4.2.1). Furthermore, suppose that

Figure 4.2.1 T/n

T

5

events occur

1 2 3 4 n

1. The probability that two or more events occur in any given subinterval is
essentially 0.

2. The events occur independently.
3. The probability that an event occurs during a given subinterval is constant over

the entire interval from 0 to T .

The n subintervals, then, are analogous to the n independent trials that form the
backdrop for the “binomial model”: In each subinterval there will be either zero
events or one event, where

pn = P(Event occurs in a given subinterval)

remains constant from subinterval to subinterval.
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Let the random variable X denote the total number of events occurring during
time T , and let λ denote the rate at which events occur (e.g., λ might be expressed
as 2.5 events per minute). Then

E(X)= λT = npn (why?)

which implies that pn = λT
n . From Theorem 4.2.1, then,

px (k)= P(X = k) =
(n

k

)(λT

n

)k (
1 − λT

n

)n−k

=̇e−n(λT/n)
[
n(λT/n)

]k
k!

= e−λT (λT )k

k! (4.2.2)

Now we can see more clearly why Poisson’s “limit,” as given in Theorem 4.2.1,
is so important. The three Poisson model assumptions are so unexceptional that
they apply to countless real-world phenomena. Each time they do, the pdf pX (k) =
e−λT (λT )k/k! finds another application.

Example
4.2.3

It is not surprising that the number of α particles emitted by a radioactive source in a
given unit of time follows a Poisson distribution. Nuclear physicists have known for
a long time that the phenomenon of radioactivity obeys the same assumptions that
define the Poisson model. Each is a poster child for the other. Case Study 4.2.3, on
the other hand, is a different matter altogether. It is not so obvious why the number
of wars starting in a given year should have a Poisson distribution. Reconciling the
data in Table 4.2.4 with the “picture” of the Poisson model in Figure 4.2.1 raises a
number of questions that never came up in connection with radioactivity.

Imagine recording the data summarized in Table 4.2.4. For each year, new wars
would appear as “occurrences” on a grid of cells, similar to the one pictured in
Figure 4.2.2 for 1776. Civil wars would be entered along the diagonal and wars
between two countries, above the diagonal. Each cell would contain either a 0 (no
war) or a 1 (war). The year 1776 saw the onset of only one major conflict, the
Revolutionary War between the United States and Britain. If the random variable

Xi = number of outbreaks of war in year i, i = 1500,1501, . . . ,1931
then X1776 = 1.

What do we know, in general, about the random variable Xi ? If each cell in the
grid is thought of as a “trial,” then Xi is clearly the number of “successes” in those
n trials. Does that make Xi a binomial random variable? Not necessarily. According
to Theorem 3.2.1, Xi qualifies as a binomial random variable only if the trials are
independent and the probability of success is the same from trial to trial.

At first glance, the independence assumption would seem to be problematic.
There is no denying that some wars are linked to others. The timing of the French
Revolution, for example, is widely thought to have been influenced by the success
of the American Revolution. Does that make the two wars dependent? In a his-
torical sense, yes; in a statistical sense, no. The French Revolution began in 1789,
thirteen years after the onset of the American Revolution. The random variable
X1776, though, focuses only on wars starting in 1776, so linkages that are years apart
do not compromise the binomial’s independence assumption.

Not all wars identified in Case Study 4.2.3, though, can claim to be independent
in the statistical sense. The last entry in Column 2 of Table 4.2.4 shows that four
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or more wars erupted on four separate occasions; the Poisson model (Column 4)
predicted that no years would experience that many new wars. Most likely, those
four years had a decided excess of new wars because of political alliances that led to
a cascade of new wars being declared simultaneously. Those wars definitely violated
the binomial assumption of independent trials, but they accounted for only a very
small fraction of the entire data set.

The other binomial assumption—that each trial has the same probability of
success—holds fairly well. For the vast majority of years and the vast majority of
countries, the probabilities of new wars will be very small and most likely similar.
For almost every year, then, Xi can be considered a binomial random variable based
on a very large n and a very small p. That being the case, it follows by Theorem 4.2.1
that each Xi , i =1500, 1501, . . . , 1931 can be approximated by a Poisson distribution.

One other assumption needs to be addressed. Knowing that X1500, X1501, . . . ,

X1931—individually—are Poisson random variables does not guarantee that the
distribution of all 432 Xi ’s will have a Poisson distribution. Only if the Xi ’s are inde-
pendent observations having basically the same Poisson distribution—that is, the
same value for λ—will their overall distribution be Poisson. But Table 4.2.4 does
have a Poisson distribution, implying that the set of Xi ’s does, in fact, behave like a
random sample. Along with that sweeping conclusion, though, comes the realization
that, as a species, our levels of belligerence at the national level [that is, the 432 val-
ues for λ= E(Xi )] have remained basically the same for the past five hundred years.
Whether that should be viewed as a reason for celebration or a cause for alarm is a
question best left to historians, not statisticians.

Calculating Poisson Probabilities

Three formulas have appeared in connection with the Poisson distribution:

1. pX (k)
.= e−np (np)k

k!
2. pX (k)= e−λ λk

k!
3. pX (k)= e−λT (λT )k

k!
The first is the approximating Poisson limit, where the pX (k) on the left-hand side
refers to the probability that a binomial random variable (with parameters n and p)
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is equal to k. Formulas (2) and (3) are sometimes confused because both presume to
give the probability that a Poisson random variable equals k. Why are they different?

Actually, all three formulas are the same in the sense that the right-hand sides
of each could be written as

4. e−E(X) [E(X)]k

k!
In formula (1), X is binomial, so E(X)=np. In formula (2), which comes from Theo-
rem 4.2.2, λ is defined to be E(X). Formula (3) covers all those situations where the
units of X and λ are not consistent, in which case E(X) �= λ. However, λ can always
be multiplied by an appropriate constant T to make λT equal to E(X).

For example, suppose a certain radioisotope is known to emit α particles at the
rate of λ = 1.5 emissions/second. For whatever reason, though, the experimenter
defines the Poisson random variable X to be the number of emissions counted in a
given minute. Then T = 60 seconds and

E(X) = 1.5 emissions/second × 60 seconds

= λT = 90 emissions

Example
4.2.4

Entomologists estimate that an average person consumes almost a pound of bug
parts each year (173). There are that many insect eggs, larvae, and miscellaneous
body pieces in the foods we eat and the liquids we drink. The Food and Drug
Administration (FDA) sets a Food Defect Action Level (FDAL) for each product:
Bug-part concentrations below the FDAL are considered acceptable. The legal limit
for peanut butter, for example, is thirty insect fragments per hundred grams. Sup-
pose the crackers you just bought from a vending machine are spread with twenty
grams of peanut butter. What are the chances that your snack will include at least
five crunchy critters?

Let X denote the number of bug parts in twenty grams of peanut butter. Assum-
ing the worst, suppose the contamination level equals the FDA limit—that is, thirty
fragments per hundred grams (or 0.30 fragment/g). Notice that T in this case is
twenty grams, making E(X)= 6.0:

0.30 fragment

g
× 20 g = 6.0 fragments

It follows, then, that the probability that your snack contains five or more bug parts
is a disgusting 0.71:

P(X ≥ 5)= 1 − P(X ≤ 4) = 1 −
4∑

k=0

e−6.0(6.0)k

k!
= 1 − 0.29

= 0.71

Bon appetit!

Questions

4.2.10. During the latter part of the nineteenth century,
Prussian officials gathered information relating to the haz-
ards that horses posed to cavalry soldiers. A total of ten
cavalry corps were monitored over a period of twenty
years. Recorded for each year and each corps was X , the

annual number of fatalities due to kicks. Summarized in
the following table are the two hundred values recorded
for X (12). Show that these data can be modeled by
a Poisson pdf. Follow the procedure illustrated in Case
Studies 4.2.2 and 4.2.3.
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Observed Number of Corps-Years
No. of Deaths, k in Which k Fatalities Occurred

0 109
1 65
2 22
3 3
4 1

200

4.2.11. A random sample of 356 seniors enrolled at the
University of West Florida was categorized according to
X , the number of times they had changed majors (110).
Based on the summary of that information shown in the
following table, would you conclude that X can be treated
as a Poisson random variable?

Number of Major Changes Frequency

0 237
1 90
2 22
3 7

4.2.12. Midwestern Skies books ten commuter flights
each week. Passenger totals are much the same from week
to week, as are the numbers of pieces of luggage that are
checked. Listed in the following table are the numbers of
bags that were lost during each of the first forty weeks in
2009. Do these figures support the presumption that the
number of bags lost by Midwestern during a typical week
is a Poisson random variable?

Week Bags Lost Week Bags Lost Week Bags Lost

1 1 14 2 27 1
2 0 15 1 28 2
3 0 16 3 29 0
4 3 17 0 30 0
5 4 18 2 31 1
6 1 19 5 32 3
7 0 20 2 33 1
8 2 21 1 34 2
9 0 22 1 35 0

10 2 23 1 36 1
11 3 24 2 37 4
12 1 25 1 38 2
13 2 26 3 39 1

40 0

4.2.13. In 1893, New Zealand became the first country
to permit women to vote. Scattered over the ensuing 113
years, various countries joined the movement to grant this

right to women. The table below (121) shows how many
countries took this step in a given year. Do these data
seem to follow a Poisson distribution?

Yearly Number of Countries
Granting Women the Vote Frequency

0 82
1 25
2 4
3 0
4 2

4.2.14. The following are the daily numbers of death
notices for women over the age of eighty that appeared
in the London Times over a three-year period (74).

Number of Deaths Observed Frequency

0 162
1 267
2 271
3 185
4 111
5 61
6 27
7 8
8 3
9 1

1096

(a) Does the Poisson pdf provide a good description of
the variability pattern evident in these data?

(b) If your answer to part (a) is “no,” which of the Pois-
son model assumptions do you think might not be
holding?

4.2.15. A certain species of European mite is capable of
damaging the bark on orange trees. The following are the
results of inspections done on one hundred saplings cho-
sen at random from a large orchard. The measurement
recorded, X , is the number of mite infestations found on
the trunk of each tree. Is it reasonable to assume that X
is a Poisson random variable? If not, which of the Poisson
model assumptions is likely not to be true?

No. of Infestations, k No. of Trees

0 55
1 20
2 21
3 1
4 1
5 1
6 0
7 1
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4.2.16. A tool and die press that stamps out cams used
in small gasoline engines tends to break down once every
five hours. The machine can be repaired and put back on
line quickly, but each such incident costs $50. What is the
probability that maintenance expenses for the press will
be no more than $100 on a typical eight-hour workday?

4.2.17. In a new fiber-optic communication system, trans-
mission errors occur at the rate of 1.5 per ten seconds.
What is the probability that more than two errors will
occur during the next half-minute?

4.2.18. Assume that the number of hits, X , that a baseball
team makes in a nine-inning game has a Poisson distribu-
tion. If the probability that a team makes zero hits is 1

3
,

what are their chances of getting two or more hits?

4.2.19. Flaws in metal sheeting produced by a high-
temperature roller occur at the rate of one per ten square
feet. What is the probability that three or more flaws will
appear in a five-by-eight-foot panel?

4.2.20. Suppose a radioactive source is metered for two
hours, during which time the total number of alpha par-
ticles counted is 482. What is the probability that exactly
three particles will be counted in the next two minutes?
Answer the question two ways—first, by defining X to
be the number of particles counted in two minutes, and

second, by defining X to be the number of particles
counted in one minute.

4.2.21. Suppose that on-the-job injuries in a textile mill
occur at the rate of 0.1 per day.

(a) What is the probability that two accidents will occur
during the next (five-day) workweek?

(b) Is the probability that four accidents will occur over
the next two workweeks the square of your answer
to part (a)? Explain.

4.2.22. Find P(X = 4) if the random variable X has a
Poisson distribution such that P(X = 1)= P(X = 2).

4.2.23. Let X be a Poisson random variable with param-
eter λ. Show that the probability that X is even is 1

2
(1 +

e−2λ).

4.2.24. Let X and Y be independent Poisson random
variables with parameters λ and μ, respectively. Example
3.12.10 established that X + Y is also Poisson with param-
eter λ+μ. Prove that same result using Theorem 3.8.3.

4.2.25. If X1 is a Poisson random variable for which
E(X1) = λ and if the conditional pdf of X2 given that
X1 = x1 is binomial with parameters x1 and p, show that
the marginal pdf of X2 is Poisson with E(X2)= λp.

Intervals Between Events: The Poisson/Exponential Relationship

Situations sometimes arise where the time interval between consecutively occurring
events is an important random variable. Imagine being responsible for the main-
tenance on a network of computers. Clearly, the number of technicians you would
need to employ in order to be capable of responding to service calls in a timely
fashion would be a function of the “waiting time” from one breakdown to another.

Figure 4.2.3 shows the relationship between the random variables X and Y ,
where X denotes the number of occurrences in a unit of time and Y denotes the
interval between consecutive occurrences. Pictured are six intervals: X = 0 on one
occasion, X =1 on three occasions, X =2 once, and X =3 once. Resulting from those
eight occurrences are seven measurements on the random variable Y . Obviously, the
pdf for Y will depend on the pdf for X . One particularly important special case of
that dependence is the Poisson/exponential relationship outlined in Theorem 4.2.3.

Figure 4.2.3 y1 y2 y3 y4 y5 y6 y7Y values:

Unit time

X = 1 X = 1 X = 0 X = 3X = 1 X = 2

Theorem
4.2.3

Suppose a series of events satisfying the Poisson model are occurring at the rate of
λ per unit time. Let the random variable Y denote the interval between consecutive
events. Then Y has the exponential distribution

fY (y)= λe−λy, y > 0
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Proof Suppose an event has occurred at time a. Consider the interval that extends
from a to a + y. Since the (Poisson) events are occurring at the rate of λ per unit time,
the probability that no outcomes will occur in the interval (a,a + y) is e−λy(λy)0

0! =e−λy .
Define the random variable Y to denote the interval between consecutive occur-
rences. Notice that there will be no occurrences in the interval (a,a + y) only if
Y > y. Therefore,

P(Y > y)= e−λy

or, equivalently,

FY (y)= P(Y ≤ y)= 1 − P(Y > y)= 1 − e−λy

Let fY (y) be the (unknown) pdf for Y . It must be true that

P(Y ≤ y)=
∫ y

0
fY (t)dt

Taking derivatives of the two expressions for FY (y) gives

d

dy

∫ y

0
fY (t)dt = d

dy
(1 − e−λy)

which implies that

fY (y)= λe−λy, y > 0 �

Case Study 4.2.4

Over “short” geological periods, a volcano’s eruptions are believed to be
Poisson events—that is, they are thought to occur independently and at a con-
stant rate. If so, the pdf describing the intervals between eruptions should
have the form fY (y) = λe−λy . Collected for the purpose of testing that pre-
sumption are the data in Table 4.2.5, showing the intervals (in months) that
elapsed between thirty-seven consecutive eruptions of Mauna Loa, a fourteen-
thousand-foot volcano in Hawaii (106). During the period covered—1832 to
1950—eruptions were occurring at the rate of λ = 0.027 per month (or once
every 3.1 years). Is the variability in these thirty-six yi ’s consistent with the
statement of Theorem 4.2.3?

Table 4.2.5

126 73 3 6 37 23
73 23 2 65 94 51
26 21 6 68 16 20

6 18 6 41 40 18
41 11 12 38 77 61
26 3 38 50 91 12

To answer that question requires that the data be reduced to a density-
scaled histogram and superimposed on a graph of the predicted exponential pdf

(Continued on next page)
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(recall Case Study 3.4.1). Table 4.2.6 details the construction of the histogram.
Notice in Figure 4.2.4 that the shape of that histogram is entirely consistent with
the theoretical model— fY (y)= 0.027e−0.027y—stated in Theorem 4.2.3.

Table 4.2.6

Interval (mos), y Frequency Density

0 ≤ y < 20 13 0.0181
20 ≤ y < 40 9 0.0125
40 ≤ y < 60 5 0.0069
60 ≤ y < 80 6 0.0083
80 ≤ y < 100 2 0.0028

100 ≤ y < 120 0 0.0000
120 ≤ y < 140 1 0.0014
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Figure 4.2.4

About the Data Among pessimists, a favorite saying is “Bad things come in
threes.” Optimists, not to be outdone, claim that “Good things come in threes.” Are
they right? In a sense, yes, but not because of fate, bad karma, or good luck. Bad
things (and good things and so-so things) seem to come in threes because of (1) our
intuition’s inability to understand randomness and (2) the Poisson/exponential rela-
tionship. Case Study 4.2.4—specifically, the shape of the exponential pdf pictured in
Figure 4.2.4—illustrates the statistics behind the superstition.

Random events, such as volcanic eruptions, do not occur at equally spaced
intervals. Nor do the intervals between consecutive occurrences follow some sort
of symmetric distribution, where the most common separations are close to the
average separations. Quite the contrary. The Poisson/exponential relationship guar-
antees that the distribution of interval lengths between consecutive occurrences will
be sharply skewed [look again at fY (y)], implying that the most common separation
lengths will be the shortest ones.

Suppose that bad things are, in fact, happening to us randomly in time. Our intu-
itions unconsciously get a sense of the rate at which those bad things are occurring.
If they happen at the rate of, say, twelve bad things per year, we mistakenly think
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they should come one month apart. But that is simply not the way random events
behave, as Theorem 4.2.3 clearly shows.

Look at the entries in Table 4.2.5. The average of those thirty-six (randomly
occurring) eruption separations was 37.7 months, yet seven of the separations were
extremely short (less than or equal to six months). If two of those extremely short
separations happened to occur consecutively, it would be tempting (but wrong) to
conclude that the eruptions (since they came so close together) were “occurring in
threes” for some supernatural reason.

Using the combinatorial techniques discussed in Section 2.6, we can calculate
the probability that two extremely short intervals would occur consecutively. Think
of the thirty-six intervals as being either “normal” or “extremely short.” There are
twenty-nine in the first group and seven in the second. Using the method described
in Example 2.6.21, the probability that two extremely short separations would occur
consecutively at least once is 61%, which hardly qualifies as a rare event:

P(Two extremely short separations occur consecutively at least once)

=
(30

6

) · (61)+ (30
5

) · (52)+ (30
4

) · (43)(36
29

) = 0.61

So, despite what our intuitions might tell us, the phenomenon of bad things coming
in threes is neither mysterious nor uncommon or unexpected.

Example
4.2.5

Among the most famous of all meteor showers are the Perseids, which occur each
year in early August. In some areas the frequency of visible Perseids can be as high as
forty per hour. Given that such sightings are Poisson events, calculate the probability
that an observer who has just seen a meteor will have to wait at least five minutes
before seeing another one.

Let the random variable Y denote the interval (in minutes) between consecu-
tive sightings. Expressed in the units of Y , the forty-per-hour rate of visible Perseids
becomes 0.67 per minute. A straightforward integration, then, shows that the proba-
bility is 0.035 that an observer will have to wait five minutes or more to see another
meteor:

P(Y > 5) =
∫ ∞

5
0.67e −0.67y dy

=
∫ ∞

3.35
e−u du (where u = 0.67y)

= −e−u
∣∣∞
3.35 = e−3.35

= 0.035

Questions

4.2.26. Suppose that commercial airplane crashes in a
certain country occur at the rate of 2.5 per year.

(a) Is it reasonable to assume that such crashes are
Poisson events? Explain.

(b) What is the probability that four or more crashes will
occur next year?

(c) What is the probability that the next two crashes will
occur within three months of one another?

4.2.27. Records show that deaths occur at the rate of 0.1
per day among patients residing in a large nursing home.
If someone dies today, what are the chances that a week
or more will elapse before another death occurs?
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4.2.28. Suppose that Y1 and Y2 are independent exponen-
tial random variables, each having pdf fY (y)=λe−λy , y >0.
If Y = Y1 + Y2, it can be shown that

fY1+Y2(y)= λ2 ye−λy, y > 0

Recall Case Study 4.2.4. What is the probability that the
next three eruptions of Mauna Loa will be less than forty
months apart?

4.2.29. Fifty spotlights have just been installed in an out-
door security system. According to the manufacturer’s

specifications, these particular lights are expected to burn
out at the rate of 1.1 per one hundred hours. What is the
expected number of bulbs that will fail to last for at least
seventy-five hours?

4.2.30. Suppose you want to invent a new superstition
that “Bad things come in fours.” Using the data given
in Case Study 4.2.4 and the type of analysis described
on p. 238, calculate the probability that your superstition
would appear to be true.

4.3 The Normal Distribution
The Poisson limit described in Section 4.2 was not the only, or the first, approx-
imation developed for the purpose of facilitating the calculation of binomial
probabilities. Early in the eighteenth century, Abraham DeMoivre proved that
areas under the curve fz(z) = 1√

2π
e−z2/2, −∞ < z < ∞, can be used to estimate

P

[
a ≤ X −n

(
1
2

)
√

n
(

1
2

)(
1
2

) ≤ b

]
, where X is a binomial random variable with a large n and

p = 1
2 .
Figure 4.3.1 illustrates the central idea in DeMoivre’s discovery. Pictured is a

probability histogram of the binomial distribution with n = 20 and p = 1
2 . Super-

imposed over the histogram is the function fY (y) = 1√
2π ·√5

e− 1
2

(y−10)2

5 . Notice how
closely the area under the curve approximates the area of the bar, even for this rela-
tively small value of n. The French mathematician Pierre-Simon Laplace generalized
DeMoivre’s original idea to binomial approximations for arbitrary p and brought
this theorem to the full attention of the mathematical community by including it in
his influential 1812 book, Theorie Analytique des Probabilities.
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Theorem
4.3.1

Let X be a binomial random variable defined on n independent trials for which p =
P(success). For any numbers a and b,

lim
n→∞ P

[
a ≤ X − np√

np(1 − p)
≤ b

]
= 1√

2π

∫ b

a
e−z2/2 dz



240 Chapter 4 Special Distributions

Proof One of the ways to verify Theorem 4.3.1 is to show that the limit of the
moment-generating function for X −np√

np(1− p)
as n → ∞ is et2/2 and that et2/2 is also

the value of
∫∞
−∞ etz · 1√

2π
e−z2/2 dz. By Theorem 3.12.2, then, the limiting pdf of

Z = X−np√
np(1−p)

is the function fZ (z) = 1√
2π

e−z2/2, −∞ < z < ∞. See Appendix 4.A.2
for the proof of a more general result. �

Comment We saw in Section 4.2 that Poisson’s limit is actually a special case of
Poisson’s distribution, pX (k)= e−λλk

k! , k =0,1,2, . . . . Similarly, the DeMoivre-Laplace
limit is a pdf in its own right. Justifying that assertion, of course, requires proving
that fZ (z)= 1√

2π
e−z2/2 integrates to 1 for −∞< z <∞.

Curiously, there is no algebraic or trigonometric substitution that can be used to
demonstrate that the area under fZ (z) is 1. However, by using polar coordinates,
we can verify a necessary and sufficient alternative—namely, that the square of∫∞
−∞

1√
2π

e−z2/2 dz equals 1.
To begin, note that

1√
2π

∫ ∞

−∞
e−x2/2 dx · 1√

2π

∫ ∞

−∞
e−y2/2 dy = 1

2π

∫ ∞

−∞

∫ ∞

−∞
e− 1

2 (x2+y2) dx dy

Let x = r cos θ and y = r sin θ , so dx dy = r dr dθ . Then

1

2π

∫ ∞

−∞

∫ ∞

−∞
e− 1

2 (x2+y2) dx dy = 1

2π

∫ 2π

0

∫ ∞

0
e−r2/2 r dr dθ

= 1

2π

∫ ∞

0
re−r2/2 dr ·

∫ 2π

0
dθ

= 1

Comment The function fZ (z) = 1√
2π

e−z2/2 is referred to as the standard normal (or
Gaussian) curve. By convention, any random variable whose probabilistic behavior
is described by a standard normal curve is denoted by Z (rather than X , Y , or W ).
Since MZ (t)= et2/2, it follows readily that E(Z)= 0 and Var(Z)= 1.

Finding Areas Under the Standard Normal Curve

In order to use Theorem 4.3.1, we need to be able to find the area under the graph of
fZ (z) above an arbitrary interval [a,b]. In practice, such values are obtained in one
of two ways—either by using a normal table, a copy of which appears at the back
of every statistics book, or by running a computer software package. Typically, both
approaches give the cdf, FZ (z) = P(Z ≤ z), associated with Z (and from the cdf we
can deduce the desired area).

Table 4.3.1 shows a portion of the normal table that appears in Appendix A.1.
Each row under the Z heading represents a number along the horizontal axis of
fZ (z) rounded off to the nearest tenth; Columns 0 through 9 allow that number to be
written to the hundredths place. Entries in the body of the table are areas under the
graph of fZ (z) to the left of the number indicated by the entry’s row and column. For
example, the number listed at the intersection of the “1.1” row and the “4” column
is 0.8729, which means that the area under fZ (z) from −∞ to 1.14 is 0.8729. That is,∫ 1.14

−∞
1√
2π

e−z2/2 dz = 0.8729 = P(−∞< Z ≤ 1.14)= FZ (1.14)
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Table 4.3.1

Z 0 1 2 3 4 5 6 7 8 9

−3. 0.0013 0.0010 0.0007 0.0005 0.0003 0.0002 0.0002 0.0001 0.0001 0.0000
...

...

−0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121
−0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
−0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
−0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
−0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7703 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9278 0.9292 0.9306 0.9319
...

...

3. 0.9987 0.9990 0.9993 0.9995 0.9997 0.9998 0.9998 0.9999 0.9999 1.0000

(see Figure 4.3.2).

Figure 4.3.2

1.140

0.4

0.2

Area = 0.8729f  (z)Z

z

Areas under fz(z) to the right of a number or between two numbers can also be
calculated from the information given in normal tables. Since the total area under
fZ (z) is 1,

P(b < Z <+∞) = area under fZ (z) to the right of b

= 1 − area under fZ (z) to the left of b

= 1 − P(−∞< Z ≤ b)

= 1 − FZ (b)
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Similarly, the area under fz(z) between two numbers a and b is necessarily the
area under fZ (z) to the left of b minus the area under fZ (z) to the left of a:

P(a ≤ Z ≤ b) = area under fZ (z)between a and b

= area under fZ (z) to the left of b − area under fZ (z) to the left of a

= P(−∞< Z ≤ b)− P(−∞< Z < a)

= FZ (b)− FZ (a)

The Continuity Correction

Figure 4.3.3 illustrates the underlying “geometry” implicit in the DeMoivre-Laplace
Theorem. Pictured there is a continuous curve, f (y), approximating a histogram,
where we can presume that the areas of the rectangles are representing the probabil-
ities associated with a discrete random variable X . Clearly,

∫ b
a f (y)dy is numerically

similar to P(a ≤ X ≤ b), but the diagram suggests that the approximation would be
even better if the integral extended from a −0.5 to b +0.5, which would then include
the cross-hatched areas. That is, a refinement of the technique of using areas under
continuous curves to estimate probabilities of discrete random variables would be
to write

P(a ≤ X ≤ b) =̇
∫ b+0.5

a−0.5
f (y)dy

The substitution of a − 0.5 for a and b + 0.5 for b is called the continuity correc-
tion. Applying the latter to the DeMoivre-Laplace approximation leads to a slightly
different statement for Theorem 4.3.1: If X is a binomial random variable with
parameters n and p,

P(a ≤ X ≤ b)= FZ

[
b + 0.5 − np√

np(1 − p)

]
− FZ

[
a − 0.5 − np√

np(1 − p)

]

Figure 4.3.3

a + 2

Shaded area = P (a ≤ X ≤ b)f (y)

a + 1 bb – 1aa – 0.5 b + 0.5

Comment Even with the continuity correction refinement, normal curve approxi-
mations can be inadequate if n is too small, especially when p is close to 0 or to 1. As
a rule of thumb, the DeMoivre-Laplace limit should be used only if the magnitudes
of n and p are such that n > 9 p

1−p and n > 9 1−p
p .

Example
4.3.1

Boeing 757s flying certain routes are configured to have 168 economy-class seats.
Experience has shown that only 90% of all ticket holders on those flights will actu-
ally show up in time to board the plane. Knowing that, suppose an airline sells 178
tickets for the 168 seats. What is the probability that not everyone who arrives at the
gate on time can be accommodated?
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Let the random variable X denote the number of would-be passengers who
show up for a flight. Since travelers are sometimes with their families, not every
ticket holder constitutes an independent event. Still, we can get a useful approxima-
tion to the probability that the flight is overbooked by assuming that X is binomial
with n = 178 and p = 0.9. What we are looking for is P(169 ≤ X ≤ 178), the probabil-
ity that more ticket holders show up than there are seats on the plane. According to
Theorem 4.3.1 (and using the continuity correction),

P(Flight is overbooked) = P(169 ≤ X ≤ 178)

= P

[
169 − 0.5 − np√

np(1 − p)
≤ X − np√

np(1 − p)
≤ 178 + 0.5 − np√

np(1 − p)

]

= P

[
168.5 − 178(0.9)√

178(0.9)(0.1)
≤ X − 178(0.9)√

178(0.9)(0.1)
≤ 178.5 − 178(0.9)√

178(0.9)(0.1)

]
=̇ P(2.07 ≤ Z ≤ 4.57)= Fz(4.57)− Fz(2.07)

From Appendix A.1, FZ (4.57) = P(Z ≤ 4.57) is equal to 1, for all practical
purposes, and the area under fZ (z) to the left of 2.07 is 0.9808. Therefore,

P(Flight is overbooked) = 1.0000 − 0.9808

= 0.0192

implying that the chances are about one in fifty that not every ticket holder will have
a seat.

Case Study 4.3.1

Research in extrasensory perception has ranged from the slightly unconven-
tional to the downright bizarre. Toward the latter part of the nineteenth century
and even well into the twentieth century, much of what was done involved spir-
itualists and mediums. But beginning around 1910, experimenters moved out
of the seance parlors and into the laboratory, where they began setting up con-
trolled studies that could be analyzed statistically. In 1938, Pratt and Woodruff,
working out of Duke University, did an experiment that became a prototype for
an entire generation of ESP research (71).

The investigator and a subject sat at opposite ends of a table. Between them
was a screen with a large gap at the bottom. Five blank cards, visible to both
participants, were placed side by side on the table beneath the screen. On the
subject’s side of the screen one of the standard ESP symbols (see Figure 4.3.4)
was hung over each of the blank cards.

Figure 4.3.4

(Continued on next page)
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(Case Study 4.3.1 continued)

The experimenter shuffled a deck of ESP cards, picked up the top one, and
concentrated on it. The subject tried to guess its identity: If he thought it was a
circle, he would point to the blank card on the table that was beneath the circle
card hanging on his side of the screen. The procedure was then repeated. Alto-
gether, a total of thirty-two subjects, all students, took part in the experiment.
They made a total of sixty thousand guesses—and were correct 12,489 times.

With five denominations involved, the probability of a subject’s making a
correct identification just by chance was 1

5 . Assuming a binomial model, the
expected number of correct guesses would be 60,000 × 1

5 , or 12,000. The ques-
tion is, how “near” to 12,000 is 12,489? Should we write off the observed excess
of 489 as nothing more than luck, or can we conclude that ESP has been
demonstrated?

To effect a resolution between the conflicting “luck” and “ESP” hypothe-
ses, we need to compute the probability of the subjects’ getting 12,489 or more
correct answers under the presumption that p = 1

5 . Only if that probability is very
small can 12,489 be construed as evidence in support of ESP.

Let the random variable X denote the number of correct responses in sixty
thousand tries. Then

P(X ≥ 12,489)=
60,000∑

k=12,489

(
60,000

k

)(
1

5

)k (4

5

)60,000−k

(4.3.1)

At this point the DeMoivre-Laplace limit theorem becomes a welcome alterna-
tive to computing the 47,512 binomial probabilities implicit in Equation 4.3.1.
First we apply the continuity correction and rewrite P(X ≥ 12,489) as P(X ≥
12,488.5). Then

P(X ≥ 12,489)= P

[
X − np√
np(1 − p)

≥ 12,488.5 − 60,000(1/5)√
60,000(1/5)(4/5)

]

= P

[
X − np√
np(1 − p)

≥ 4.99

]
=̇ 1√

2π

∫ ∞

4.99
e−z2/2 dz

= 0.0000003

this last value being obtained from a more extensive version of Table A.1 in the
Appendix.

Here, the fact that P(X ≥ 12,489) is so extremely small makes the “luck”
hypothesis

(
p = 1

5

)
untenable. It would appear that something other than chance

had to be responsible for the occurrence of so many correct guesses. Still, it does
not follow that ESP has necessarily been demonstrated. Flaws in the experi-
mental setup as well as errors in reporting the scores could have inadvertently
produced what appears to be a statistically significant result. Suffice it to say that
a great many scientists remain highly skeptical of ESP research in general and
of the Pratt-Woodruff experiment in particular. [For a more thorough critique
of the data we have just described, see (43).]
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About the Data This is a good set of data for illustrating why we need formal math-
ematical methods for interpreting data. As we have seen on other occasions, our
intuitions, when left unsupported by probability calculations, can often be deceived.
A typical first reaction to the Pratt-Woodruff results is to dismiss as inconsequen-
tial the 489 additional correct answers. To many, it seems entirely believable that
sixty thousand guesses could produce, by chance, an extra 489 correct responses.
Only after making the P(X ≥12,489) computation do we see the utter implausibility
of that conclusion. What statistics is doing here is what we would like it to do in
general—rule out hypotheses that are not supported by the data and point us in the
direction of inferences that are more likely to be true.

Questions

4.3.1. Use Appendix Table A.1 to evaluate the following
integrals. In each case, draw a diagram of fZ (z) and shade
the area that corresponds to the integral.

(a)
∫ 1.33

−0.44
1√
2π

e−z2/2 dz

(b)
∫ 0.94

−∞
1√
2π

e−z2/2 dz

(c)
∫ ∞

−1.48
1√
2π

e−z2/2 dz

(d)
∫ −4.32

−∞
1√
2π

e−z2/2 dz

4.3.2. Let Z be a standard normal random variable. Use
Appendix Table A.1 to find the numerical value for each
of the following probabilities. Show each of your answers
as an area under fZ (z).

(a) P(0 ≤ Z ≤ 2.07)

(b) P(−0.64 ≤ Z <−0.11)

(c) P(Z >−1.06)

(d) P(Z <−2.33)

(e) P(Z ≥ 4.61)

4.3.3.

(a) Let 0 < a < b. Which number is larger?∫ b

a

1√
2π

e−z2/2 dz or
∫ −a

−b

1√
2π

e−z2/2 dz

(b) Let a > 0. Which number is larger?∫ a+1

a

1√
2π

e−z2/2 dz or
∫ a+1/2

a−1/2

1√
2π

e−z2/2 dz

4.3.4.

(a) Evaluate
∫ 1.24

0 e−z2/2 dz.
(b) Evaluate

∫∞
−∞ 6e−z2/2 dz.

4.3.5. Assume that the random variable Z is described by
a standard normal curve fZ (z). For what values of z are
the following statements true?

(a) P(Z ≤ z)= 0.33
(b) P(Z ≥ z)= 0.2236
(c) P(−1.00 ≤ Z ≤ z)= 0.5004
(d) P(−z < Z < z)= 0.80
(e) P(z ≤ Z ≤ 2.03)= 0.15

4.3.6. Let zα denote the value of Z for which P(Z ≥
zα) = α. By definition, the interquartile range, Q, for the
standard normal curve is the difference

Q = z.25 − z.75

Find Q.

4.3.7. Oak Hill has 74,806 registered automobiles. A city
ordinance requires each to display a bumper decal show-
ing that the owner paid an annual wheel tax of $50. By
law, new decals need to be purchased during the month of
the owner’s birthday. This year’s budget assumes that at
least $306,000 in decal revenue will be collected in Novem-
ber. What is the probability that the wheel taxes reported
in that month will be less than anticipated and produce a
budget shortfall?

4.3.8. Hertz Brothers, a small, family-owned radio man-
ufacturer, produces electronic components domestically
but subcontracts the cabinets to a foreign supplier.
Although inexpensive, the foreign supplier has a quality-
control program that leaves much to be desired. On the
average, only 80% of the standard 1600-unit shipment that
Hertz receives is usable. Currently, Hertz has back orders
for 1260 radios but storage space for no more than 1310
cabinets. What are the chances that the number of usable
units in Hertz’s latest shipment will be large enough to
allow Hertz to fill all the orders already on hand, yet small
enough to avoid causing any inventory problems?
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4.3.9. Fifty-five percent of the registered voters in
Sheridanville favor their incumbent mayor in her bid
for re-election. If four hundred voters go to the polls,
approximate the probability that

(a) the race ends in a tie.
(b) the challenger scores an upset victory.

4.3.10. State Tech’s basketball team, the Fighting Loga-
rithms, have a 70% foul-shooting percentage.

(a) Write a formula for the exact probability that out of
their next one hundred free throws, they will make
between seventy-five and eighty, inclusive.

(b) Approximate the probability asked for in part (a).

4.3.11. A random sample of 747 obituaries published
recently in Salt Lake City newspapers revealed that
344 (or 46%) of the decedents died in the three-month
period following their birthdays (123). Assess the sta-
tistical significance of that finding by approximating the
probability that 46% or more would die in that particu-
lar interval if deaths occurred randomly throughout the
year. What would you conclude on the basis of your
answer?

4.3.12. There is a theory embraced by certain parapsy-
chologists that hypnosis can enhance a person’s ESP abil-
ity. To test that hypothesis, an experiment was set up with
fifteen hypnotized subjects (21). Each was asked to make
100 guesses using the same sort of ESP cards and proto-
col that were described in Case Study 4.3.1. A total of 326
correct identifications were made. Can it be argued on the
basis of those results that hypnosis does have an effect on
a person’s ESP ability? Explain.

4.3.13. If pX (k) = ( 10
k

)
(0.7)k(0.3)10−k , k = 0,1, . . . ,10, is it

appropriate to approximate P(4 ≤ X ≤ 8) by computing
the following?

P

[
3.5 − 10(0.7)√

10(0.7)(0.3)
≤ Z ≤ 8.5 − 10(0.7)√

10(0.7)(0.3)

]
Explain.

4.3.14. A sell-out crowd of 42,200 is expected at Cleve-
land’s Jacobs Field for next Tuesday’s game against the
Baltimore Orioles, the last before a long road trip. The
ballpark’s concession manager is trying to decide how
much food to have on hand. Looking at records from
games played earlier in the season, she knows that, on the
average, 38% of all those in attendance will buy a hot dog.
How large an order should she place if she wants to have
no more that a 20% chance of demand exceeding supply?

Central Limit Theorem

It was pointed out in Example 3.9.3 that every binomial random variable X can
be written as the sum of n independent Bernoulli random variables X1, X2, . . . , Xn ,
where

Xi =
{

1 with probability p

0 with probability 1 − p

But if X = X1 + X2 + · · ·+ Xn , Theorem 4.3.1 can be reexpressed as

lim
n→∞ P

[
a ≤ X1 + X2 + · · · + Xn − np√

np(1 − p)
≤ b

]
= 1√

2π

∫ b

a
e−z2/2 dz (4.3.2)

Implicit in Equation 4.3.2 is an obvious question: Does the DeMoivre-Laplace
limit apply to sums of other types of random variables as well? Remarkably, the
answer is “yes.” Efforts to extend Equation 4.3.2 have continued for more than 150
years. Russian probabilists—A. M. Lyapunov, in particular—made many of the key
advances. In 1920, George Polya gave these new generalizations a name that has
been associated with the result ever since: He called it the central limit theorem
(136).

Theorem
4.3.2

(Central Limit Theorem) Let W1, W2, . . .be an infinite sequence of independent ran-
dom variables, each with the same distribution. Suppose that the mean μ and the
variance σ 2 of fW (w) are both finite. For any numbers a and b,
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lim
n→∞ P

(
a ≤ W1 + · · ·+ Wn − nμ√

nσ
≤ b

)
= 1√

2π

∫ b

a
e−z2/2 dz

Proof See Appendix 4.A.2. �

Comment The central limit theorem is often stated in terms of the average of W1,
W2, . . ., and Wn , rather than their sum. Since

E

[
1

n
(W1 + · · · + Wn)

]
= E(W )=μ and Var

[
1

n
(W1 + · · ·+ Wn)

]
= σ 2/n,

Theorem 4.3.2 can be stated in the equivalent form

lim
n→∞ P

(
a ≤ W −μ

σ/
√

n
≤ b

)
= 1√

2π

∫ b

a
e−z2/2 dz

We will use both formulations, the choice depending on which is more convenient
for the problem at hand.

Example
4.3.2

The top of Table 4.3.2 shows a Minitab simulation where forty random samples of
size 5 were drawn from a uniform pdf defined over the interval [0, 1]. Each row
corresponds to a different sample. The sum of the five numbers appearing in a given
sample is denoted “y” and is listed in column C6. For this particular uniform pdf,
μ= 1

2 and σ 2 = 1
12 (recall Question 3.6.4), so

W1 + · · ·+ Wn − nμ√
nσ

= Y − 5
2√

5
12

Table 4.3.2

C1 C2 C3 C4 C5 C6 C7
y1 y2 y3 y4 y5 y Z ratio

1 0.556099 0.646873 0.354373 0.673821 0.233126 2.46429 −0.05532
2 0.497846 0.588979 0.272095 0.956614 0.819901 3.13544 0.98441
3 0.284027 0.209458 0.414743 0.614309 0.439456 1.96199 −0.83348
4 0.599286 0.667891 0.194460 0.839481 0.694474 2.99559 0.76777
5 0.280689 0.692159 0.036593 0.728826 0.314434 2.05270 −0.69295
6 0.462741 0.349264 0.471254 0.613070 0.489125 2.38545 −0.17745
7 0.556940 0.246789 0.719907 0.711414 0.918221 3.15327 1.01204
8 0.102855 0.679119 0.559210 0.014393 0.518450 1.87403 −0.96975
9 0.642859 0.004636 0.728131 0.299165 0.801093 2.47588 −0.03736

10 0.017770 0.568188 0.416351 0.908079 0.075108 1.98550 −0.79707
11 0.331291 0.410705 0.118571 0.979254 0.242582 2.08240 −0.64694
12 0.355047 0.961126 0.920597 0.575467 0.585492 3.39773 1.39076
13 0.626197 0.304754 0.530345 0.933018 0.675899 3.07021 0.88337
14 0.211714 0.404505 0.045544 0.213012 0.520614 1.39539 −1.71125
15 0.535199 0.130715 0.603642 0.333023 0.405782 2.00836 −0.76164
16 0.810374 0.153955 0.082226 0.827269 0.897901 2.77172 0.42095
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Table 4.3.2 (continued)

C1 C2 C3 C4 C5 C6 C7
y1 y2 y3 y4 y5 y Z ratio

17 0.687550 0.185393 0.620878 0.013395 0.819712 2.32693 −0.26812
18 0.424193 0.529199 0.201554 0.157073 0.090455 1.40248 −1.70028
19 0.397373 0.143507 0.973991 0.234845 0.681147 2.43086 −0.10711
20 0.413788 0.653468 0.017335 0.556255 0.900568 2.54141 0.06416
21 0.602607 0.094162 0.247676 0.638875 0.653910 2.23723 −0.40708
22 0.963678 0.375850 0.909377 0.307358 0.828882 3.38515 1.37126
23 0.967499 0.868809 0.940770 0.405564 0.814348 3.99699 2.31913
24 0.439913 0.446679 0.075227 0.983295 0.554581 2.49970 −0.00047
25 0.215774 0.407494 0.002307 0.971140 0.437144 2.03386 −0.72214
26 0.108881 0.271860 0.972351 0.604762 0.210347 2.16820 −0.51402
27 0.337798 0.173911 0.309916 0.300208 0.666831 1.78866 −1.10200
28 0.635017 0.187311 0.365419 0.831417 0.463567 2.48273 −0.02675
29 0.563097 0.065293 0.841320 0.518055 0.685137 2.67290 0.26786
30 0.687242 0.544286 0.980337 0.649507 0.077364 2.93874 0.67969
31 0.784501 0.745614 0.459559 0.565875 0.529171 3.08472 0.90584
32 0.505460 0.355340 0.163285 0.352540 0.896521 2.27315 −0.35144
33 0.336992 0.734869 0.824409 0.321047 0.682283 2.89960 0.61906
34 0.784279 0.194038 0.323756 0.430020 0.459238 2.19133 −0.47819
35 0.548008 0.788351 0.831117 0.200790 0.823102 3.19137 1.07106
36 0.096383 0.844281 0.680927 0.656946 0.050867 2.32940 −0.26429
37 0.161502 0.972933 0.038113 0.515530 0.553788 2.24187 −0.39990
38 0.677552 0.232181 0.307234 0.588927 0.365403 2.17130 −0.50922
39 0.470454 0.267230 0.652802 0.633286 0.410964 2.43474 −0.10111
40 0.104377 0.819950 0.047036 0.189226 0.399502 1.56009 −1.45610
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At the bottom of Table 4.3.2 is a density-scaled histogram of the forty “Z ratios,”
y−5/2√

5/12
(as listed in column C7). Notice the close agreement between the distribution

of those ratios and fZ (z): What we see there is entirely consistent with the statement
of Theorem 4.3.2.
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Comment Theorem 4.3.2 is an asymptotic result, yet it can provide surprisingly
good approximations even when n is very small. Example 4.3.2 is a typical case in
point: The uniform pdf over [0, 1] looks nothing like a bell-shaped curve, yet ran-
dom samples as small as n = 5 yield sums that behave probabilistically much like the
theoretical limit.

In general, samples from symmetric pdfs will produce sums that “converge”
quickly to the theoretical limit. On the other hand, if the underlying pdf is sharply
skewed—for example, fY (y)=10e−10y , y >0—it would take a larger n to achieve the
level of agreement present in Figure 4.3.2.

Example
4.3.3

A random sample of size n = 15 is drawn from the pdf fY (y) = 3(1 − y)2, 0 ≤ y ≤ 1.

Let Ȳ = ( 1
15

) 15∑
i=1

Yi . Use the central limit theorem to approximate P
(

1
8 ≤ Ȳ ≤ 3

8

)
.

Note, first of all, that

E(Y )=
∫ 1

0
y · 3(1 − y)2 dy = 1

4

and

σ 2 = Var(Y )= E(Y 2)−μ2 =
∫ 1

0
y2 · 3(1 − y)2 dy −

(
1

4

)2

= 3

80

According, then, to the central limit theorem formulation that appears in the com-
ment on p. 247, the probability that Ȳ will lie between 1

8 and 3
8 is approximately

0.99:

P

(
1

8
≤ Ȳ ≤ 3

8

)
= P

⎛⎝ 1
8 − 1

4√
3

80

/√
15

≤ Ȳ − 1
4√

3
80

/√
15

≤
3
8 − 1

4√
3

80

/√
15

⎞⎠
= P(−2.50 ≤ Z ≤ 2.50)

= 0.9876

Example
4.3.4

In preparing next quarter’s budget, the accountant for a small business has one hun-
dred different expenditures to account for. Her predecessor listed each entry to the
penny, but doing so grossly overstates the precision of the process. As a more truth-
ful alternative, she intends to record each budget allocation to the nearest $100.
What is the probability that her total estimated budget will end up differing from
the actual cost by more than $500? Assume that Y1, Y2, . . ., Y100, the rounding errors
she makes on the one hundred items, are independent and uniformly distributed
over the interval [−$50,+$50].

Let

S100 = Y1 + Y2 + · · ·+ Y100

= total rounding error

What the accountant wants to estimate is P(|S100| > $500). By the distribution
assumption made for each Yi ,

E(Yi )= 0, i = 1,2, . . . ,100
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and

Var(Yi )= E
(
Y 2

i

)= ∫ 50

−50

1

100
y2 dy

= 2500

3

Therefore,

E(S100)= E(Y1 + Y2 + · · ·+ Y100)= 0

and

Var(S100)= Var(Y1 + Y2 + · · ·+ Y100)= 100

(
2500

3

)
= 250,000

3

Applying Theorem 4.3.2, then, shows that her strategy has roughly an 8% chance of
being in error by more than $500:

P(|S100| > $500) = 1 − P(−500 ≤ S100 ≤ 500)

= 1 − P

(−500 − 0

500/
√

3
≤ S100 − 0

500/
√

3
≤ 500 − 0

500/
√

3

)
= 1 − P(−1.73 < Z < 1.73)

= 0.0836

Questions

4.3.15. A fair coin is tossed two hundred times. Let Xi =1
if the ith toss comes up heads and Xi = 0 otherwise, i =
1,2, . . . ,200; X =

200∑
i=1

Xi . Calculate the central limit theo-

rem approximation for P(|X − E(X)| ≤ 5). How does this
differ from the DeMoivre-Laplace approximation?

4.3.16. Suppose that one hundred fair dice are tossed.
Estimate the probability that the sum of the faces show-
ing exceeds 370. Include a continuity correction in your
analysis.

4.3.17. Let X be the amount won or lost in betting $5
on red in roulette. Then px(5) = 18

38
and px(−5) = 20

38
. If

a gambler bets on red one hundred times, use the cen-
tral limit theorem to estimate the probability that those
wagers result in less than $50 in losses.

4.3.18. If X1, X2, . . . , Xn are independent Poisson
random variables with parameters λ1, λ2, . . . , λn , respec-
tively, and if X = X1 + X2 + · · · + Xn , then X is a

Poisson random variable with parameter λ =
n∑

i=1
λi (recall

Example 3.12.10). What specific form does the ratio
in Theorem 4.3.2 take if the Xi ’s are Poisson random
variables?

4.3.19. An electronics firm receives, on the average, fifty
orders per week for a particular silicon chip. If the com-
pany has sixty chips on hand, use the central limit theorem
to approximate the probability that they will be unable to
fill all their orders for the upcoming week. Assume that
weekly demands follow a Poisson distribution. (Hint: See
Question 4.3.18.)

4.3.20. Considerable controversy has arisen over the pos-
sible aftereffects of a nuclear weapons test conducted
in Nevada in 1957. Included as part of the test were
some three thousand military and civilian “observers.”
Now, more than fifty years later, eight cases of leukemia
have been diagnosed among those three thousand. The
expected number of cases, based on the demographic
characteristics of the observers, was three. Assess the sta-
tistical significance of those findings. Calculate both an
exact answer using the Poisson distribution as well as an
approximation based on the central limit theorem.
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The Normal Curve as a Model for Individual Measurements

Because of the central limit theorem, we know that sums (or averages) of virtually
any set of random variables, when suitably scaled, have distributions that can be
approximated by a standard normal curve. Perhaps even more surprising is the fact
that many individual measurements, when suitably scaled, also have a standard nor-
mal distribution. Why should the latter be true? What do single observations have
in common with samples of size n?

Astronomers in the early nineteenth century were among the first to understand
the connection. Imagine looking through a telescope for the purpose of determining
the location of a star. Conceptually, the data point, Y , eventually recorded is the
sum of two components: (1) the star’s true location μ∗ (which remains unknown)
and (2) measurement error. By definition, measurement error is the net effect of all
those factors that cause the random variable Y to have a value different from μ∗.
Typically, these effects will be additive, in which case the random variable can be
written as a sum,

Y =μ∗ + W1 + W2 + · · ·+ Wt (4.3.3)

where W1, for example, might represent the effect of atmospheric irregularities, W2

the effect of seismic vibrations, W3 the effect of parallax distortions, and so on.
If Equation 4.3.3 is a valid representation of the random variable Y , then it

would follow that the central limit theorem applies to the individual Yi ’s. More-
over, if

E(Y )= E(μ∗ + W1 + W2 + · · ·+ Wt )=μ

and

Var(Y )= Var(μ∗ + W1 + W2 + · · ·+ Wt )= σ 2

the ratio in Theorem 4.3.2 takes the form Y−μ

σ
. Furthermore, t is likely to be very

large, so the approximation implied by the central limit theorem is essentially an
equality—that is, we take the pdf of Y−μ

σ
to be fZ (z).

Finding an actual formula for fY (y), then, becomes an exercise in applying
Theorem 3.8.2. Given that Y−μ

σ
= Z ,

Y =μ+ σ Z

and

fY (y) = 1

σ
fZ

(
y −μ

σ

)
= 1√

2πσ
e
− 1

2

(
y−μ
σ

)2

, −∞< y <∞

Definition 4.3.1. A random variable Y is said to be normally distributed with
mean μ and variance σ 2 if

fY (y)= 1√
2πσ

e
− 1

2

(
y−μ
σ

)2

, −∞< y <∞

The symbol Y ∼ N (μ,σ 2) will sometimes be used to denote the fact that Y has
a normal distribution with mean μ and variance σ 2.
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Comment Areas under an “arbitrary” normal distribution, fY (y), are calculated by
finding the equivalent area under the standard normal distribution, fZ (z):

P(a ≤ Y ≤ b)= P

(
a −μ

σ
≤ Y −μ

σ
≤ b −μ

σ

)
= P

(
a −μ

σ
≤ Z ≤ b −μ

σ

)
The ratio Y−μ

σ
is often referred to as either a Z transformation or a Z score.

Example
4.3.5

In most states a motorist is legally drunk, or driving under the influence (DUI), if his
or her blood alcohol concentration, Y , is 0.08% or higher. When a suspected DUI
offender is pulled over, police often request a sobriety test. Although the breath
analyzers used for that purpose are remarkably precise, the machines do exhibit
a certain amount of measurement error. Because of that variability, the possibility
exists that a driver’s true blood alcohol concentration may be under 0.08% even if
the analyzer gives a reading over 0.08%.

Experience has shown that repeated breath analyzer measurements taken from
the same person produce a distribution of responses that can be described by a nor-
mal pdf with μ equal to the person’s true blood alcohol concentration and σ equal
to 0.004%. Suppose a driver is stopped at a roadblock on his way home from a party.
Having celebrated a bit more than he should have, he has a true blood alcohol con-
centration of 0.075%, just barely under the legal limit. If he takes the breath analyzer
test, what are the chances that he will be incorrectly booked on a DUI charge?

0.060 0.080.075

100

50

Legally
drunk

Area = 0.1056

0.09
y

f   (y)Y

–3.0 3.01.250

0.4

0.2 Area = 0.1056

z

f   (z)Z

Figure 4.3.5

Since a DUI arrest occurs when Y ≥ 0.08%, we need to find P(Y ≥ 0.08) when
μ = 0.075 and σ = 0.004 (the percentage is irrelevant to any probability calculation
and can be ignored). An application of the Z transformation shows that the driver
has almost an 11% chance of being falsely accused:



4.3 The Normal Distribution 253

P(Y ≥ 0.08) = P

(
Y − 0.075

0.004
≥ 0.080 − 0.075

0.004

)
= P(Z ≥ 1.25)= 1 − P(Z < 1.25)

= 1 − 0.8944 = 0.1056

Figure 4.3.5 shows fY (y), fZ (z), and the two areas that are equal.

Case Study 4.3.2

For his many notable achievements, Sir Francis Galton (1822–1911) is much
admired by scientists and statisticians, but not so much by criminals (at least not
criminals who know something about history). What should rankle the incarcer-
ated set is the fact that Galton did groundbreaking work in using fingerprints
for identification purposes. Late in the nineteenth century, he showed that all
fingerprints could be classified into three generic types—the whorl, the loop,
and the arch (see Figure 4.3.6). A few years later, Sir Edward Richard Henry,
who would eventually become Commissioner of Scotland Yard, refined Gal-
ton’s system to include eight generic types. The Henry system, as it came to
be known, was quickly adopted by law enforcement agencies worldwide and
ultimately became the foundation for the first AFIS (Automated Fingerprint
Identification System) databases introduced in the 1990s.

Whorl Loop Arch

Figure 4.3.6

There are many characteristics besides the three proposed by Galton and
the eight proposed by Henry that can be used to distinguish one fingerprint
from another. Among the most objective of these is the ridge count. In the
loop pattern, there is a point—the triradius—where the three opposing ridge
systems come together. A straight line drawn from the triradius to the center
of the loop will cross a certain number of ridges; in Figure 4.3.7, that number
is eleven. Adding the numbers of ridge crossings for each finger yields a sum
known as the ridge count.

Consider the following scenario. Police are investigating the murder of a
pedestrian in a heavily populated urban area that is thought to have been a
gang-related, drive-by shooting, perhaps as part of an initiation ritual. No eye-
witnesses have come forth, but an unregistered gun was found nearby that the

(Continued on next page)
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(Case Study 4.3.2 continued)

ballistics lab has confirmed was the murder weapon. Lifted from the gun was a
partially smudged set of latent fingerprints. None of the features typically used
for identification purposes was recognizable except for the ridge count, which
appeared to be at least 270. The police have arrested a young man who lives in
the area, is known to belong to a local gang, has no verifiable alibi for the night
of the shooting, and has a ridge count of 275. His trial is about to begin.

Figure 4.3.7

Neither the state nor the defense has a strong case. Both sides have
no choice but to base their arguments on the statistical implications of the
defendant’s ridge count. And both sides have access to the same background
information—that ridge counts for males are normally distributed with a mean
(μ) of 146 and a standard deviation (σ ) of 52.

The state’s case
Clearly, the defendant has an unusually high ridge count. The strength of the
prosecutor’s case hinges on how unusual. According to the Z transformation
given on p. 252 (together with a continuity correction), the probability of a ridge
count, Y , being at least 275 is 0.0068:

P(Y ≥ 275)
.= P

(
Y − 146

52
≥ 274.5 − 146

52

)
= P(Z ≥ 2.47)= 0.0068

This is great news for the prosecutor: jurors will most likely interpret a
probability that small as being very strong evidence against the defendant.

(Continued on next page)
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The defense’s case
The defense must necessarily try to establish “reasonable doubt” by showing
that the probability is fairly high that someone other than the defendant could
have committed the murder. To make that argument requires an application of
conditional probability as it pertains to the binomial distribution.

Suppose n male gang members were riding around on the night of the
shooting and could conceivably have committed the crime, and let X denote
the number of those individuals who have ridge counts of at least 270. Then

P(X = k)=
(

n
k

)
pk(1 − p)n−k

where

p = P(Y ≥ 270)
.= P

(
Y − 146

52
≥ 269.5 − 146

52

)
= P(Z ≥ 2.38)= 0.0087

Also,

P(X = 1)=
(

n
1

)
p1(1 − p)n−1 = np(1 − p)n−1

P(X ≥ 1)= 1 − P(X = 0)= 1 − (1 − p)n

and

P(X ≥ 2)= 1 − (1 − p)n − np(1 − p)n−1

Therefore,

P(X ≥ 2)|P(X ≥ 1) = P(X ≥ 2)

P(X ≥ 1)

= 1 − (1 − p)n − np(1 − p)n−1

1 − (1 − p)n

= P(at least two persons have ridge counts

≥ 270| at least one person has a ridge count ≥ 270)

= P(at least one other person besides the defendant

could have committed the murder)

How large was n on the night of the shooting? There is no way to know, but
it could have been sizeable, given the amount of gang activity found in many
metropolitan areas. Table 4.3.3 lists the values of P(X ≥ 2|X ≥ 1) calculated for

Table 4.3.3

n P(X ≥ 2|X ≥ 1)

25 0.10
50 0.20

100 0.37
150 0.51
200 0.63
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various values of n ranging from 25 to 200. For example, if n =50 gang members
including the defendant were riding around on the night of the murder, there
is a 20% chance that at least one other individual besides the defendant has a
ridge count of at least 270 (and might be the shooter).

Imagine yourself on the jury. Which is the more persuasive statistical anal-
ysis, the state’s calculation that P(Y ≥ 275)= 0.0068, or the defense’s tabulation
of P(X ≥ 2|X ≥ 1)? Would your verdict be “guilty” or “not guilty”?

About the Data Given that astrologers, psychics, and Tarot card readers still
abound, it should come as no surprise that fingerprint patterns gave rise to their
own form of fortune-telling (known more elegantly as dactylomancy). According to
those who believe in such things, a person “having whorls on all fingers is restless,
vacillating, doubting, sensitive, clever, eager for action, and inclined to crime.” Need-
less to say, of course, “A mixture of loops and whorls signifies a neutral character, a
person who is kind, obedient, truthful, but often undecided and impatient” (32).

Example
4.3.6

Mensa (from the Latin word for “mind”) is an international society devoted to
intellectual pursuits. Any person who has an IQ in the upper 2% of the general
population is eligible to join. What is the lowest IQ that will qualify a person for
membership? Assume that IQs are normally distributed with μ= 100 and σ = 16.

Let the random variable Y denote a person’s IQ, and let the constant yL be the
lowest IQ that qualifies someone to be a card-carrying Mensan. The two are related
by a probability equation:

P(Y ≥ yL)= 0.02

or, equivalently,

P(Y < yL)= 1 − 0.02 = 0.98 (4.3.4)

(see Figure 4.3.8).
Applying the Z transformation to Equation 4.3.4 gives

P(Y < yL)= P

(
Y − 100

16
<

yL − 100

16

)
= P

(
Z <

yL − 100

16

)
= 0.98

yL100

IQ

0.03

Area = 0.02

Qualifies for
membership

Area = 0.98

y

f   (y)Y

Figure 4.3.8
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From the standard normal table in Appendix Table A.1, though,

P(Z < 2.05)= 0.9798 =̇0.98

Since yL −100
16 and 2.05 are both cutting off the same area of 0.02 under fZ (z), they

must be equal, which implies that 133 is the lowest acceptable IQ for Mensa:

yL = 100 + 16(2.05)= 133

Example
4.3.7

Suppose a random variable Y has the moment-generating function MY (t) = e3t+8t2
.

Calculate P(−1 ≤ Y ≤ 9).
To begin, notice that MY (t) has the same form as the moment-generating

function for a normal random variable. That is,

e3t+8t2 = eμt+(σ 2t2)/2

where μ = 3 and σ 2 = 16 (recall Example 3.12.4). To evaluate P(−1 ≤ Y ≤ 9), then,
requires an application of the Z transformation:

P(−1 ≤ Y ≤ 9)= P

(−1 − 3

4
≤ Y − 3

4
≤ 9 − 3

4

)
= P(−1.00 ≤ Z ≤ 1.50)

= 0.9332 − 0.1587

= 0.7745

Theorem
4.3.3

Let Y1 be a normally distributed random variable with mean μ1 and variance σ 2
1 ,

and let Y2 be a normally distributed random variable with mean μ2 and variance σ 2
2.

Define Y = Y1 + Y2. If Y1 and Y2 are independent, Y is normally distributed with mean
μ1 +μ2 and variance σ 2

1 + σ 2
2.

Proof Let MYi (t) denote the moment-generating function for Yi , i = 1,2, and let
MY (t) be the moment-generating function for Y . Since Y = Y1 + Y2, and the Yi ’s are
independent,

MY (t)= MY1(t) · MY2(t)

= eμ1t+
(
σ 2

1 t2
)
/2 · eμ2t+

(
σ 2

2t2
)
/2 (See Example 3.12.4)

= e(μ1+μ2)t+
(
σ 2

1+σ 2
2

)
t2/2

We recognize the latter, though, to be the moment-generating function for a normal
random variable with mean μ1 + μ2 and variance σ 2

1 + σ 2
2. The result follows by

virtue of the uniqueness property stated in Theorem 3.12.2. �

Corollary
4.3.1

Let Y1, Y2, . . ., Yn be a random sample of size n from a normal distribution with mean

μ and variance σ 2. Then the sample mean, Ȳ = 1
n

n∑
i=1

Yi , is also normally distributed

with mean μ but with variance equal to σ 2/n (which implies that Ȳ−μ

σ/
√

n
is a standard

normal random variable, Z). �
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Corollary
4.3.2

Let Y1, Y2, . . ., Yn be any set of independent normal random variables with means
μ1, μ2, . . ., μn and variances σ 2

1 , σ 2
2, . . ., σ 2

n , respectively. Let a1, a2, . . ., an be any
set of constants. Then Y = a1Y1 + a2Y2 + · · · + anYn is normally distributed with mean

μ=
n∑

i=1
aiμi and variance σ 2 =

n∑
i=1

a2
i σ

2
i . �

Example
4.3.8

The elevator in the athletic dorm at Swampwater Tech has a maximum capacity of
twenty-four hundred pounds. Suppose that ten football players get on at the twen-
tieth floor. If the weights of Tech’s players are normally distributed with a mean of
two hundred twenty pounds and a standard deviation of twenty pounds, what is the
probability that there will be ten fewer Muskrats at tomorrow’s practice?

Let the random variables Y1, Y2, . . ., Y10 denote the weights of the ten players.

At issue is the probability that Y =
10∑

i=1
Yi exceeds twenty-four hundred pounds. But

P

(
10∑

i=1

Yi > 2400

)
= P

(
1

10

10∑
i=1

Yi >
1

10
· 2400

)
= P(Ȳ > 240.0)

A Z transformation can be applied to the latter expression using the corollary on
p. 257:

P(Ȳ > 240.0) = P

(
Ȳ − 220

20/
√

10
>

240.0 − 220

20/
√

10

)
= P(Z > 3.16)

= 0.0008

Clearly, the chances of a Muskrat splat are minimal. (How much would the
probability change if eleven players squeezed onto the elevator?)

Questions

4.3.21. Econo-Tire is planning an advertising campaign
for its newest product, an inexpensive radial. Preliminary
road tests conducted by the firm’s quality-control depart-
ment have suggested that the lifetimes of these tires will
be normally distributed with an average of thirty thousand
miles and a standard deviation of five thousand miles. The
marketing division would like to run a commercial that
makes the claim that at least nine out of ten drivers will
get at least twenty-five thousand miles on a set of Econo-
Tires. Based on the road test data, is the company justified
in making that assertion?

4.3.22. A large computer chip manufacturing plant under
construction in Westbank is expected to result in an addi-
tional fourteen hundred children in the county’s public
school system once the permament workforce arrives.
Any child with an IQ under 80 or over 135 will require
individualized instruction that will cost the city an addi-
tional $1750 per year. How much money should Westbank
anticipate spending next year to meet the needs of its
new special ed students? Assume that IQ scores are nor-
mally distributed with a mean (μ) of 100 and a standard
deviation (σ ) of 16.

4.3.23. Records for the past several years show that the
amount of money collected daily by a prominent televan-
gelist is normally distributed with a mean (μ) of $20,000
and a standard deviation (σ ) of $5000. What are the
chances that tomorrow’s donations will exceed $30,000?

4.3.24. The following letter was written to a well-known
dispenser of advice to the lovelorn (171):

Dear Abby: You wrote in your column that a
woman is pregnant for 266 days. Who said so? I
carried my baby for ten months and five days, and
there is no doubt about it because I know the exact
date my baby was conceived. My husband is in the
Navy and it couldn’t have possibly been conceived
any other time because I saw him only once for an
hour, and I didn’t see him again until the day before
the baby was born.

I don’t drink or run around, and there is no way
this baby isn’t his, so please print a retraction about
the 266-day carrying time because otherwise I am in
a lot of trouble.

San Diego Reader
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Whether or not San Diego Reader is telling the truth is
a judgment that lies beyond the scope of any statistical
analysis, but quantifying the plausibility of her story does
not. According to the collective experience of generations
of pediatricians, pregnancy durations, Y , tend to be nor-
mally distributed with μ = 266 days and σ = 16 days. Do a
probability calculation that addresses San Diego Reader’s
credibility. What would you conclude?

4.3.25. A criminologist has developed a questionnaire for
predicting whether a teenager will become a delinquent.
Scores on the questionnaire can range from 0 to 100,
with higher values reflecting a presumably greater crimi-
nal tendency. As a rule of thumb, the criminologist decides
to classify a teenager as a potential delinquent if his or
her score exceeds 75. The questionnaire has already been
tested on a large sample of teenagers, both delinquent and
nondelinquent. Among those considered nondelinquent,
scores were normally distributed with a mean (μ) of 60
and a standard deviation (σ ) of 10. Among those consid-
ered delinquent, scores were normally distributed with a
mean of 80 and a standard deviation of 5.

(a) What proportion of the time will the criminolo-
gist misclassify a nondelinquent as a delinquent?
A delinquent as a nondelinquent?

(b) On the same set of axes, draw the normal curves that
represent the distributions of scores made by delin-
quents and nondelinquents. Shade the two areas
that correspond to the probabilities asked for in
part (a).

4.3.26. The cross-sectional area of plastic tubing for use
in pulmonary resuscitators is normally distributed with
μ= 12.5 mm2 and σ = 0.2 mm2. When the area is less than
12.0 mm2 or greater than 13.0 mm2, the tube does not fit
properly. If the tubes are shipped in boxes of one thou-
sand, how many wrong-sized tubes per box can doctors
expect to find?

4.3.27. At State University, the average score of the enter-
ing class on the verbal portion of the SAT is 565, with a
standard deviation of 75. Marian scored a 660. How many
of State’s other 4250 freshmen did better? Assume that
the scores are normally distributed.

4.3.28. A college professor teaches Chemistry 101 each
fall to a large class of freshmen. For tests, she uses stan-
dardized exams that she knows from past experience pro-
duce bell-shaped grade distributions with a mean of 70 and
a standard deviation of 12. Her philosophy of grading is to
impose standards that will yield, in the long run, 20% A’s,
26% B’s, 38% C’s, 12% D’s, and 4% F’s. Where should
the cutoff be between the A’s and the B’s? Between the
B’s and the C’s?

4.3.29. Suppose the random variable Y can be described
by a normal curve with μ= 40. For what value of σ is

P(20 ≤ Y ≤ 60)= 0.50

4.3.30. It is estimated that 80% of all eighteen-year-
old women have weights ranging from 103.5 to 144.5 lb.
Assuming the weight distribution can be adequately mod-
eled by a normal curve and that 103.5 and 144.5 are
equidistant from the average weight μ, calculate σ .

4.3.31. Recall the breath analyzer problem described in
Example 4.3.5. Suppose the driver’s blood alcohol concen-
tration is actually 0.09% rather than 0.075%. What is the
probability that the breath analyzer will make an error in
his favor and indicate that he is not legally drunk? Sup-
pose the police offer the driver a choice—either take the
sobriety test once or take it twice and average the read-
ings. Which option should a “0.075%” driver take? Which
option should a “0.09%” driver take? Explain.

4.3.32. If a random variable Y is normally distributed
with mean μ and standard deviation σ , the Z ratio Y−μ

σ

is often referred to as a normed score: It indicates the
magnitude of y relative to the distribution from which it
came. “Norming” is sometimes used as an affirmative-
action mechanism in hiring decisions. Suppose a cosmetics
company is seeking a new sales manager. The aptitude test
they have traditionally given for that position shows a dis-
tinct gender bias: Scores for men are normally distributed
with μ = 62.0 and σ = 7.6, while scores for women are
normally distributed with μ = 76.3 and σ = 10.8. Laura
and Michael are the two candidates vying for the posi-
tion: Laura has scored 92 on the test and Michael 75. If
the company agrees to norm the scores for gender bias,
whom should they hire?

4.3.33. The IQs of nine randomly selected people are
recorded. Let Y denote their average. Assuming the
distribution from which the Yi ’s were drawn is normal
with a mean of 100 and a standard deviation of 16,
what is the probability that Y will exceed 103? What
is the probability that any arbitrary Yi will exceed 103?
What is the probability that exactly three of the Yi ’s will
exceed 103?

4.3.34. Let Y1,Y2, . . . ,Yn be a random sample from a nor-
mal distribution where the mean is 2 and the variance is 4.
How large must n be in order that

P(1.9 ≤ Y ≤ 2.1)≥ 0.99

4.3.35. A circuit contains three resistors wired in series.
Each is rated at 6 ohms. Suppose, however, that the true
resistance of each one is a normally distributed random
variable with a mean of 6 ohms and a standard devia-
tion of 0.3 ohm. What is the probability that the combined
resistance will exceed 19 ohms? How “precise” would the
manufacturing process have to be to make the probability
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less than 0.005 that the combined resistance of the circuit
would exceed 19 ohms?

4.3.36. The cylinders and pistons for a certain internal
combustion engine are manufactured by a process that
gives a normal distribution of cylinder diameters with a
mean of 41.5 cm and a standard deviation of 0.4 cm. Sim-
ilarly, the distribution of piston diameters is normal with
a mean of 40.5 cm and a standard deviation of 0.3 cm.
If the piston diameter is greater than the cylinder diam-
eter, the former can be reworked until the two “fit.”

What proportion of cylinder-piston pairs will need to be
reworked?

4.3.37. Use moment-generating functions to prove the
two corollaries to Theorem 4.3.3.

4.3.38. Let Y1,Y2, . . . , Y9 be a random sample of size
9 from a normal distribution where μ = 2 and σ = 2.
Let Y ∗

1 ,Y ∗
2 , . . . , Y ∗

9 be an independent random sample
from a normal distribution having μ = 1 and σ = 1. Find
P(Ȳ ≥ Ȳ ∗).

4.4 The Geometric Distribution
Consider a series of independent trials, each having one of two possible outcomes,
success or failure. Let p = P(Trial ends in success). Define the random variable X to
be the trial at which the first success occurs. Figure 4.4.1 suggests a formula for the
pdf of X :

pX (k)= P(X = k)= P(First success occurs on kth trial)

= P(First k − 1 trials end in failure and kth trial ends in success)

= P(First k − 1 trials end in failure) · P(kth trial ends in success)

= (1 − p)k−1 p, k = 1,2, . . . (4.4.1)

We call the probability model in Equation 4.4.1 a geometric distribution (with
parameter p).

Figure 4.4.1

Independent trials

First success

F
k – 1

F
2

F
1

S
k

k – 1 failures

Comment Even without its association with independent trials and Figure 4.4.1,
the function pX (k) = (1 − p)k−1 p, k = 1,2, . . . qualifies as a discrete pdf because (1)
pX (k)≥ 0 for all k and (2)

∑
all k

pX (k)= 1:

∞∑
k=1

(1 − p)k−1 p = p
∞∑
j=0

(1 − p) j

= p ·
[

1

1 − (1 − p)

]
= 1

Example
4.4.1

A pair of fair dice are tossed until a sum of 7 appears for the first time. What is the
probability that more than four rolls will be required for that to happen?

Each throw of the dice here is an independent trial for which

p = P(sum = 7)= 6

36
= 1

6
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Let X denote the roll at which the first sum of 7 appears. Clearly, X has the structure
of a geometric random variable, and

P(X > 4)= 1 − P(X ≤ 4) = 1 −
4∑

k=1

(
5

6

)k−1(1

6

)

= 1 − 671

1296

= 0.48

Theorem
4.4.1

Let X have a geometric distribution with pX (k)= (1 − p)k−1 p, k = 1,2, . . . . Then

1. MX (t)= pet

1−(1−p)et

2. E(X)= 1
p

3. Var(X)= 1−p
p2

Proof See Examples 3.12.1 and 3.12.5 for derivations of MX (t) and E(X). The
formula for Var(X) is left as an exercise. �

Example
4.4.2

A grocery store is sponsoring a sales promotion where the cashiers give away one
of the letters A, E , L , S, U , or V for each purchase. If a customer collects all six
(spelling VALUES), he or she gets $10 worth of groceries free. What is the expected
number of trips to the store a customer needs to make in order to get a complete
set? Assume the different letters are given away randomly.

Let Xi denote the number of purchases necessary to get the ith different letter,
i = 1,2, . . . ,6, and let X denote the number of purchases necessary to qualify for
the $10. Then X = X1 + X2 + · · · + X6 (see Figure 4.4.2). Clearly, X1 equals 1 with
probability 1, so E(X1) = 1. Having received the first letter, the chances of getting a
different one are 5

6 for each subsequent trip to the store. Therefore,

fX2(k)= P(X2 = k)=
(

1

6

)k−1 5

6
, k = 1,2, . . .

X

1Trips 1 2

First
letter

1 2 3 1 2

X6X3X2X1

Second
different

letter

Third
different

letter

Sixth
different

letter

Figure 4.4.2

That is, X2 is a geometric random variable with parameter p = 5
6 . By Theorem 4.4.1,

E(X2) = 6
5 . Similarly, the chances of getting a third different letter are 4

6 (for each
purchase), so

fX3(k)= P(X3 = k)=
(

2

6

)k−1(4

6

)
, k = 1,2, . . .
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and E(X3) = 6
4 . Continuing in this fashion, we can find the remaining E(Xi )’s. It

follows that a customer will have to make 14.7 trips to the store, on the average, to
collect a complete set of six letters:

E(X) =
6∑

i=1

E(Xi )

= 1 + 6

5
+ 6

4
+ 6

3
+ 6

2
+ 6

1

= 14.7

Questions

4.4.1. Because of her past convictions for mail fraud and
forgery, Jody has a 30% chance each year of having her
tax returns audited. What is the probability that she will
escape detection for at least three years? Assume that she
exaggerates, distorts, misrepresents, lies, and cheats every
year.

4.4.2. A teenager is trying to get a driver’s license. Write
out the formula for the pdf px(k), where the random vari-
able X is the number of tries that he needs to pass the
road test. Assume that his probability of passing the exam
on any given attempt is 0.10. On the average, how many
attempts is he likely to require before he gets his license?

4.4.3. Is the following set of data likely to have come
from the geometric pdf pX (k) = ( 3

4

)k−1 · ( 1
4

)
, k = 1,2, . . .?

Explain.

2 8 1 2 2 5 1 2 8 3
5 4 2 4 7 2 2 8 4 7
2 6 2 3 5 1 3 3 2 5
4 2 2 3 6 3 6 4 9 3
3 7 5 1 3 4 3 4 6 2

4.4.4. Recently married, a young couple plans to continue
having children until they have their first girl. Suppose
the probability that a child is a girl is 1

2
, the outcome of

each birth is an independent event, and the birth at which
the first girl appears has a geometric distribution. What is
the couple’s expected family size? Is the geometric pdf a
reasonable model here? Discuss.

4.4.5. Show that the cdf for a geometric random vari-
able is given by FX (t) = P(X ≤ t) = 1 − (1 − p)[t], where
[t] denotes the greatest integer in t , t ≥ 0.

4.4.6. Suppose three fair dice are tossed repeatedly. Let
the random variable X denote the roll on which a sum of
4 appears for the first time. Use the expression for Fx(t)
given in Question 4.4.5 to evaluate P(65 ≤ X ≤ 75).

4.4.7. Let Y be an exponential random variable, where
fY (y) = λe−λy , 0 ≤ y. For any positive integer n, show
that P(n ≤ Y ≤ n + 1) = e−λn(1 − e−λ). Note that if p =
1 − e−λ, the “discrete” version of the exponential pdf is
the geometric pdf.

4.4.8. Sometimes the geometric random variable is
defined to be the number of trials, X, preceding the first
success. Write down the corresponding pdf and derive the
moment-generating function for X two ways—(1) by eval-
uating E(et X ) directly and (2) by using Theorem 3.12.3.

4.4.9. Differentiate the moment-generating function for
a geometric random variable and verify the expressions
given for E(X) and Var(X) in Theorem 4.4.1.

4.4.10. Suppose that the random variables X1 and X2 have

mgfs MX1(t) = 1
2 et

1−
(

1− 1
2

)
et

and MX2(t) = 1
4 et

1−
(

1− 1
4 t
)

et
, respec-

tively. Let X = X1 + X2. Does X have a geometric distri-
bution? Assume that X1 and X2 are independent.

4.4.11. The factorial moment-generating function for any
random variable W is the expected value of tw. More-
over dr

dtr E(t W ) |t=1 = E[W (W − 1) · · · (W − r + 1)]. Find the
factorial moment-generating function for a geometric ran-
dom variable and use it to verify the expected value and
variance formulas given in Theorem 4.4.1.

4.5 The Negative Binomial Distribution
The geometric distribution introduced in Section 4.4 can be generalized in a very
straightforward fashion. Imagine waiting for the r th (instead of the first) success in
a series of independent trials, where each trial has a probability of p of ending in
success (see Figure 4.5.1).
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Figure 4.5.1

Independent trials

rth success

S
k – 1

F
3

F
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S
1

S
k

r – 1 successes and k – 1 – (r – 1) failures

Let the random variable X denote the trial at which the r th success occurs. Then

pX (k)= P(X = k) = P(r th success occurs on kth trial)

= P(r − 1 successes occur in first k − 1 trials and

success occurs on kth trial)

= P(r − 1 successes occur in first k − 1 trials)

· P(Success occurs on kth trial)

=
(

k − 1

r − 1

)
pr−1(1 − pk−1−(r−1)) · p

=
(

k − 1

r − 1

)
pr (1 − p)k−r , k = r, r + 1, . . . (4.5.1)

Any random variable whose pdf has the form given in Equation 4.5.1 is said to have
a negative binomial distribution (with parameter p).

Comment Two equivalent formulations of the negative binomial structure are
widely used. Sometimes X is defined to be the number of trials preceding the r th
success; other times, X is taken to be the number of trials in excess of r that are nec-
essary to achieve the r th success. The underlying probability structure is the same,
however X is defined. We will primarily use Equation 4.5.1; properties of the other
two definitions for X will be covered in the exercises.

Theorem
4.5.1

Let X have a negative binomial distribution with pX (k) =
(

k−1
r−1

)
pr .(1 − p)k−r , k = r ,

r + 1, . . . . Then

1. MX (t)=
[

pet

1−(1−p)et

]r
2. E(X)= r

p

3. Var(X)= r(1−p)

p2

Proof All of these results follow immediately from the fact that X can be written
as the sum of r independent geometric random variables, X1, X2, . . ., Xr , each with
parameter p. That is,

X = total number of trials to achieve r th success

= number of trials to achieve 1st success

+ number of additional trials to achieve 2nd success + · · ·
+ number of additional trials to achieve r th success

= X1 + X2 + · · ·+ Xr

where

pXi (k)= (1 − p)k−1 p, k = 1,2, . . . , i = 1,2, . . . , r
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Therefore,

MX (t)= MX1(t)MX2(t) . . . MXr (t)

=
[

pet

1 − (1 − p)et

]r

Also, from Theorem 4.4.1,

E(X) = E(X1)+ E(X2)+ · · ·+ E(Xr )

= 1

p
+ 1

p
+ · · ·+ 1

p

= r

p

and

Var(X) = Var(X1)+ Var(X2)+ · · ·+ Var(Xr )

= 1 − p

p2
+ 1 − p

p2
+ · · ·+ 1 − p

p2

= r(1 − p)

p2 �

Example
4.5.1

The California Mellows are a semipro baseball team. Eschewing all forms of vio-
lence, the laid-back Mellow batters never swing at a pitch, and should they be
fortunate enough to reach base on a walk, they never try to steal. On the aver-
age, how many runs will the Mellows score in a nine-inning road game, assuming
the opposing pitcher has a 50% probability of throwing a strike on any given pitch
(83)?

The solution to this problem illustrates very nicely the interplay between the
physical constraints imposed by a question (in this case, the rules of baseball)
and the mathematical characteristics of the underlying probability model. The
negative binomial distribution appears twice in this analysis, along with sev-
eral of the properties associated with expected values and linear combina-
tions.

To begin, we calculate the probability of a Mellow batter striking out. Let the
random variable X denote the number of pitches necessary for that to happen.
Clearly, X = 3,4,5, or 6 (why can X not be larger than 6?), and

pX (k)= P(X = k) = P(2 strikes are called in the first k − 1

pitches and the kth pitch is the 3rd strike)

=
(

k − 1

2

)(
1

2

)3(1

2

)k−3

, k = 3,4,5,6

Therefore,

P(Batter strikes out)=
6∑

k=3

pX (k) =
(

1

2

)3

+
(

3

2

)(
1

2

)4

+
(

4

2

)(
1

2

)5

+
(

5

2

)(
1

2

)6

= 21

32
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Now, let the random variable W denote the number of walks the Mellows get in
a given inning. In order for W to take on the value w, exactly two of the first w + 2
batters must strike out, as must the (w +3)rd (see Figure 4.5.2). The pdf for W , then,
is a negative binomial with p = P(Batter strikes out)= 21

32 :

pW (w)= P(W =w)=
(

w + 2

2

)(
21

32

)3(11

32

)w

, w = 0,1,2, . . .

Batters

w + 1321 w + 2
Out

w + 3

2 outs, w walks

Figure 4.5.2

In order for a run to score, the pitcher must walk a Mellows batter with the
bases loaded. Let the random variable R denote the total number of runs walked in
during a given inning. Then

R =
{

0 ifw ≤ 3

w − 3 ifw > 3

and

E(R)= =
∞∑

w=4

(w − 3)

(
w + 2

2

)(
21

32

)3(11

32

)w

=
∞∑

w=0

(w − 3) · P(W =w)−
3∑

w=0

(w − 3) · P(W =w)

= E(W )− 3 +
3∑

w=0

(3 −w) ·
(

w + 2

2

)(
21

32

)3(11

32

)w

(4.5.2)

To evaluate E(W ) using the statement of Theorem 4.5.1 requires a linear
transformation to rescale W to the format of Equation 4.5.1. Let

T = W + 3 = total number of Mellow batters appearing in a given inning

Then

pT (t)= pW (t − 3)=
(

t − 1

2

)(
21

32

)3(11

32

)t−3

, t = 3,4, . . .

which we recognize as a negative binomial pdf with r = 3 and p = 21
32 . Therefore,

E(T )= 3

21/32
= 32

7

which makes E(W )= E(T )− 3 = 32
7 − 3 = 11

7 .
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From Equation 4.5.2, then, the expected number of runs scored by the Mellows
in a given inning is 0.202:

E(R)= 11

7
− 3 + 3 ·

(
2

2

)(
21

32

)3(11

32

)0

+ 2 ·
(

3

2

)(
21

32

)3(11

32

)1

+ 1 ·
(

4

2

)(
21

32

)3(11

32

)2

= 0.202

Each of the nine innings, of course, would have the same value for E(R), so the
expected number of runs in a game is the sum 0.202 + 0.202 +· · ·+ 0.202 = 9(0.202),
or 1.82.

Case Study 4.5.1

Natural phenomena that are particularly complicated for whatever reasons may
be impossible to describe with any single, easy-to-work-with probability model.
An effective Plan B in those situations is to break the phenomenon down into
simpler components and simulate the contributions of each of those compo-
nents by using randomly generated observations. These are called Monte Carlo
analyses, an example of which is described in detail in Section 4.7.

The fundamental requirement of any simulation technique is the ability to
generate random observations from specified pdfs. In practice, this is done using
computers because the number of observations needed is huge. In principle,
though, the same, simple procedure can be used, by hand, to generate random
observations from any discrete pdf.

Recall Example 4.5.1 and the random variable W , where W is the number of
walks the Mellow batters are issued in a given inning. It was shown that pW (w)

is the particular negative binomial pdf,

pW (w)= P(W =w)=
(

w + 2
w

)(
21

32

)3(11

32

)w

, w = 0,1,2, . . .

Suppose a record is kept of the numbers of walks the Mellow batters receive in
each of the next one hundred innings the team plays. What might that record
look like?

The answer is, the record will look like a random sample of size 100 drawn
from pW (w). Table 4.5.1 illustrates a procedure for generating such a sample.
The first two columns show pW (w) for the nine values of w likely to occur (0
through 8). The third column parcels out the one hundred digits 00 through 99
into nine intervals whose lengths correspond to the values of pW (w).

There are twenty-nine two-digit numbers, for example, in the interval 28 to
56, with each of those numbers having the same probability of 0.01. Any random
two-digit number that falls anywhere in that interval will then be mapped into
the value w = 1 (which will happen, in the long run, 29% of the time).

Tables of random digits are typically presented in blocks of twenty-five (see
Figure 4.5.3).

(Continued on next page)
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Table 4.5.1

Random Number
w pW (w) Range

0 0.28 00–27
1 0.29 28–56
2 0.20 57–76
3 0.11 77–87
4 0.06 88–93
5 0.03 94–96
6 0.01 97
7 0.01 98
8+ 0.01 99

15053 3909823107

65402

75528

85830

13300

70659

18738
56869

08158

84864

05624

15227

48968

75604

01188
71585

23495
51851

22878

17564

83287

57484
27186

02011

85393

97265

61680

16656

Figure 4.5.3
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Figure 4.5.4

For the particular block circled, the first two columns,

22 17 83 57 27

would correspond to the negative binomial values

0 0 3 2 0

(Continued on next page)
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(Case Study 4.5.1 continued)

Figure 4.5.4 shows the results of using a table of random digits and
Table 4.5.1 to generate a sample of one hundred random observations from
pW (w). The agreement is not perfect (as it shouldn’t be), but certainly very good
(as it should be).

About the Data Random number generators for continuous pdfs use random dig-
its in ways that are much different from the strategy illustrated in Table 4.5.1 and
much different from each other. The standard normal pdf and the exponential pdf
are two cases in point.

Let U1,U2, . . . be a set of random observations drawn from the uniform pdf
defined over the interval [0, 1]. Standard normal observations are generated by
appealing to the central limit theorem. Since each Ui has E(Ui ) = 1/2 and Var(Ui )

= 1/12, it follows that

E(

k∑
i=1

Ui ) = k/2

and

Var(
k∑

i=1

Ui ) = k/12

and by the central limit theorem,

k∑
i=1

Ui − k/2

√
k/12

.= Z

The approximation improves as k increases, but a particularly convenient (and
sufficiently large) value is k = 12. The formula for generating a standard normal
observation, then, reduces to

Z =
12∑

i=1

Ui − 6

Once a set of Zi ’s has been calculated, random observations from any normal
distribution can be easily produced. Suppose the objective is to generate a set of
Yi ’s that would be a random sample from a normal distribution having mean μ and
variance σ 2. Since

Y −μ

σ
= Z

or, equivalently,

Y =μ+ σ Z

it follows that the random sample from fY (y) would be

Yi =μ+ σ Zi , i = 1,2, . . .

By way of contrast, all that is needed to generate random observations from the
exponential pdf, fY (y) = λe−λy , y ≥ 0, is a simple transformation. If Ui , i = 1,2, . . . ,
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is a set of uniform random variables as defined earlier, then Yi = −(1/λ) ln Ui , i =
1,2, . . . , will be the desired set of exponential observations. Why that should be so
is an exercise in differentiating the cdf of Y . By definition,

FY (y) = P(Y ≤ y)= P(ln U >−λy)= P(U > e−λy)

=
∫ 1

e−λy
1 du = 1− e−λy

which implies that

fY (y)= F ′
Y (y)= λe−λy, y ≥ 0

Questions

4.5.1. A door-to-door encyclopedia salesperson is
required to document five in-home visits each day. Sup-
pose that she has a 30% chance of being invited into any
given home, with each address representing an indepen-
dent trial. What is the probability that she requires fewer
than eight houses to achieve her fifth success?

4.5.2. An underground military installation is fortified to
the extent that it can withstand up to three direct hits
from air-to-surface missiles and still function. Suppose an
enemy aircraft is armed with missiles, each having a 30%
chance of scoring a direct hit. What is the probability that
the installation will be destroyed with the seventh missile
fired?

4.5.3. Darryl’s statistics homework last night was to flip
a fair coin and record the toss, X , when heads appeared
for the second time. The experiment was to be repeated
a total of one hundred times. The following are the one
hundred values for X that Darryl turned in this morn-
ing. Do you think that he actually did the assignment?
Explain.

3 7 3 2 9 3 4 3 3 2
7 3 8 4 3 3 3 4 3 3
4 3 2 2 4 5 2 2 2 4
2 5 6 4 2 6 2 8 3 2
8 2 3 2 4 3 2 6 3 3
3 2 5 3 6 4 5 6 5 6
3 5 2 7 2 10 4 3 2 2
4 2 4 5 5 5 6 2 4 3
3 4 4 6 3 4 2 5 5 2
5 7 5 3 2 7 4 4 4 3

4.5.4. When a machine is improperly adjusted, it has
probability 0.15 of producing a defective item. Each day,
the machine is run until three defective items are pro-
duced. When this occurs, it is stopped and checked for
adjustment. What is the probability that an improperly
adjusted machine will produce five or more items before

being stopped? What is the average number of items an
improperly adjusted machine will produce before being
stopped?

4.5.5. For a negative binomial random variable whose pdf
is given by Equation 4.5.1, find E(X) directly by evaluat-

ing
∞∑

k=r
k
(

k−1
r−1

)
pr (1 − p)k−r . (Hint: Reduce the sum to one

involving negative binomial probabilities with parameters
r + 1 and p.)

4.5.6. Let the random variable X denote the number
of trials in excess of r that are required to achieve
the r th success in a series of independent trials, where
p is the probability of success at any given trial.
Show that

pX (k)=
(

k + r − 1

k

)
pr (1 − p)k, k = 0,1,2, . . .

[Note: This particular formula for pX (k) is often used in
place of Equation 4.5.1 as the definition of the pdf for a
negative binomial random variable.]

4.5.7. Calculate the mean, variance, and moment-
generating function for a negative binomial random vari-
able X whose pdf is given by the expression

pX (k)=
(

k + r − 1

k

)
pr (1 − p)k, k = 0,1,2, . . .

(See Question 4.5.6.)

4.5.8. Let X1, X2, and X3 be three independent negative
binomial random variables with pdfs

pXi (k)=
(

k − 1

2

)(
4

5

)3(1

5

)k−3

, k = 3,4,5, . . .

for i = 1,2,3. Define X = X1 + X2 + X3. Find P(10 ≤ X ≤
12). (Hint: Use the moment-generating functions of X1,
X2, and X3 to deduce the pdf of X .)
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4.5.9. Differentiate the moment-generating function

MX (t) =
[

pet

1−(1−p)et

]r
to verify the formula given in Theo-

rem 4.5.1 for E(X).

4.5.10. Suppose that X1, X2, . . . , Xk are independent neg-
ative binomial random variables with parameters r1 and
p, r2 and p, . . ., and rk and p, respectively. Let X = X1 +
X2 + · · · + Xk . Find MX (t), pX (t), E(X), and Var(X).

4.6 The Gamma Distribution
Suppose a series of independent events are occurring at the constant rate of λ per
unit time. If the random variable Y denotes the interval between consecutive occur-
rences, we know from Theorem 4.2.3 that fY (y) = λe−λy , y > 0. Equivalently, Y can
be interpreted as the “waiting time” for the first occurrence. This section gener-
alizes the Poisson/exponential relationship and focuses on the interval, or waiting
time, required for the rth event to occur (see Figure 4.6.1).

Figure 4.6.1

Time
0 First

success

Y

Second
success

rth
success

Theorem
4.6.1

Suppose that Poisson events are occurring at the constant rate of λ per unit time. Let
the random variable Y denote the waiting time for the rth event. Then Y has pdf fY (y),
where

fY (y)= λr

(r − 1)! yr−1e−λy, y > 0

Proof We will establish the formula for fY (y) by deriving and differentiating its cdf,
FY (y). Let Y denote the waiting time to the rth occurrence. Then

FY (y)= P(Y ≤ y) = 1 − P(Y > y)

= 1 − P(Fewer than r events occur in [0, y])

= 1 −
r−1∑
k=0

e−λy (λy)k

k!
since the number of events that occur in the interval [0, y] is a Poisson random
variable with parameter λy.

From Theorem 3.4.1,

fY (y)= F ′
Y (y) = d

dy

[
1 −

r−1∑
k=0

e−λy (λy)k

k!

]

=
r−1∑
k=0

λe−λy (λy)k

k! −
r−1∑
k=1

λe−λy (λy)k−1

(k − 1)!

=
r−1∑
k=0

λe−λy (λy)k

k! −
r−2∑
k=0

λe−λy (λy)k

k!

= λr

(r − 1)! yr−1 e−λy, y > 0 �
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Example
4.6.1

Engineers designing the next generation of space shuttles plan to include two fuel
pumps—one active, the other in reserve. If the primary pump malfunctions, the
second will automatically be brought on line.

Suppose a typical mission is expected to require that fuel be pumped for
at most fifty hours. According to the manufacturer’s specifications, pumps are
expected to fail once every one hundred hours (so λ = 0.01). What are the chances
that such a fuel pump system would not remain functioning for the full fifty
hours?

Let the random variable Y denote the time that will elapse before the second
pump breaks down. According to Theorem 4.6.1, the pdf for Y has parameters r = 2
and λ = 0.01, and we can write

fY (y)= (0.01)2

1! ye−0.01y, y > 0

Therefore,

P(System fails to last for fifty hours) =
∫ 50

0
0.0001ye−0.01y dy

=
∫ 0.50

0
ue−u du

where u = 0.01y. The probability, then, that the primary pump and its backup would
not remain operable for the targeted fifty hours is 0.09:∫ 0.50

0
ue−u du = (−u − 1)e−u

∣∣0.50
μ=0

= 0.09

Generalizing the Waiting Time Distribution

By virtue of Theorem 4.6.1,
∫∞

0 yr−1e−λy dy converges for any integer r > 0. But
the convergence also holds for any real number r > 0, because for any such r there
will be an integer t > r and

∫∞
0 yr−1e−λy dy ≤ ∫∞

0 yt−1 e−λy dy <∞. The finiteness of∫∞
0 yr−1e−λy dy justifies the consideration of a related definite integral, one that was

first studied by Euler, but named by Legendre.

Definition 4.6.1. For any real number r >0, the gamma function of r is denoted
�(r), where

�(r)=
∫ ∞

0
yr−1e−y dy

Theorem
4.6.2

Let �(r)= ∫∞
0 yr−1e−y dy for any real number r > 0. Then

1. �(1)= 1
2. �(r)= (r − 1)�(r − 1)

3. If r is an integer, then �(r)= (r − 1)!
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Proof

1. �(1)= ∫∞
0 y1−1 e−y dy = ∫∞

0 e−y dy = 1
2. Integrate the gamma function by parts. Let u = yr−1 and dv = e−y . Then∫ ∞

0
yr−1 e−y dy = −yr−1 e−y

∣∣∞
0 +
∫ ∞

0
(r − 1)yr−2 e−y dy

= (r − 1)

∫ ∞

0
yr−2 e−y dy = (r − 1)�(r − 1)

3. Use part (2) as the basis for an induction argument. The details will be left as
an exercise. �

Definition 4.6.2. Given real numbers r > 0 and λ> 0, the random variable Y is
said to have the gamma pdf with parameters r and λ if

fY (y)= λr

�(r)
yr−1 e−λy, y > 0

Comment To justify Definition 4.6.2 requires a proof that fY (y) integrates to 1. Let
u = λy. Then∫ ∞

0

λr

�(r)
yr−1e−λydy = λr

�(r)

∫ ∞

0

(u

λ

)r−1
e−u 1

λ
du

= 1

�(r)

∫ ∞

0
ur−1e−udu = 1

�(r)
�(r)= 1

Theorem
4.6.3

Suppose that Y has a gamma pdf with parameters r and λ. Then

1. E(Y )= r/λ
2. Var(Y )= r/λ2

Proof

1. E(Y )=
∫ ∞

0
y

λr

�(r)
yr−1e−λy dy = λr

�(r)

∫ ∞

0
yr e−λy dy

= λr

�(r)

�(r + 1)

λr+1

∫ ∞

0

λr+1

�(r + 1)
yr e−λy dy

= λr

�(r)

r�(r)

λr+1
(1)= r/λ

2. A calculation similar to the integration carried out in part (1) shows that
E(Y 2)= r(r + 1)/λ2. Then

Var(Y )= E(Y 2)−[E(Y )]2

= r(r + 1)/λ2 − (r/λ)2

= r/λ2
�
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Sums of Gamma Random Variables

We have already seen that certain random variables satisfy an additive property that
“reproduces” the pdf—the sum of two independent binomial random variables with
the same p, for example, is binomial (recall Example 3.8.2). Similarly, the sum of
two independent Poissons is Poisson and the sum of two independent normals is
normal. That said, most random variables are not additive. The sum of two inde-
pendent uniforms is not uniform; the sum of two independent exponentials is not
exponential; and so on. Gamma random variables belong to the short list making up
the first category.

Theorem
4.6.4

Suppose U has the gamma pdf with parameters r and λ, V has the gamma pdf with
parameters s and λ, and U and V are independent. Then U + V has a gamma pdf with
parameters r + s and λ.

Proof The pdf of the sum is the convolution integral

fU+V (t)=
∫ ∞

−∞
fU (u) fV (t − u)du

=
∫ t

0

λr

�(r)
ur−1 e−λu λs

�(s)
(t − u)s−1 e−λ(t−u) du

= e−λt λr+s

�(r)�(s)

∫ t

0
ur−1(t − u)s−1 du

Make the substitution v = u/t . Then the integral becomes

tr−1 t s−1 t
∫ t

0
vr−1(1 − v)s−1 dv = tr+s−1

∫ 1

0
vr−1(1 − v)s−1 dv

and

fU+V (t)= λr+s tr+s−1 e−λt

[
1

�(r)�(s)

∫ 1

0
vr−1 (1 − v)s−1 dv

]
(4.6.1)

The numerical value of the constant in brackets in Equation 4.6.1 is not imme-
diately obvious, but the factors in front of the brackets correspond to the functional
part of a gamma pdf with parameters r + s and λ. It follows, then, that fU+V (t) must
be that particular gamma pdf. It also follows that the constant in brackets must equal
1/�(r + s) (to comply with Definition 4.6.2), so, as a “bonus” identity, Equation 4.6.1
implies that ∫ 1

0
vr−1(1 − v)s−1 dv = �(r)�(s)

�(r + s) �

Theorem
4.6.5

If Y has a gamma pdf with parameters r and λ, then MY (t)= (1 − t/λ)−r .

Proof

MY (t)= E(etY )=
∫ ∞

0
ety λr

�(r)
yr−1 e−λy dy = λr

�(r)

∫ ∞

0
yr−1 e−(λ−t)y dy

= λr

�(r)

�(r)

(λ − t)r

∫ ∞

0

(λ − t)r

�(r)
yr e−(λ−t)y dy

= λr

(λ − t)r
(1)= (1 − t/λ)−r

�
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Questions

4.6.1. An Arctic weather station has three electronic wind
gauges. Only one is used at any given time. The life-
time of each gauge is exponentially distributed with a
mean of one thousand hours. What is the pdf of Y , the
random variable measuring the time until the last gauge
wears out?

4.6.2. A service contact on a new university computer
system provides twenty-four free repair calls from a tech-
nician. Suppose the technician is required, on the average,
three times a month. What is the average time it will take
for the service contract to be fulfilled?

4.6.3. Suppose a set of measurements Y1,Y2, . . . ,Y100 is
taken from a gamma pdf for which E(Y ) = 1.5 and
Var(Y ) = 0.75. How many Yi ’s would you expect to find
in the interval [1.0, 2.5]?

4.6.4. Demonstrate that λ plays the role of a scale param-
eter by showing that if Y is gamma with parameters r and
λ, then λY is gamma with parameters r and 1.

4.6.5. Show that a gamma pdf has the unique mode r−1
λ

;
that is, show that the function fY (y)= λr

�(r)
yr−1e−λy takes its

maximum value at ymode = r−1
λ

and at no other point.

4.6.6. Prove that �
(

1
2

) = √
π . [Hint: Consider E(Z 2),

where Z is a standard normal random variable.]

4.6.7. Show that �
(

7
2

)= 15
8

√
π .

4.6.8. If the random variable Y has the gamma pdf with
integer parameter r and arbitrary λ> 0, show that

E(Y m)= (m + r − 1)!
(r − 1)!λm

[Hint: Use the fact that
∫ ∞

0 yr−1e−y dy = (r − 1)! when r is
a positive integer.]

4.6.9. Differentiate the gamma moment-generating func-
tion to verify the formulas for E(Y ) and Var(Y ) given in
Theorem 4.6.3.

4.6.10. Differentiate the gamma moment-generating
function to show that the formula for E(Y m) given in
Question 4.6.8 holds for arbitrary r > 0.

4.7 Taking a Second Look at Statistics (Monte
Carlo Simulations)
Calculating probabilities associated with (1) single random variables and (2) func-
tions of sets of random variables has been the overarching theme of Chapters 3
and 4. Facilitating those computations has been a variety of transformations, sum-
mation properties, and mathematical relationships linking one pdf with another.
Collectively, these results are enormously effective. Sometimes, though, the intrinsic
complexity of a random variable overwhelms our ability to model its probabilis-
tic behavior in any formal or precise way. An alternative in those situations is
to use a computer to draw random samples from one or more distributions that
model portions of the random variable’s behavior. If a large enough number of
such samples is generated, a histogram (or density-scaled histogram) can be con-
structed that will accurately reflect the random variable’s true (but unknown)
distribution. Sampling “experiments” of this sort are known as Monte Carlo
studies.

Real-life situations where a Monte Carlo analysis could be helpful are not
difficult to imagine. Suppose, for instance, you just bought a state-of-the-art, high-
definition, plasma screen television. In addition to the pricey initial cost, an optional
warranty is available that covers all repairs made during the first two years. Accord-
ing to an independent laboratory’s reliability study, this particular television is
likely to require 0.75 service call per year, on the average. Moreover, the costs
of service calls are expected to be normally distributed with a mean (μ) of $100
and a standard deviation (σ ) of $20. If the warranty sells for $200, should you
buy it?
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Like any insurance policy, a warranty may or may not be a good investment,
depending on what events unfold, and when. Here the relevant random variable is
W , the total amount spent on repair calls during the first two years. For any partic-
ular customer, the value of W will depend on (1) the number of repairs needed in
the first two years and (2) the cost of each repair. Although we have reliability and
cost assumptions that address (1) and (2), the two-year limit on the warranty intro-
duces a complexity that goes beyond what we have learned in Chapters 3 and 4.
What remains is the option of using random samples to simulate the repair costs
that might accrue during those first two years.

Note, first, that it would not be unreasonable to assume that the service calls
are Poisson events (occurring at the rate of 0.75 per year). If that were the case,
Theorem 4.2.3 implies that the interval, Y , between successive repair calls would
have an exponential distribution with pdf

fY (y)= 0.75e−0.75y, y > 0

(see Figure 4.7.1). Moreover, if the random variable C denotes the cost associated
with a particular maintenance call, then,

fC(c)= 1√
2π(20)

e−
(

1
2

)
[(c−100)/20]2

, −∞< c <∞

(see Figure 4.7.2).
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Now, with the pdfs for Y and C fully specified, we can use the computer to
generate representative repair cost scenarios. We begin by generating a random
sample (of size 1) from the pdf, fY (y)=0.75e−0.75y . Either of two equivalent Minitab
procedures can be followed:
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Session Window Method Menu-Driven Method

Click on EDITOR, then on Click on CALC, then on RANDOM DATA,
ENABLE COMMANDS then on EXPONENTIAL.

(this activates the Type 1 in “Number of rows” box;
Session Window). Then type OR type 1.33 in “Scale” box;

type c1 in “Store” box.
MTB > random 1 c1; Click on OK.
SUBC > exponential 1.33. The generated exponential deviate
MTB > print c1 appears in the upper left hand

corner of
the WORKSHEET.

Data Display

c1
1.15988

(Note: For both methods, Minitab uses 1/λ as the exponential parameter. Here, 1/λ
= 1/0.75 = 1.33.)

As shown in Figure 4.7.3, the number generated was 1.15988 yrs (correspond-
ing to a first repair call occurring 423 days (= 1.15988 × 365) after the purchase of
the TV).

Figure 4.7.3
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f  (y)Y

y

Applying the same syntax a second time yielded the random sample 0.284931
year (= 104 days); applying it still a third time produced the observation 1.46394
years (= 534 days). These last two observations taken on fY (y) correspond to the
second repair call occurring 104 days after the first, and the third occurring 534 days
after the second (see Figure 4.7.4). Since the warranty does not extend past the first
730 days, the third repair would not be covered.

Figure 4.7.4 3rd breakdown (y = 1.46394)
repair cost not covered

1st breakdown (y = 1.15988)
repair cost = $127.20

2nd breakdown (y = 0.284931)
repair cost = $98.67

Time after
purchase (days)

423 days 104 days 534 days

Purchase
day

365 730
Warranty ends

The next step in the simulation would be to generate two observations from
fC(c) that would model the costs of the two repairs that occurred during the war-
ranty period. The session-window syntax for simulating each repair cost would be
the statements

MTB > random 1 c1;
SUBC > normal 100 20.
MTB > print c1
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MTB > random 1 c1;
SUBC > exponential 1.33.
MTB > print c1
c1

1.15988
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f  (y)Y

y

MTB > random 1 c1;
SUBC > normal 100 20.
MTB > print c1
c1

127.199 c
60 100

0.01

140

f  (c)C

MTB > random 1 c1;
SUBC > exponential 1.33.
MTB > print c1
c1

0.284931

0.8
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0.2

10 2 3 4

f  (y)Y

y

MTB > random 1 c1;
SUBC > normal 100 20.
MTB > print c1
c1

98.6673 c
60 100

0.01

140

f  (c)C

MTB > random 1 c1;
SUBC > exponential 1.33.
MTB > print c1
c1

1.46394
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10 2 3 4
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y

Figure 4.7.5

Running those commands twice produced c-values of 127.199 and 98.6673 (see
Figure 4.7.5), corresponding to repair bills of $127.20 and $98.67, meaning that a
total of $225.87 (= $127.20 + $98.67) would have been spent on maintenance dur-
ing the first two years. In that case, the $200 warranty would have been a good
investment.

The final step in the Monte Carlo analysis is to repeat many times the sam-
pling process that led to Figure 4.7.5—that is, to generate a series of yi ’s whose sum
(in days) is less than or equal to 730, and for each yi in that sample, to generate
a corresponding cost, ci . The sum of those ci ’s becomes a simulated value of the
maintenance-cost random variable, W .
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Figure 4.7.6 25
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The histogram in Figure 4.7.6 shows the distribution of repair costs incurred in
one hundred simulated two-year periods, one being the sequence of events detailed
in Figure 4.7.5. There is much that it tells us. First of all (and not surprisingly), the
warranty costs more than either the median repair bill (= $117.00) or the mean
repair bill (= $159.10).

The customer, in other words, will tend to lose money on the optional protec-
tion, and the company will tend to make money. On the other hand, a full 33% of
the simulated two-year breakdown scenarios led to repair bills in excess of $200,
including 6% that were more than twice the cost of the warranty. At the other
extreme, 24% of the samples produced no maintenance problems whatsoever; for
those customers, the $200 spent up front is totally wasted!

So, should you buy the warranty? Yes, if you feel the need to have a financial
cushion to offset the (small) probability of experiencing exceptionally bad luck; no,
if you can afford to absorb an occasional big loss.

Appendix 4.A.1 Minitab Applications

Examples at the end of Chapter 3 and earlier in this chapter illustrated the use of
Minitab’s PDF, CDF, and INVCDF commands on the binomial, exponential, and
normal distributions. Altogether, those same commands can be applied to more than
twenty of the probability distributions most frequently encountered, including the
Poisson, geometric, negative binomial, and gamma pdfs featured in Chapter 4.

Recall the leukemia cluster study described in Case Study 4.2.1. The data’s inter-
pretation hinged on the value of P(X ≥ 8), where X was a Poisson random variable
with pdf, pX (k) = e−1.75 (1.75)k

k! , k = 0,1,2, . . . . The printout in Figure 4.A.1.1 shows
the calculation of P(X ≥ 8) using the CDF command and the fact that P(X ≥ 8) =
1 − P(X ≤ 7).

Figure 4.A.1.1 MTB > cdf 7;
SUBC > poisson 1.75.

Cumulative Distribution Function
Poisson with mean = 1.75
x P(X <= x)
7 0.999532

MTB > let k1 = 1 - 0.999532
MTB > print k1

Data Display

k1 0.000468000
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Areas under normal curves between points a and b are calculated by sub-
tracting FY (a) from FY (b), just as we did in Section 4.3 (recall the Comment
after Definition 4.3.1). There is no need, however, to reexpress the probability
as an area under the standard normal curve. Figure 4.A.1.2 shows the Minitab
calculation for the probability that the random variable Y lies between 48 and
51, where Y is normally distributed with μ = 50 and σ = 4. According to the
computer,

P(48 < Y < 51) = FY (51)− FY (48)

= 0.598706 − 0.308538

= 0.290168

Figure 4.A.1.2 MTB > cdf 51;
SUBC> normal 50 4.

Cumulative Distribution Function
Normal with mean = 50 and standard deviation = 4
x P( X <= x)
51 0.598706

MTB > cdf 48;
SUBC> normal 50 4.

Cumulative Distribution Function
Normal with mean = 50.0000 and standard deviation = 4.00000
x P( X <= x)
48 0.308538

MTB > let k1 = 0.598706−0.308538
MTB > print k1
Data Display
k1 0.290168

On several occasions in Chapter 4 we made use of Minitab’s RANDOM com-
mand, a subroutine that generates samples from a specific pdf. Simulations of that
sort can be very helpful in illustrating a variety of statistical concepts. Shown in
Figure 4.A.1.3, for example, is the syntax for generating a random sample of size 50
from a binomial pdf having n = 60 and p = 0.40. And calculated for each of those
fifty observations is its Z ratio, given by

Z -ratio = X − E(X)√
Var(X)

= X − 60(0.40)√
60(0.40)(0.60)

= X − 24√
14.4

[By the DeMoivre-Laplace theorem, of course, the distribution of those ratios
should have a shape much like the standard normal pdf, fZ (z).]

Figure 4.A.1.3 MTB > random 50 c1;
SUBC> binomial 60 0.40.
MRB > print c1
Data Display
C1

27 29 23 22 21 21 22 26 26 20 26 25 27
32 22 27 22 20 19 19 21 23 28 23 27 29
13 24 22 25 25 20 25 26 15 24 17 28 21
16 24 22 25 25 21 23 23 20 25 30

MTB > let c2 = (c1 - 24)/sqrt(14.4)
MTB > name c2 ’Z-ratio’
MTB > print c2
Data Display
Z-ratio

0.79057 1.31762 −0.26352 −0.52705 −0.79057 −0.79057 −0.52705
0.52705 0.52705 −1.05409 0.52705 0.26352 0.79057 2.10819−0.52705 0.79057 −0.52705 −1.05409 −1.31762 −1.31762 −0.79057−0.26352 1.05409 −0.26352 0.79057 1.31762 −2.89875 0.00000−0.52705 0.26352 0.26352 −1.05409 0.26352 0.52705 −2.37171
0.00000 −1.84466 1.05409 −0.79057 −2.10819 0.00000 −0.52705
0.26352 0.26352 −0.79057 −0.26352 −0.26352 −1.05409 0.26352
1.58114
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Appendix 4.A.2 A Proof of the Central Limit Theorem

Proving Theorem 4.3.2 in its full generality is beyond the level of this text. However,
we can establish a slightly weaker version of the result by assuming that the moment-
generating function of each Wi exists.

Lemma Let W1, W2, . . . be a set of random variables such that lim
n→∞ MWn (t)= MW (t) for all t in

some interval about 0. Then lim
n→∞ FWn (w)= FW (w) for all −∞<w <∞.

To prove the central limit theorem using moment-generating functions requires
showing that

lim
n→∞ M(W1+···+Wn−nμ)/(

√
nσ)(t)= MZ (t)= et2/2

For notational simplicity, let

W1 + · · ·+ Wn − nμ√
nσ

= S1 + · · ·+ Sn√
n

where Si = (Wi − μ)/σ . Notice that E(Si ) = 0 and Var(Si ) = 1. Moreover, from
Theorem 3.12.3,

M(S1+···+Sn)/
√

n(t)=
[

M

(
t√
n

)]n

where M(t) denotes the moment-generating function common to each of the Si ’s.
By virtue of the way the Si ’s are defined, M(0) = 1, M (1)(0) = E(Si ) = 0, and

M (2)(0)= Var(Si )= 1. Applying Taylor’s theorem, then, to M(t), we can write

M(t)= 1 + M (1)(0)t + 1

2
M (2)(r)t2 = 1 + 1

2
t2 M (2)(r)

for some number r , |r |< |t |. Thus

lim
n→∞

[
M

(
t√
n

)]n

= lim
n→∞

[
1 + t2

2n
M (2)(s)

]n

, |s| < |t |√
n

= exp lim
n→∞ n ln

[
1 + t2

2n
M (2)(s)

]

= exp lim
n→∞

t2

2
· M (2)(s) ·

ln
[
1 + t2

2n M (2)(s)
]
− ln(1)

t2

2n M (2)(s)

The existence of M(t) implies the existence of all its derivatives. In particular,
M (3)(t) exists, so M (2)(t) is continuous. Therefore, lim

t→0
M (2)(t) = M (2)(0) = 1. Since

|s| < |t |/√n, s → 0 as n → ∞, so

lim
n→∞ M (2)(s)= M (2)(0)= 1

Also, as n → ∞, the quantity (t2/2n)M (2)(s) → 0 · 1 = 0, so it plays the role of “�x”
in the definition of the derivative. Hence we obtain

lim
n→∞

[
M

(
t√
n

)]n

= exp
t2

2
· 1 · ln(1)(1)= e(1/2)t2

Since this last expression is the moment-generating function for a standard normal
random variable, the theorem is proved.
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Appendix 5.A.1 Minitab Applications

A towering figure in the development of both applied and mathematical statistics,
Fisher had formal training in mathematics and theoretical physics, graduating from
Cambridge in 1912. After a brief career as a teacher, he accepted a post in 1919 as
statistician at the Rothamsted Experimental Station. There, the day-to-day problems
he encountered in collecting and interpreting agricultural data led directly to much of
his most important work in the theory of estimation and experimental design. Fisher
was also a prominent geneticist and devoted considerable time to the development of
a quantitative argument that would support Darwin’s theory of natural selection.
He returned to academia in 1933, succeeding Karl Pearson as the Galton Professor
of Eugenics at the University of London. Fisher was knighted in 1952.

—Ronald Aylmer Fisher (1890–1962)

5.1 Introduction
The ability of probability functions to describe, or model, experimental data was
demonstrated in numerous examples in Chapter 4. In Section 4.2, for example,
the Poisson distribution was shown to predict very well the number of alpha emis-
sions from a radioactive source as well as the number of wars starting in a given
year. In Section 4.3 another probability model, the normal curve, was applied to
phenomena as diverse as breath analyzer readings and IQ scores. Other models
illustrated in Chapter 4 included the exponential, negative binomial, and gamma
distributions.

All of these probability functions, of course, are actually families of models
in the sense that each includes one or more parameters. The Poisson model, for
instance, is indexed by the occurrence rate, λ. Changing λ changes the probabilities
associated with pX (k) [see Figure 5.1.1, which compares pX (k) = e−λλk/k!, k =
0,1,2, . . ., for λ = 1 and λ = 4]. Similarly, the binomial model is defined in terms of
the success probability p; the normal distribution, by the two parameters μ and σ .

281
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Before any of these models can be applied, values need to be assigned to their
parameters. Typically, this is done by taking a random sample (of n observations)
and using those measurements to estimate the unknown parameter(s).

Figure 5.1.1
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Example
5.1.1

Imagine being handed a coin whose probability, p, of coming up heads is unknown.
Your assignment is to toss the coin three times and use the resulting sequence of H’s
and T’s to suggest a value for p. Suppose the sequence of three tosses turns out to
be HHT. Based on those outcomes, what can be reasonably inferred about p?

Start by defining the random variable X to be the number of heads on a given
toss. Then

X =
{

1 if a toss comes up heads
0 if a toss comes up tails

and the theoretical probability model for X is the function

pX (k)= pk(1 − p)1−k =
{

p for k = 1

1 − p for k = 0

Expressed in terms of X , the sequence HHT corresponds to a sample of size n = 3,
where X1 = 1, X2 = 1, and X3 = 0.

Since the Xi ’s are independent random variables, the probability associated with
the sample is p2(1 − p):

P(X1 = 1 ∩ X2 = 1 ∩ X3 = 0)= P(X1 = 1) · P(X2 = 1) · P(X3 = 0)= p2(1 − p)

Knowing that our objective is to identify a plausible value (i.e., an “estimate”) for p,
it could be argued that a reasonable choice for that parameter would be the value
that maximizes the probability of the sample. Figure 5.1.2 shows P(X1 = 1, X2 = 1,

X3 = 0) as a function of p. By inspection, we see that the value that maximizes the
probability of HHT is p = 2

3 .
More generally, suppose we toss the coin n times and record a set of outcomes

X1 = k1, X2 = k2, . . . , and Xn = kn . Then

P(X1 = k1, X2 = k2, . . . , Xn = kn)= pk1(1 − p)1−k1 . . . pkn (1 − p)1−kn

= p

n∑
i=1

ki

(1 − p)
n−

n∑
i=1

ki
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Figure 5.1.2

The value of p that maximizes P(X1 = k1, . . . , Xn = kn) is, of course, the value for

which the derivative of p

n∑
i=1

ki

(1 − p)
n−

n∑
i=1

ki

with respect to p is 0. But

d/dp

[
p

n∑
i=1

ki

(1 − p)
n−

n∑
i=1

ki

]
=

n∑
i=1

ki

[
p

n∑
i=1

ki −1
(1 − p)

n−
n∑

i=1
ki

]

+
[

n∑
i=1

ki − n

]
p

n∑
i=1

ki

(1 − p)
n−

n∑
i=1

ki −1
(5.1.1)

If the derivative is set equal to zero, Equation 5.1.1 reduces to
n∑

i=1

ki (1 − p)+
( n∑

i=1

ki − n

)
p = 0

Solving for p identifies (
1

n

) n∑
i=1

ki

as the value of the parameter that is most consistent with the n observations
k1, k2, . . ., kn .

Comment Any function of a random sample whose objective is to approximate
a parameter is called a statistic, or an estimator. If θ is the parameter being
approximated, its estimator will be denoted θ̂ . When an estimator is evaluated (by
substituting the actual measurements recorded), the resulting number is called an

estimate. In Example 5.1.1, the function
(

1
n

) n∑
i=1

Xi is an estimator for p; the value 2
3

that is calculated when the n = 3 observations are X1 = 1, X2 = 1, and X3 = 0 is an

estimate of p. More specifically,
(

1
n

) n∑
i=1

Xi is a maximum likelihood estimator (for p)

and 2
3

[
= ( 1

n

) n∑
i=1

ki = ( 1
3

)
(2)
]

is a maximum likelihood estimate (for p).

In this chapter, we look at some of the practical, as well as the mathematical,
issues involved in the problem of estimating parameters. How is the functional
form of an estimator determined? What statistical properties does a given estima-
tor have? What properties would we like an estimator to have? As we answer these
questions, our focus will begin to shift away from the study of probability and toward
the study of statistics.
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5.2 Estimating Parameters: The Method of Maximum
Likelihood and the Method of Moments
Suppose Y1, Y2, . . . , Yn is a random sample from a continuous pdf fY (y) whose
unknown parameter is θ . [Note: To emphasize that our focus is on the parameter,
we will identify continuous pdfs in this chapter as fY (y; θ); similarly, discrete proba-
bility models with an unknown parameter θ will be denoted pX (k; θ)]. The question
is, how should we use the data to approximate θ?

In Example 5.1.1, we saw that the parameter p in the discrete probability model
pX (k; p) = pk(1 − p)1−k , k = 0, 1 could reasonably be estimated by the function(

1
n

) n∑
i=1

ki , based on the random sample X1 = k1, X2 = k2, . . . , Xn = kn . How would the

form of the estimate change if the data came from, say, an exponential distribution?
Or a Poisson distribution?

In this section we introduce two techniques for finding estimates—the method
of maximum likelihood and the method of moments. Others are available, but these
are the two that are the most widely used. Often, but not always, they give the same
answer.

The Method of Maximum Likelihood

The basic idea behind maximum likelihood estimation is the rationale that was
appealed to in Example 5.1.1. That is, it seems plausible to choose as the estimate
for θ the value of the parameter that maximizes the “likelihood” of the sample. The
latter is measured by a likelihood function, which is simply the product of the under-
lying pdf evaluated for each of the data points. In Example 5.1.1, the likelihood
function for the sample HHT (i.e., for X1 = 1, X2 = 1, and X3 = 0) is the product
p2(1 − p).

Definition 5.2.1. Let k1, k2, . . . , kn be a random sample of size n from the
discrete pdf pX (k; θ), where θ is an unknown parameter. The likelihood
function, L(θ), is the product of the pdf evaluated at the n ki ’s. That is,

L(θ)=
n∏

i=1

pX (ki ; θ)

If y1, y2, . . . , yn is a random sample of size n from a continuous pdf, fY (y; θ),
where θ is an unknown parameter, the likelihood function is written

L(θ)=
n∏

i=1

fY (yi ; θ)

Comment Joint pdfs and likelihood functions look the same, but the two are
interpreted differently. A joint pdf defined for a set of n random variables is a mul-
tivariate function of the values of those n random variables, either k1, k2, . . . , kn or
y1, y2, . . . , yn . By contrast, L is a function of θ ; it should not be considered a function
of either the ki ’s or the yi ’s.
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Definition 5.2.2. Let L(θ) =
n∏

i=1
pX (ki ; θ) and L(θ) =

n∏
i=1

fY (yi ; θ) be the likeli-

hood functions corresponding to random samples k1, k2, . . ., kn and y1, y2, . . . , yn

drawn from the discrete pdf pX (k; θ) and continuous pdf fY (y; θ), respectively,
where θ is an unknown parameter. In each case, let θe be a value of the param-
eter such that L(θe) ≥ L(θ) for all possible values of θ . Then θe is called a
maximum likelihood estimate for θ .

Applying the Method of Maximum Likelihood

We will see in Example 5.2.1 and many subsequent examples that finding the θe that
maximizes a likelihood function is often an application of the calculus. Specifically,
we solve the equation d

dθ
L(θ) = 0 for θ . In some cases, a more tractable equation

results by setting the derivative of ln L(θ) equal to 0. Since ln L(θ) increases with
L(θ), the same θe that maximizes ln L(θ) also maximizes L(θ).

Example
5.2.1

In Case Study 4.2.2, which discussed modeling α-particle emissions, the mean of the
data k was used as the parameter λ of the Poisson distribution. This choice seems
reasonable, since λ is the mean of the pdf.

In this example, the choice of the sample mean as an estimate of the parameter
λ of the Poisson distribution will be justified via the method of maximum likelihood,
using a small data set to introduce the technique. So, suppose that X1 = 3, X2 = 5,
X3 =4, and X4 =2 is a set of four independent observations representing the Poisson
probability model,

pX (k; λ)= e−λ λk

k! , k = 0,1,2, . . .

Find the maximum likelihood for λ.
According to Definition 5.2.1,

L(λ)= e−λ λ3

3! · e−λ λ5

5! · e−λ λ4

4! · e−λ λ2

2! = e−4λλ14 1

3!5!4!2!
Then ln L(λ) = −4λ + 14 lnλ − ln(3!5!4!2!). Differentiating ln L(λ) with respect to λ

gives

d ln L(λ)

dλ
=−4 + 14

λ

To find the λ that maximizes L(λ), we set the derivative equal to zero. Here −4+ 14
λ

=
0 implies that 4λ = 14, and the solution to this equation is λ = 14

4 = 3.5.
Notice that the second derivative of L(λ) is − 14

λ2 , which is negative for all λ. Thus,
λ= 3.5 is indeed a true maximum of the likelihood function, as well as the only one.
(Following the notation introduced in Definition 5.2.2, the number 3.5 is called the
maximum likelihood estimate for λ, and we would write λe = 3.5.)

Comment There is a better way to answer the question posed in Example 5.2.1.
Rather than evaluate—and differentiate—the likelihood function for a particular
sample observed (in this case, the four observations 3, 5, 4, and 2), we can get
a more informative answer by considering the more general problem of taking a
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random sample of size n from pX (k; λ) = e−λ λk

k! and using the outcomes—X1 = k1,
X2 = k2, . . . , Xn = kn—to find a formula for the maximum likelihood estimate.

For the Poisson pdf, the likelihood function based on such a sample would be
written

L(λ)=
n∏

i=1

e−λ λki

ki ! = e−nλλ

n∑
i=1

ki 1
n∏

i=1
ki !

As was the case in Example 5.2.1, ln L(λ) is easier to work with than L(λ). Here,

ln L(λ)=−nλ +
(

n∑
i=1

ki

)
lnλ − ln

n∏
i=1

ki !

and

d ln L(λ)

dλ
=−n +

n∑
i=1

ki

λ

Setting the derivative equal to 0 gives

−n +

n∑
i=1

ki

λ
= 0

which implies that λe =
n∑

i=1
ki

n = k.

Reassuringly, for the particular example used in Example 5.2.1—n = 4 and
4∑

i=1
ki =

14—the formula just derived reduces to the maximum likelihood estimate of 14/4 =
3.5 that we found at the outset.

The general result of k also justifies the choice of parameter estimate made in
Case Study 4.2.2.

Comment Implicit in Example 5.2.1 and the remarks following it is the important
distinction between a maximum likelihood estimate and a maximum likelihood esti-
mator. The first is a number or an expression representing a number; the second is a
random variable.

Both the number 3.5 and the formula 1
n

n∑
i=1

ki are maximum likelihood estimates

for λ and would be denoted λe because both are considered numerical constants.
If, on the other hand, we imagine the measurements before they are recorded—

that is, as the random variables X1, X2, . . . , Xn—then the estimate formula 1
n

n∑
i=1

ki is

more properly written as the random variable 1
n

n∑
i=1

Xi = X .

This last expression is the maximum likelihood estimator for λ and would be
denoted λ̂. Maximum likelihood estimators such as λ̂ have pdfs, expected values,
and variances, whereas maximum likelihood estimates such as λe have none of these
statistical properties.
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Example
5.2.2

Suppose an isolated weather-reporting station has an electronic device whose time
to failure is given by the exponential model

fY (y; θ)= 1

θ
e−y/θ , 0 ≤ y <∞;0 <θ <∞

The station also has a spare device, so the time until this instrument is not available
is the sum of these two exponential pdfs, which is

fY (y; θ)= 1

θ2
ye−y/θ , 0 ≤ y <∞; 0 <θ <∞

Five data points have been collected—9.2, 5.6, 18.4, 12.1, and 10.7. Find the
maximum likelihood estimate for θ .

Following the advice given in the Comment on p. 285, we begin by deriving a
general formula for θe—that is, by assuming that the data are the n observations
y1, y2, . . . , yn . The likelihood function then becomes

L(θ)=
n∏

i=1

1

θ2
yi e

−yi /θ

= θ−2n

(
n∏

i=1

yi

)
e
−(1/θ)

n∑
i=1

yi

and

ln L(θ)=−2n ln θ + ln

(
n∏

i=1

yi

)
− 1

θ

n∑
i=1

yi

Setting the derivative of ln L(θ) equal to 0 gives

d ln L(θ)

dθ
= −2n

θ
+ 1

θ2

n∑
i=1

yi = 0

which implies that

θe = 1

2n

n∑
i=1

yi

The final step is to evaluate numerically the formula for θe. Substituting the

actual n =5 sample values recorded gives
5∑

i=1
yi =9.2+5.6+18.4+12.1+10.7=56.0,

so

θe = 1

2(5)
(56.0)= 5.6

Using Order Statistics as Maximum Likelihood Estimates

Situations exist for which the equations d L(θ)

dθ
= 0 or d ln L(θ)

dθ
= 0 are not meaningful

and neither will yield a solution for θe. These occur when the range of the pdf from
which the data are drawn is a function of the parameter being estimated. [This hap-
pens, for instance, when the sample of yi ’s come from the uniform pdf, fY (y; θ)=1/θ ,
0≤ y ≤θ .] The maximum likelihood estimates in these cases will be an order statistic,
typically either ymin or ymax.
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Example
5.2.3

Suppose y1, y2, . . ., yn is a set of measurements representing an exponential pdf with
λ = 1 but with an unknown “threshold” parameter, θ . That is,

fY (y; θ)= e−(y−θ), y ≥ θ; θ > 0

(see Figure 5.2.1). Find the maximum likelihood estimate for θ .

y'θ 1 y'2 y'n
y

f   (y; θ)Y

– (y – θ)e

Figure 5.2.1

Proceeding in the usual fashion, we start by deriving an expression for the
likelihood function:

L(θ)=
n∏

i=1

e−(yi −θ)

= e
−

n∑
i=1

yi +nθ

Here, finding θe by solving the equation d ln L(θ)

dθ
= 0 will not work because d ln L(θ)

dθ
=

d
dθ

(
−

n∑
i=1

yi + nθ

)
= n. Instead, we need to look at the likelihood function directly.

Notice that L(θ)=e
−

n∑
i=1

yi +nθ

is maximized when the exponent of e is maximized.

But for given y1, y2, . . . , yn (and n), making −
n∑

i=1
yi + nθ as large as possible requires

that θ be as large as possible. Figure 5.2.1 shows how large θ can be: It can be moved
to the right only as far as the smallest order statistic. Any value of θ larger than ymin

would violate the condition on fY (y; θ) that y ≥ θ . Therefore, θe = ymin.

Case Study 5.2.1

Each evening, the media report various averages and indices that are presented
as portraying the state of the stock market. But do they? Are these numbers
conveying any really useful information? Some financial analysts would say
“no,” arguing that speculative markets tend to rise and fall randomly, as though
some hidden roulette wheel were spinning out the figures.

One way to test this theory is to model the up-and-down behavior of the
markets as a geometric random variable. If this model were to fit, we would
be able to argue that the market doesn’t use yesterday’s history to “decide”

(Continued on next page)
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whether to rise or fall the next day, nor does this history change the probability
p of a rise or 1 − p of a fall the following day.

So, suppose that on a given Day 0 the market rose and the following Day 1
it fell. Let the geometric random variable X represent the number of days the
market falls (failures) before it rises again (a success). For example, if on Day
2 the market rises, then X = 1. In that case pX (1) = p. If the market declines on
Days 2, 3, and 4, and then rises on Day 5, X = 4 and pX (4)= (1 − p)3 p.

This model can be examined by comparing the theoretical distribution for
pX(k) to what is observed in a speculative market. However, to do so, the
parameter p must be estimated. The maximum likelihood estimate will prove
a good choice. Suppose a random sample from the geometric distribution,
k1, k2, . . . , kn , is given. Then

L(p)=
n∏

i=1

pX (ki )=
n∏

i=1

(1 − p)ki −1 p = (1 − p)

n∑
i=1

ki −n
pn

and

ln L(p)= ln

[
(1 − p)

n∑
i=1

ki −n
pn

]
=
(

n∑
i=1

ki − n

)
ln(1 − p)+ n ln p

Setting the derivative of ln L(p) equal to 0 gives the equation

−

n∑
i=1

ki − n

1 − p
+ n

p
= 0

or, equivalently, (
n −

n∑
i=1

ki

)
p + n(1 − p)= 0

Solving this equation gives pe = n/
n∑

i=1
ki = 1/k.

Now, turning to a data set to compare to the geometric model, we employ
the widely used closing Dow Jones average for the years 2006 and 2007. The first
column gives the value of k, the argument of the random variable X . Column 2
presents the number of times X = k in the data set.

Table 5.2.1

k Observed Frequency Expected Frequency

1 72 74.14
2 35 31.20
3 11 13.13
4 6 5.52
5 2 2.32
6 2 1.69

Source: finance.yahoo.com/of/hp.s=%SEDJI.

(Continued on next page)
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(Case Study 5.2.1 continued)

Note that the Observed Frequency column totals 128, which is n in the formula
above for pe. From the table, we obtain

n∑
i=1

ki = 1(72)+ 2(35)+ 3(11)+ 4(6)+ 5(2)+ 6(2)= 221

Then pe = 128/221 = 0.5792. Using this value, the estimated probability of,
for example, pX (2) = (1 − 0.5792)(0.5792) = 0.2437. If the model gives the
probability of k = 2 to be 0.2437, then it seems reasonable to expect to see
n(0.2437) = 128(0.2437) = 31.20 occurrences of X = 2. This is the second entry
in the Expected Frequency column of the table. The other expected values are
calculated similarly, except for the value corresponding to k =6. In that case, we
fill in whatever value makes the expected frequencies sum to n = 128.

The close agreement between the Observed and Expected Frequency
columns argues for the validity of the geometric model, using the maximum
likelihood estimate. This suggests that the stock market doesn’t remember
yesterday.

Finding Maximum Likelihood Estimates When More Than
One Parameter Is Unknown

If a family of probability models is indexed by two or more unknown parameters—
say, θ1, θ2, . . ., θk—finding maximum likelihood estimates for the θi ’s requires the
solution of a set of k simultaneous equations. If k = 2, for example, we would
typically need to solve the system

∂ ln L(θ1, θ2)

∂θ1
= 0

∂ ln L(θ1, θ2)

∂θ2
= 0

Example
5.2.4

Suppose a random sample of size n is drawn from the two-parameter normal pdf

fY (y;μ,σ 2)= 1√
2π

√
σ 2

e− 1
2

(y−μ)2

σ2 −∞< y <∞;−∞<μ<∞;σ 2 > 0

Use the method of maximum likelihood to find formulas for μe and σ 2
e .

We start by finding L(μ,σ 2) and ln L(μ,σ 2):

L(μ,σ 2)=
n∏

i=1

1√
2πσ

e
1
2

(yi −μ)

σ2

= (2πσ 2)−n/2e
1
2

(yi −μ)

σ2

and

ln L(μ,σ 2)=−n

2
ln(2πσ 2)− 1

2

1

σ 2

n∑
i=1

(yi −μ)2
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Moreover,

∂ ln L(μ,σ 2)

∂μ
= 1

σ 2

n∑
i=1

(yi −μ)

and

∂ ln L(μ,σ 2)

∂σ 2
=−n

2
· 1

σ 2
+ 1

2

(
1

σ 2

)2 n∑
i=1

(yi −μ)2

Setting the two derivatives equal to zero gives the equations
n∑

i=1

(yi −μ) = 0 (5.2.1)

and

−nσ 2 +
n∑

i=1

(yi −μ)2 = 0 (5.2.2)

Equation 5.2.1 simplifies to
n∑

i=1

yi = nμ

which implies that μe = 1
n

n∑
i=1

yi = y. Substituting μe, then, into Equation 5.2.2 gives

−nσ 2 +
n∑

i=1

(yi − y)2 = 0

or

σ 2
e = 1

n

n∑
i=1

(yi − y)2

Comment The method of maximum likelihood has a long history: Daniel Bernoulli
was using it as early as 1777 (130). It was Ronald Fisher, though, in the early years
of the twentieth century, who first studied the mathematical properties of likelihood
estimation in any detail, and the procedure is often credited to him.

Questions

5.2.1. A random sample of size 8—X1 = 1, X2 = 0, X3 = 1,

X4 = 1, X5 = 0, X6 = 1, X7 = 1, and X8 = 0—is taken from
the probability function

pX (k; θ)= θ k(1 − θ)1−k, k = 0,1; 0 <θ < 1

Find the maximum likelihood estimate for θ .

5.2.2. The number of red chips and white chips in an urn
is unknown, but the proportion, p, of reds is either 1

3
or 1

2
.

A sample of size 5, drawn with replacement, yields the
sequence red, white, white, red, and white. What is the
maximum likelihood estimate for p?

5.2.3. Use the sample Y1 = 8.2,Y2 = 9.1,Y3 = 10.6, and
Y4 = 4.9 to calculate the maximum likelihood estimate for
λ in the exponential pdf

fY (y;λ)= λe−λy, y ≥ 0

5.2.4. Suppose a random sample of size n is drawn from
the probability model

pX (k; θ)= θ 2ke−θ2

k! , k = 0,1,2, . . .

Find a formula for the maximum likelihood estimator, θ̂ .
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5.2.5. Given that Y1 = 2.3,Y2 = 1.9, and Y3 = 4.6 is a
random sample from

fY (y; θ)= y3e−y/θ

6θ 4
, y ≥ 0

calculate the maximum likelihood estimate for θ .

5.2.6. Use the method of maximum likelihood to estimate
θ in the pdf

fY (y; θ)= θ

2
√

y
e−θ

√
y, y ≥ 0

Evaluate θe for the following random sample of size
4:Y1 = 6.2,Y2 = 7.0,Y3 = 2.5, and Y4 = 4.2.

5.2.7. An engineer is creating a project scheduling pro-
gram and recognizes that the tasks making up the project
are not always completed on time. However, the com-
pletion proportion tends to be fairly high. To reflect this
condition, he uses the pdf

fY (y; θ)= θyθ−1, 0 ≤ y ≤ 1, and 0 <θ

where y is the proportion of the task completed. Sup-
pose that in his previous project, the proportions of tasks
completed were 0.77, 0.82, 0.92, 0.94, and 0.98. Estimate θ .

5.2.8. The following data show the number of occu-
pants in passenger cars observed during one hour at a
busy intersection in Los Angeles (69). Suppose it can
be assumed that these data follow a geometric distribu-
tion, pX (k; p) = (1 − p)k−1 p, k = 1,2, . . .. Estimate p and
compare the observed and expected frequencies for each
value of X .

Number of Occupants Frequency

1 678
2 227
3 56
4 28
5 8
6+ 14

1011

5.2.9. For the Major League Baseball seasons from 1950
through 2008, there were fifty-nine nine-inning games in
which one of the teams did not manage to get a hit. The
data in the table give the number of no-hitters per season
over this period. Assume that the data follow a Poisson
distribution,

pX (k; λ)= e−λ
λk

k! , k = 0,1,2, . . .

(a) Estimate λ and compare the observed and expected
frequencies.

(b) Does the agreement (or lack of agreement) in part
(a) come as a surprise? Explain.

No. of No-Hitters Frequency

0 6
1 19
2 12
3 13
4+ 9

Source: en.wikipedia.org/wiki/List_of_Major_League_
Baseball_no-hitlers.

5.2.10. (a) Based on the random sample Y1 = 6.3,Y2 =
1.8, Y3 = 14.2, and Y4 = 7.6, use the method of maximum
likelihood to estimate the parameter θ in the uniform pdf

fY (y; θ)= 1

θ
, 0 ≤ y ≤ θ

(b) Suppose the random sample in part (a) represents the
two-parameter uniform pdf

fY (y; θ1, θ2)= 1

θ2 − θ1
, θ1 ≤ y ≤ θ2

Find the maximum likelihood estimates for θ1 and θ2.

5.2.11. Find the maximum likelihood estimate for θ in
the pdf

fY (y; θ)= 2y

1 − θ 2
, θ ≤ y ≤ 1

if a random sample of size 6 yielded the measurements
0.70, 0.63, 0.92, 0.86, 0.43, and 0.21.

5.2.12. A random sample of size n is taken from the pdf

fY (y; θ)= 2y

θ 2
, 0 ≤ y ≤ θ

Find an expression for θ̂ , the maximum likelihood estima-
tor for θ .

5.2.13. If the random variable Y denotes an individual’s
income, Pareto’s law claims that P(Y ≥ y)=

(
k
y

)θ

, where k

is the entire population’s minimum income. It follows that

FY (y)= 1 −
(

k
y

)θ

, and, by differentiation,

fY (y; θ)= θkθ

(
1

y

)θ+1

, y ≥ k; θ ≥ 1

Assume k is known. Find the maximum likelihood estima-
tor for θ if income information has been collected on a
random sample of 25 individuals.

5.2.14. The exponential pdf is a measure of lifetimes of
devices that do not age (see Question 3.11.11). However,
the exponential pdf is a special case of the Weibull dis-
tribution, which measures time to failure of devices where
the probability of failure increases as time does. A Weibull
random variable Y has pdf fY (y;α,β)=αβyβ−1e−αyβ

,0≤ y,
0 <α,0 <β.
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(a) Find the maximum likelihood estimator for α assum-
ing that β is known.

(b) Suppose α and β are both unknown. Write down
the equations that would be solved simultaneously
to find the maximum likelihood estimators of α

and β.

5.2.15. Suppose a random sample of size n is drawn from
a normal pdf where the mean μ is known but the variance
σ 2 is unknown. Use the method of maximum likelihood
to find a formula for σ̂ 2. Compare your answer to the
maximum likelihood estimator found in Example 5.2.4.

The Method of Moments

A second procedure for estimating parameters is the method of moments. Proposed
near the turn of the twentieth century by the great British statistician, Karl
Pearson, the method of moments is often more tractable than the method of max-
imum likelihood in situations where the underlying probability model has multiple
parameters.

Suppose that Y is a continuous random variable and that its pdf is a function of
s unknown parameters, θ1, θ2, . . ., θs . The first s moments of Y , if they exist, are given
by the integrals

E(Y j )=
∫ ∞

−∞
y j · fY (y; θ1, θ2, . . . , θs)dy, j = 1,2, . . . , s

In general, each E(Y j ) will be a different function of the s parameters. That is,

E(Y 1) = g1(θ1, θ2, . . . , θs)

E(Y 2) = g2(θ1, θ2, . . . , θs)

...

E(Y s) = gs(θ1, θ2, . . . , θs)

Corresponding to each theoretical moment, E(Y j ), is a sample moment, 1
n

n∑
i=1

y j
i .

Intuitively, the jth sample moment is an approximation to the jth theoretical
moment. Setting the two equal for each j produces a system of s simultaneous
equations, the solutions to which are the desired set of estimates, θ1e, θ2e, . . . , and θse.

Definition 5.2.3. Let y1, y2, . . ., yn be a random sample from the continuous
pdf fY (y; θ1, θ2, . . . , θs). The method of moments estimates, θ1e, θ2e, . . ., and θse,
for the model’s unknown parameters are the solutions of the s simultaneous
equations ∫ ∞

−∞
y fY (y; θ1, θ2, . . . , θs) dy =

(
1

n

) n∑
i=1

yi

∫ ∞

−∞
y2 fY (y; θ1, θ2, . . ., θs) dy =

(
1

n

) n∑
i=1

y2
i

...
...∫ ∞

−∞
ys fY (y; θ1, θ2, . . . , θs) dy =

(
1

n

) n∑
i=1

ys
i
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If the underlying random variable is discrete with pdf pX (k; θ1, θ2, . . . , θs),
the method of moments estimates are the solutions of the system of equations,∑

all k

k j pX (k; θ1, θ2, . . . , θs)=
(

1

n

)∑
all k

k j , j = 1,2, . . . , s

Example
5.2.5

Suppose that Y1 = 0.42, Y2 = 0.10, Y3 = 0.65, and Y4 = 0.23 is a random sample of
size 4 from the pdf

fY (y; θ)= θyθ−1, 0 ≤ y ≤ 1

Find the method of moments estimate for θ .
Taking the same approach that we followed in finding maximum likelihood esti-

mates, we will derive a general expression for the method of moments estimate
before making any use of the four data points. Notice that only one equation needs
to be solved because the pdf is indexed by just a single parameter.

The first theoretical moment of Y is θ
θ +1 :

E(Y ) =
∫ 1

0
y · θyθ−1 dy

= θ · yθ+1

θ + 1

∣∣∣∣1
0

= θ

θ + 1

Setting E(Y ) equal to 1
n

n∑
i=1

yi (= y), the first sample moment, gives

θ

θ + 1
= y

which implies that the method of moments estimate for θ is

θe = y

1 − y

Here, y = 1
4 (0.42 + 0.10 + 0.65 + 0.23)= 0.35, so

θe = 0.35

1 − 0.35
= 0.54

The gamma distribution, fY (y; r, λ)= λr
r

�(r)
yr−1e−λy, y ≥ 0, often provides a good

model for data that are inherently not symmetric, as the rainfall example below
will show. Deriving maximum likelihood estimators for r and λ, though, is diffi-
cult because �(r) does not have a closed-form derivative. However, the method of
moments estimators are not hard to find.

From Theorem 4.6.3, E(Y )= r
λ

and Var(Y )= r
λ2 . Recall that

E(Y 2)= Var(Y )+[E(Y )]2,

so for the gamma distribution,

E(Y 2)= r

λ2
+
( r

λ

)2 = r(r + 1)

λ2
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To find the method of moments estimators, form the two equations

1

n

n∑
i=1

yi = r

λ
and

1

n

n∑
i=1

y2
i = r(r + 1)

λ2

From the first equation, r = λ
n

n∑
i=1

yi .

Substituting that value into the second equation gives

1

n

n∑
i=1

y2
i =

λ
n

n∑
i=1

yi

(
λ
n

n∑
i=1

yi + 1

)
λ2

The solution of that equation for λ gives its method of moments estimate:

λe =

n∑
i=1

yi

n∑
i=1

y2
i − 1

n

(
n∑

i=1
yi

)2

and then

re = λe

n

n∑
i=1

yi = yλe

Case Study 5.2.2

In the western United States, the supply of water to support daily living, agri-
culture, and industry is a matter of serious concern. For that reason, the U.S.
Department of Agriculture has established a network of stations to record pre-
cipitation. One such site is in California just south of Lake Tahoe, with the
inviting name of Heavenly Valley. Columns 1 and 2 of Table 5.2.2 below give
the monthly rainfall in inches for the 294 months in which there was some
measurable precipitation, over a period of twenty-eight years.

Table 5.2.2

Inches Rainfall Observed Frequency Expected Frequency

0–1 87 80.54
1–2 58 57.19
2–3 42 41.62
3–4 23 30.44
4–5 20 22.31
5–6 14 16.38
6–7 10 12.03
7–8 13 8.84
8–9 9 6.51
9–10 4 4.79
>10 14 13.35

Source: www.wcc.nrcs.usda.gov.

(Continued on next page)

www.wcc.nrcs.usda.gov
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(Case Study 5.2.2 continued)

These data are clearly not symmetric, which suggests that a gamma distri-
bution might provide a good fit. The original, ungrouped data set provides the
necessary sums for estimating r and λ:

294∑
i=1

yi = 942.0 and
294∑
i=1

y2
i = 6117.82

Then λe = 942.0
6117.82− 1

294 (942.0)2 = 0.3039 and re = 942.0
294 (0.3039)= 0.9737.

Integrating the gamma pdf over the rainfall interval limits and multiplying
by n(= 294) gives the expected frequencies in the third column. The second
entry in that column, for example, is given by

294 ·
∫ 2

1

0.30390.9737

�(0.9737)
y0.9737−1e−0.3039y dy = 57.19

The above quantity and the others in the third column were calculated using the
Minitab routine

MTB > cdf c1;
SUBC > gamma 0.9737 1/0.3039

Clearly, the agreement between observed and expected frequencies is quite
good. A visual approach to examining the fit between data and model is pre-
sented in Figure 5.2.2, where the estimated gamma curve is superimposed on
the data’s density-scaled histogram.

0.00

Monthly rainfall (in.)

0.05

0.10

D
en

si
ty

0.15

0.20

0.25

0.30

0.35

0–1 0–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10 10+

Figure 5.2.2

The adequacy of the approximation here would come as no surprise to
a meteorologist. The gamma distribution is frequently used to describe the
variation in precipitation levels.
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Questions

5.2.16. Let y1, y2, . . . , yn be a random sample of size n
from the pdf fY (y; θ) = 2y

θ2 ,0 ≤ y ≤ θ . Find a formula for
the method of moments estimate for θ . Compare the val-
ues of the method of moments estimate and the maximum
likelihood estimate if a random sample of size 5 consists of
the numbers 17, 92, 46, 39, and 56 (recall Question 5.2.12).

5.2.17. Use the method of moments to estimate θ in the
pdf

fY (y; θ)= (θ 2 + θ)yθ−1(1 − y), 0 ≤ y ≤ 1

Assume that a random sample of size n has been collected.

5.2.18. A criminologist is searching through FBI files
to document the prevalence of a rare double-whorl fin-
gerprint. Among six consecutive sets of 100,000 prints
scanned by a computer, the numbers of persons having the
abnormality are 3, 0, 3, 4, 2, and 1, respectively. Assume
that double whorls are Poisson events. Use the method of
moments to estimate their occurrence rate, λ. How would
your answer change if λ were estimated using the method
of maximum likelihood?

5.2.19. Find the method of moments estimate for λ if a
random sample of size n is taken from the exponential pdf,
fY (y;λ)= λe−λy, y ≥ 0.

5.2.20. Suppose that Y1 = 8.3,Y2 = 4.9,Y3 = 2.6, and Y4 =
6.5 is a random sample of size 4 from the two-parameter
uniform pdf,

fY (y; θ1, θ2)= 1

2θ2
, θ1 − θ2 ≤ y ≤ θ1 + θ2

Use the method of moments to calculate θ1e and θ2e.

5.2.21. Find a formula for the method of moments esti-
mate for the parameter θ in the Pareto pdf,

fY (y; θ)= θkθ

(
1

y

)θ+1

, y ≥ k; θ ≥ 1

Assume that k is known and that the data consist of a
random sample of size n. Compare your answer to the
maximum likelihood estimator found in Question 5.2.13.

5.2.22. Calculate the method of moments estimate for the
parameter θ in the probability function

pX (k; θ)= θ k(1 − θ)1−k, k = 0,1

if a sample of size 5 is the set of numbers 0, 0, 1, 0, 1.

5.2.23. Find the method of moments estimates for μ and
σ 2, based on a random sample of size n drawn from a nor-
mal pdf, where μ = E(Y ) and σ 2 = Var(Y ). Compare your
answers with the maximum likelihood estimates derived
in Example 5.2.4.

5.2.24. Use the method of moments to derive formu-
las for estimating the parameters r and p in the negative
binomial pdf,

pX (k; r, p) =
(

k − 1

r − 1

)
pr (1 − p)k−r , k = r, r + 1, . . .

5.2.25. Bird songs can be characterized by the number
of clusters of “syllables” that are strung together in rapid
succession. If the last cluster is defined as a “success,”
it may be reasonable to treat the number of clusters in
a song as a geometric random variable. Does the model
pX (k) = (1 − p)k−1 p, k = 1,2, . . ., adequately describe the
following distribution of 250 song lengths (100)? Begin
by finding the method of moments estimate for p. Then
calculate the set of “expected” frequencies.

No. of Clusters/Song Frequency

1 132
2 52
3 34
4 9
5 7
6 5
7 5
8 6

250

5.2.26. Let y1, y2, . . . , yn be a random sample from the

continuous pdf fY (y; θ1, θ2). Let σ̂ 2 = 1
n

n∑
i=1

(yi − y)2. Show

that the solutions of the equations

E(Y )= y and Var(Y )= σ̂ 2

for θ1 and θ2 give the same results as using the equations
in Definition 5.2.3.

5.3 Interval Estimation
Point estimates, no matter how they are determined, share the same fundamental
weakness: They provide no indication of their inherent precision. We know, for
instance, that λ̂ = X is both the maximum likelihood and the method of moments
estimator for the Poisson parameter, λ. But suppose a sample of size 6 is taken from



298 Chapter 5 Estimation

the probability model pX (k) = e−λλk/k! and we find that λe = 6.8. Does it follow
that the true λ is likely to be close to λe—say, in the interval from 6.7 to 6.9—or
is the estimation process so imprecise that λ might actually be as small as 1.0, or
as large as 12.0? Unfortunately, point estimates, by themselves, do not allow us to
make those kinds of extrapolations. Any such statements require that the variation
of the estimator be taken into account.

The usual way to quantify the amount of uncertainty in an estimator is to con-
struct a confidence interval. In principle, confidence intervals are ranges of numbers
that have a high probability of “containing” the unknown parameter as an interior
point. By looking at the width of a confidence interval, we can get a good sense of
the estimator’s precision.

Example
5.3.1

Suppose that 6.5, 9.2, 9.9, and 12.4 constitute a random sample of size 4 from the pdf

fY (y;μ)= 1√
2π(0.8)

e− 1
2

(
y−μ
0.8

)2
, −∞< y <∞

That is, the four yi ’s come from a normal distribution where σ is equal to 0.8, but
the mean, μ, is unknown. What values of μ are believable in light of the four data
points?

To answer that question requires that we keep the distinction between estimates
and estimators clearly in mind. First of all, we know from Example 5.2.4 that the

maximum likelihood estimate for μ is μe = y = ( 1
n

) n∑
i=1

yi = ( 1
4

)
(38.0) = 9.5. We also

know something very specific about the probabilistic behavior of the maximum like-
lihood estimator, Y : According to the corollary to Theorem 4.3.3, Y−μ

σ/
√

n
= Y−μ

0.8/
√

4
has

a standard normal pdf, fZ (z). The probability, then, that Y−μ

0.8/
√

4
will fall between two

specified values can be deduced from Table A.1 in the Appendix. For example,

P(−1.96 ≤ Z ≤ 1.96)= 0.95 = P

(
−1.96 ≤ Y −μ

0.8/
√

4
≤ 1.96

)
(5.3.1)

(see Figure 5.3.1).

f   (z)Z

1.96

Area = 0.95

0–1.96
z =

y–μ
40.8/

Figure 5.3.1

“Inverting” probability statements of the sort illustrated in Equation 5.3.1 is the
mechanism by which we can identify a set of parameter values compatible with the
sample data. If

P

(
−1.96 ≤ Y −μ

0.8/
√

4
≤ 1.96

)
= 0.95
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then

P

(
Y − 1.96

0.8√
4

≤μ≤ Y + 1.96
0.8√

4

)
= 0.95

which implies that the random interval(
Y − 1.96

0.8√
4
,Y + 1.96

0.8√
4

)
has a 95% chance of containing μ as an interior point.

After substituting for Y , the random interval in this case reduces to(
9.50 − 1.96

0.8√
4
,9.50 + 1.96

0.8√
4

)
= (8.72,10.28)

We call (8.72, 10.28) a 95% confidence interval for μ. In the long run, 95% of
the intervals constructed in this fashion will contain the unknown μ; the remain-
ing 5% will lie either entirely to the left of μ or entirely to the right. For a
given set of data, of course, we have no way of knowing whether the calculated(

y − 1.96 · 0.8√
4
, y + 1.96 · 0.8√

4

)
is one of the 95% that contains μ or one of the 5% that

does not.
Figure 5.3.2 illustrates graphically the statistical implications associated with the

random interval
(

Y − 1.96 0.8√
4
,Y + 1.96 0.8√

4

)
. For every different y, the interval will

have a different location. While there is no way to know whether or not a given
interval—in particular, the one the experimenter has just calculated—will include
the unknown μ, we do have the reassurance that in the long run, 95% of all such
intervals will.

7 81 2 3 4 65
Data set

True μ

Possible 95% confidence intervals for μ

Figure 5.3.2

Comment The behavior of confidence intervals can be modeled nicely by using a
computer’s random number generator. The output in Table 5.3.1 is a case in point.
Fifty simulations of the confidence interval described in Example 5.3.1 are displayed.
That is, fifty samples, each of size n = 4, were drawn from the normal pdf

fY (y;μ)= 1√
2π(0.8)

e
− 1

2

(
y−μ
0.8

)2

, −∞< y <∞

using Minitab’s RANDOM command. (To fully specify the model—and to know
the value that each confidence interval was seeking to contain—the true μ was
assumed to equal ten). For each sample of size n = 4, the lower and upper limits
of the corresponding 95% confidence interval were calculated, using the formulas
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Table 5.3.1

MTB > random 50 c1-c4;
SUBC > normal 10 0.8.
MTB > rmean c1-c4 c5
MTB > let c6 = c5 - 1.96*(0.8)/sqrt(4)
MTB > let c7 = c5 + 1.96*(0.8)/sqrt(4)
MTB > name c6 ‘Low.Lim.’ c7 ‘Upp.Lim.’
MTB > print c6 c7

Data Display
Row Low.Lim. Upp.Lim. Contains μ = 10?
1 8.7596 10.3276 Yes
2 8.8763 10.4443 Yes
3 8.8337 10.4017 Yes
4 9.5800 11.1480 Yes
5 8.5106 10.0786 Yes
6 9.6946 11.2626 Yes
7 8.7079 10.2759 Yes
8 10.0014 11.5694 NO
9 9.3408 10.9088 Yes
10 9.5428 11.1108 Yes
11 8.4650 10.0330 Yes
12 9.6346 11.2026 Yes
13 9.2076 10.7756 Yes
14 9.2517 10.8197 Yes
15 8.7568 10.3248 Yes
16 9.8439 11.4119 Yes
17 9.3297 10.8977 Yes
18 9.5685 11.1365 Yes
19 8.9728 10.5408 Yes
20 8.5775 10.1455 Yes
21 9.3979 10.9659 Yes
22 9.2115 10.7795 Yes
23 9.6277 11.1957 Yes
24 9.4252 10.9932 Yes
25 9.6868 11.2548 Yes
26 8.8779 10.4459 Yes
27 9.1570 10.7250 Yes
28 9.3277 10.8957 Yes
29 9.1606 10.7286 Yes
30 8.8919 10.4599 Yes
31 9.3838 10.9518 Yes
32 8.7575 10.3255 Yes
33 10.4602 12.0282 NO
34 8.9437 10.5117 Yes
35 9.0049 10.5729 Yes
36 9.0148 10.5828 Yes
37 8.8110 10.3790 Yes
38 9.1981 10.7661 Yes
39 9.0042 10.5722 Yes
40 9.7019 11.2699 Yes
41 9.2167 10.7847 Yes
42 8.3901 9.9581 NO
43 8.6337 10.2017 Yes
44 9.4606 11.0286 Yes
45 9.3278 10.8958 Yes
46 8.5843 10.1523 Yes
47 9.0541 10.6221 Yes
48 9.2042 10.7722 Yes
49 9.2710 10.8390 Yes
50 9.5697 11.1377 Yes

︷
︸︸

︷

47 of the 50
95% confidence
intervals contain
the true μ(= 10)
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Low.Lim. = y − 1.96
0.8√

4

Upp.Lim. = y + 1.96
0.8√

4

As the last column in the DATA DISPLAY indicates, only three of the fifty confi-
dence intervals fail to contain μ = 10: Samples eight and thirty-three yield intervals
that lie entirely to the right of the parameter, while sample forty-two produces a
range of values that lies entirely to the left. The remaining forty-seven intervals,
though, or 94%

(= 47
50 × 100

)
, do contain the true value of μ as an interior point.

Case Study 5.3.1

In the eighth century B.C., the Etruscan civilization was the most advanced in
all of Italy. Its art forms and political innovations were destined to leave indeli-
ble marks on the entire Western world. Originally located along the western
coast between the Arno and Tiber Rivers (the region now known as Tuscany),
it spread quickly across the Apennines and eventually overran much of Italy.
But as quickly as it came, it faded. Militarily it was to prove no match for the
burgeoning Roman legions, and by the dawn of Christianity it was all but gone.

No written history from the Etruscan empire has ever been found, and
to this day its origins remain shrouded in mystery. Were the Etruscans native
Italians, or were they immigrants? And if they were immigrants, where did
they come from? Much of what is known has come from anthropometric
studies—that is, investigations that use body measurements to determine racial
characteristics and ethnic origins.

A case in point is the set of data given in Table 5.3.2, showing the sizes of
eighty-four Etruscan skulls unearthed in various archaeological digs throughout
Italy (6). The sample mean, y, of those measurements is 143.8 mm. Researchers
believe that skull widths of present-day Italian males are normally distributed
with a mean (μ) of 132.4 mm and a standard deviation (σ ) of 6.0 mm. What does

Table 5.3.2

Maximum Head Breadths (mm) of 84 Etruscan Males

141 148 132 138 154 142 150
146 155 158 150 140 147 148
144 150 149 145 149 158 143
141 144 144 126 140 144 142
141 140 145 135 147 146 141
136 140 146 142 137 148 154
137 139 143 140 131 143 141
149 148 135 148 152 143 144
141 143 147 146 150 132 142
142 143 153 149 146 149 138
142 149 142 137 134 144 146
147 140 142 140 137 152 145

(Continued on next page)
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(Case Study 5.3.1 continued)

the difference between y = 143.8 and μ = 132.4 imply about the likelihood that
Etruscans and Italians share the same ethnic origin?

One way to answer that question is to construct a 95% confidence inter-
val for the true mean of the population represented by the eighty-four yi ’s in
Table 5.3.2. If that confidence interval fails to contain μ = 132.4, it could be
argued that the Etruscans were not the forebears of modern Italians. (Of course,
it would also be necessary to factor in whatever evolutionary trends in skull
sizes have occurred for Homo sapiens, in general, over the past three thousand
years.)

It follows from the discussion in Example 5.3.1 that the endpoints for a 95%
confidence interval for μ are given by the general formula(

y − 1.96 · σ√
n
, y + 1.96 · σ√

n

)
Here, that expression reduces to(

143.8 − 1.96 · 6.0√
84

,143.8 + 1.96 · 6.0√
84

)
= (142.5 mm,145.1 mm)

Since the value μ = 132.4 is not contained in the 95% confidence interval (or
even close to being contained), we would conclude that a sample mean of 143.8
(based on a sample of size 84) is not likely to have come from a normal popula-
tion where μ=132.4 (and σ =6.0). It would appear, in other words, that Italians
are not the direct descendants of Etruscans.

Comment Random intervals can be constructed to have whatever “confidence” we
choose. Suppose zα/2 is defined to be the value for which P(Z ≥ zα/2) = α/2. If α =
0.05, for example, zα/2 = z.025 = 1.96. A 100(1 − α)% confidence interval for μ, then,
is the range of numbers (

y − zα/2 · σ√
n
, y + zα/2 · σ√

n

)
In practice, α is typically set at either 0.10, 0.05, or 0.01, although in some fields 50%
confidence intervals are frequently used.

Confidence Intervals for the Binomial Parameter, p

Perhaps the most frequently encountered applications of confidence intervals are
those involving the binomial parameter, p. Opinion surveys are often the context:
When polls are released, it has become standard practice to issue a disclaimer by
saying that the findings have a certain margin of error. As we will see later in this
section, margins of error are related to 95% confidence intervals.

The inversion technique followed in Example 5.3.1 can be applied to large-
sample binomial random variables as well. We know from Theorem 4.3.1 that

(X − np)/
√

np(1 − p) = (X/n − p)/
√

p(1 − p)/n
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has approximately a standard normal distribution when X is binomial and n is large.
It is also true that the pdf describing

X/n − p√
(X/n)(1−X/n)

n

can be approximated by fZ (z), a result that seems plausible given that X
n is the

maximum likelihood estimator for p.
Therefore,

P

⎡⎣−zα/2 ≤ X/n − p√
(X/n)(1−X/n)

n

≤ zα/2

⎤⎦ .= 1 −α (5.3.2)

Rewriting Equation 5.3.2 by isolating p in the center of the inequalities leads to the
formula given in Theorem 5.3.1.

Theorem
5.3.1

Let k be the number of successes in n independent trials, where n is large and
p = P(success) is unknown. An approximate 100(1 −α)% confidence interval for p is
the set of numbers[

k

n
− zα/2

√
(k/n)(1 − k/n)

n
,

k

n
+ zα/2

√
(k/n)(1 − k/n)

n

]

Case Study 5.3.2

A majority of Americans have favored increased fuel efficiency for automobiles.
Some do not, primarily because of concern over increased costs, or from general
opposition to government mandates. The public’s intensity about the issue tends
to fluctuate with the price of gasoline. In the summer of 2008, when the national
average of prices for regular unleaded gasoline exceeded $4 per gallon, fuel
efficiency became part of the political landscape.

How much the public does favor increased fuel efficiency has been the sub-
ject of numerous polls. A Gallup telephone poll of 1012 adults (18 and over)
in March of 2009 reported that 810 favored the setting of higher fuel-efficiency
standards for automobiles.

Given that n = 1012 and k = 810, the “believable” values for p, the prob-
ability that an adult does favor efficiency, according to Theorem 5.3.1, are the
proportions from 0.776 to 0.825:[

810

1012
− 1.96

√
(810/1012)(1 − 810/1012)

1012
,

810

1012
+ 1.96

√
(810/1012)(1 − 810/1012)

1012

]
= (0.776,0.825)

If the true proportion of Americans, in other words, who support increased
fuel efficiency is less than 0.776 or greater than 0.825, it would be unlikely
that a sample proportion (based on 1012 responses) would be the observed
810/1012 = 0.800.
Source: http://www.gallup.com/poll/118543/Americans-Green-Light-Higher-Fuel-Efficiency-Standards.aspx.

http://www.gallup.com/poll/118543/Americans-Green-Light-Higher-Fuel-Efficiency-Standards.aspx
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Comment We call (0.776, 0.825) a 95% confidence interval for p, but it does not
follow that p has a 95% chance of lying between 0.776 and 0.825. The parameter p
is a constant, so it falls between 0.776 and 0.825 either 0% of the time or 100% of
the time. The “95%” refers to the procedure by which the interval is constructed, not
to any particular interval. This, of course, is entirely analogous to the interpretation
given earlier to 95% confidence intervals for μ.

Comment Robert Frost was certainly more familiar with iambic pentameter than
he was with estimated parameters, but in 1942 he wrote a couplet that sounds very
much like a poet’s perception of a confidence interval (98):

We dance round in a ring and suppose,
But the Secret sits in the middle and knows.

Example
5.3.2

Central to every statistical software package is a random number generator. Two or
three simple commands are typically all that are required to output a sample of size
n representing any of the standard probability models. But how can we be certain
that numbers purporting to be random observations from, say, a normal distribution
with μ= 50 and σ = 10 actually do represent that particular pdf?

The answer is, we cannot; however, a number of “tests” are available to check
whether the simulated measurements appear to be random with respect to a given
criterion. One such procedure is the median test.

Suppose y1, y2, . . . , yn denote measurements presumed to have come from a
continuous pdf fY (y). Let k denote the number of yi ’s that are less than the median
of fY (y). If the sample is random, we would expect the difference between k

n and 1
2

to be small. More specifically, a 95% confidence interval based on k
n should contain

the value 0.5.
Listed in Table 5.3.3 is a set of sixty yi ’s generated by Minitab to represent the

exponential pdf, fY (y)= e−y , y ≥ 0. Does this sample pass the median test?
The median here is m = 0.69315:∫ m

0
e−ydy =−e−y

∣∣∣∣m
0

= 1 − e−m = 0.5

which implies that m = − ln(0.5) = 0.69315. Notice that of the sixty entries in
Table 5.3.3, a total of k = 26 (those marked with an asterisk, ∗) fall to the left of
the median. For these particular yi ’s, then, k

n = 26
60 = 0.433.

Table 5.3.3

0.00940* 0.75095 2.32466 0.66715* 3.38765 3.01784 0.05509*
0.93661 1.39603 0.50795* 0.11041* 2.89577 1.20041 1.44422
0.46474* 0.48272* 0.48223* 3.59149 1.38016 0.41382* 0.31684*
0.58175* 0.86681 0.55491* 0.07451* 1.88641 2.40564 1.07111
5.05936 0.04804* 0.07498* 1.52084 1.06972 0.62928* 0.09433*
1.83196 1.91987 1.92874 1.93181 0.78811 2.16919 1.16045
0.81223 1.84549 1.20752 0.11387* 0.38966* 0.42250* 0.77279
1.31728 0.81077 0.59111* 0.36793* 0.16938* 2.41135 0.21528*
0.54938* 0.73217 0.52019* 0.73169
∗ number ≤ 0.69315 [= median of fY (y) = e−y , y > 0]
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Let p denote the (unknown) probability that a random observation produced
by Minitab’s generator will lie to the left of the pdf’s median. Based on these sixty
observations, the 95% confidence interval for p is the range of numbers extending
from 0.308 to 0.558:(

26

30
− 1.96

√
(26/60)(1 − 26/60)

60
,

26

60
+ 1.96

√
(26/60)(1 − 26/60)

60

)
=(0.308,0.558)

The fact that the value p = 0.50 is contained in the confidence interval implies
that these data do pass the median test. It is entirely believable, in other words, that a
bona fide exponential random sample of size 60 would have twenty-six observations
falling below the pdf’s median, and thirty-four above.

Margin of Error

In the popular press, estimates for p
(
i.e.,values of k

n

)
are typically accompanied by

a margin of error, as opposed to a confidence interval. The two are related: A mar-
gin of error is half the maximum width of a 95% confidence interval. (The number
actually quoted is usually expressed as a percentage.)

Let w denote the width of a 95% confidence interval for p. From Theorem 5.3.1,

w = k

n
+ 1.96

√
(k/n)(1 − k/n)

n
−
[

k

n
− 1.96

√
(k/n)(1 − k/n)

n

]

= 3.92

√
(k/n)(1 − k/n)

n

Notice that for fixed n, w is a function of the product
(

k
n

) (
1 − k

n

)
. But given that

0 ≤ k
n ≤ 1, the largest value that

(
k
n

) (
1 − k

n

)
can achieve is 1

2 · 1
2 , or 1

4 (see Ques-
tion 5.3.18). Therefore,

maxw = 3.92

√
1

4n

Definition 5.3.1. The margin of error associated with an estimate k
n , where k is

the number of successes in n independent trials, is 100d%, where

d = 1.96

2
√

n

Example
5.3.3

In the mid-term elections of 2006, the political winds were shifting. One of the key
races for control of the Senate was in Virginia, where challenger Jim Webb and
incumbent George Allen were in a very tight race. Just a week before the election,
the Associated Press reported on a CNN poll based on telephone interviews of 597
registered voters who identified themselves as likely to vote. Webb was the choice of
299 of those surveyed. The article went on to state, “Because Webb’s edge is equal
to the margin of error of plus or minus 4 percentage points, it means that he can be
considered slightly ahead.”
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Is the margin of error in fact 4%? Applying Definition 5.3.1 (with n =597) shows
that the margin of error associated with the poll’s result, using a 95% confidence
interval, is indeed 4%:

1.96

2
√

597
= 0.040

Notice that the margin of error has nothing to do with the actual survey results.
Had the percentage of respondents preferring Webb been 25%, 75%, or any other
number, the margin of error, by definition, would have been the same.

The more important question is whether these results have any real meaning in
what was clearly to be a close election.

Source: http://archive.newsmax.com/archives/ic/2006/10/31/72811.shtml?s=ic.

About the Data Example 5.3.3 shows how the use of the margin of error has been
badly handled by the media. The faulty interpretations are particularly prevalent in
the context of political polls, especially since media reports of polls fail to give the
confidence level, which is always taken to be 95%. Another issue is whether the con-
fidence intervals provided are in fact useful. In Example 5.3.3, the 95% confidence
interval has margin of error 4% and is

(0.501 − 0.040,0.501 + 0.040)= (0.461,0.541)

However, such a margin of error yields a confidence interval that is too wide to
provide any meaningful information. The campaign had had media attention for
months. Even a less-than-astute political observer would have been quite certain
that the proportion of people voting for Webb would be between 0.461 and 0.541.
As it turned out, the race was as close as predicted, and Webb won by a margin of
just over seven thousand votes out of more than two million cast.

Even when political races are not as close as the Webb–Allen race, persistent
misinterpretations abound. Here is what happens. A poll (based on a sample of n
voters) is conducted, showing, for example, that 52% of the respondents intend to
support Candidate A and 48%, Candidate B. Moreover, the corresponding margin
of error, based on the sample of size n, is (correctly) reported to be, say, 5%. What
often comes next is a statement that the race is a “statistical tie” or a “statistical
dead heat” because the difference between the two percentages, 52% − 48% = 4%,
is within the 5% margin of error. Is that statement true? No. Is it even close to being
true? No.

If the observed difference in the percentages supporting Candidate A and
Candidate B is 4% and the margin of error is 5%, then the widest possible 95%
confidence interval for p, the true difference between the two percentages (p =
Candidate A’s true % – Candidate B’s true %) would be

(4% − 5%,4% + 5%)= (−1%,9%)

The latter implies that we should not rule out the possibility that the true value for
p could be as small as −1% (in which case Candidate B would win a tight race) or as
large as +9% (in which case Candidate A would win in a landslide). The serious mis-
take in the “statistical tie” terminology is the implication that all the possible values
from −1% to +9% are equally likely. That is simply not true. For every confidence
interval, parameter values near the center are much more plausible than those near
either the left-hand or right-hand endpoints. Here, a 4% lead for Candidate A in a

http://archive.newsmax.com/archives/ic/2006/10/31/72811.shtml?s=ic
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poll that has a 5% margin of error is not a “tie”—quite the contrary, it would more
properly be interpreted as almost a guarantee that Candidate A will win.

Misinterpretations aside, there is yet a more fundamental problem in using the
margin of error as a measure of the day-to-day or week-to-week variation in political
polls. By definition, the margin of error refers to sampling variation—that is, it
reflects the extent to which the estimator p̂ = X

n varies if repeated samples of size
n are drawn from the same population. Consecutive political polls, though, do not
represent the same population. Between one poll and the next, a variety of scenarios
can transpire that can fundamentally change the opinions of the voting population—
one candidate may give an especially good speech or make an embarrassing gaffe, a
scandal can emerge that seriously damages someone’s reputation, or a world event
comes to pass that for one reason or another reflects more negatively on one candi-
date than the other. Although all of these possibilities have the potential to influence
the value of X

n much more than sampling variability can, none of them is included in
the margin of error.

Choosing Sample Sizes

Related to confidence intervals and margins of error is an important experimental
design question. Suppose a researcher wishes to estimate the binomial parameter p
based on results from a series of n independent trials, but n has yet to be determined.
Larger values of n will, of course, yield estimates having greater precision, but more
observations also demand greater expenditures of time and money. How can those
two concerns best be reconciled?

If the experimenter can articulate the minimal degree of precision that would
be considered acceptable, a Z transformation can be used to calculate the smallest
(i.e., the cheapest) sample size capable of achieving that objective. For example,
suppose we want X

n to have at least a 100(1 − α)% probability of lying within a
distance d of p. The problem is solved, then, if we can find the smallest n for
which

P

(
−d ≤ X

n
− p ≤ d

)
= 1 −α (5.3.3)

Theorem
5.3.2

Let X
n be the estimator for the parameter p in a binomial distribution. In order for X

n
to have at least a 100(1−α)% probability of being within a distance d of p, the sample
size should be no smaller than

n = z2
α/2

4d2

where zα/2 is the value for which P(Z ≥ zα/2)=α/2.

Proof Start by dividing the terms in the probability portion of Equation 5.3.3 by the
standard deviation of X

n to form an approximate Z ratio:

P

(
−d ≤ X

n
− p ≤ d

)
= P

[ −d√
p(1 − p)/n

≤ X/n − p√
p(1 − p)/n

≤ d√
p(1 − p)/n

]
.= P

[ −d√
p(1 − p)/n

≤ Z ≤ d√
p(1 − p)/n

]
= 1 −α
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But P(−zα/2 ≤ Z ≤ zα/2)= 1 −α, so

d√
p(1 − p)/n

= zα/2

which implies that

n = z2
α/2 p(1 − p)

d2
(5.3.4)

Equation 5.3.4 is not an acceptable final answer, though, because the right-hand
side is a function of p, the unknown parameter. But p(1 − p) ≤ 1

4 for 0 ≤ p ≤ 1, so
the sample size

n = z2
α/2

4d2

would necessarily cause X
n to satisfy Equation 5.3.3, regardless of the actual

value of p. (Notice the connection between the statements of Theorem 5.3.2 and
Definition 5.3.1.) �

Example
5.3.4

A public health survey is being planned in a large metropolitan area for the purpose
of estimating the proportion of children, ages zero to fourteen, who are lacking
adequate polio immunization. Organizers of the project would like the sample pro-
portion of inadequately immunized children, X

n , to have at least a 98% probability
of being within 0.05 of the true proportion, p. How large should the sample be?

Here 100(1 − α) = 98, so α = 0.02 and zα/2 = 2.33. By Theorem 5.3.2, then, the
smallest acceptable sample size is 543:

n = (2.33)2

4(0.05)2

= 543

Comment Occasionally, there may be reason to believe that p is necessarily less
than some number r1, where r1 < 1

2 , or greater than some number r2, where r2 > 1
2 .

If so, the factors p(1 − p) in Equation 5.3.4 can be replaced by either r1(1 − r1) or
r2(1 − r2), and the sample size required to estimate p with a specified precision will
be reduced, perhaps by a considerable amount.

Suppose, for example, that previous immunization studies suggest that no more
than 20% of children between the ages of zero and fourteen are inadequately
immunized. The smallest sample size, then, for which

P

(
−0.05 ≤ X

n
− p ≤ 0.05

)
= 0.98

is 348, an n that represents almost a 36% reduction
(= 543−348

543 × 100
)

from the
original 543:

n = (2.33)2

(0.05)2
(0.20)(0.80)

= 348

Comment Theorems 5.3.1 and 5.3.2 are both based on the assumption that the
X in X

n varies according to a binomial model. What we learned in Section 3.3,
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though, seems to contradict that assumption: Samples used in opinion surveys
are invariably drawn without replacement, in which case X is hypergeometric, not
binomial. The consequences of that particular “error,” however, are easily corrected
and frequently negligible.

It can be shown mathematically that the expected value of X
n is the same

regardless of whether X is binomial or hypergeometric; its variance, though, is
different. If X is binomial,

Var

(
X

n

)
= p(1 − p)

n

If X is hypergeometric,

Var

(
X

n

)
= p(1 − p)

n

(
N − n

N − 1

)
where N is the total number of subjects in the population.

Since N−n
N−1 < 1, the actual variance of X

n is somewhat smaller than the (binomial)
variance we have been assuming, p(1−p)

n . The ratio N−n
N−1 is called the finite correction

factor. If N is much larger than n, which is typically the case, then the magnitude
of N−n

N−1 will be so close to 1 that the variance of X
n is equal to p(1−p)

n for all practical
purposes. Thus the “binomial” assumption in those situations is more than adequate.
Only when the sample is a sizeable fraction of the population do we need to include
the finite correction factor in any calculations that involve the variance of X

n .

Questions

5.3.1. A commonly used IQ test is scaled to have a mean
of 100 and a standard deviation of σ = 15. A school
counselor was curious about the average IQ of the stu-
dents in her school and took a random sample of fifty
students’ IQ scores. The average of these was y = 107.9.
Find a 95% confidence interval for the student IQ in the
school.

5.3.2. The production of a nationally marketed deter-
gent results in certain workers receiving prolonged expo-
sures to a Bacillus subtilis enzyme. Nineteen workers
were tested to determine the effects of those expo-
sures, if any, on various respiratory functions. One such
function, air-flow rate, is measured by computing the
ratio of a person’s forced expiratory volume (FEV1)
to his or her vital capacity (VC). (Vital capacity is
the maximum volume of air a person can exhale after
taking as deep a breath as possible; FEV1 is the max-
imum volume of air a person can exhale in one sec-
ond.) In persons with no lung dysfunction, the “norm”
for FEV1/VC ratios is 0.80. Based on the following data
(164), is it believable that exposure to the Bacillus sub-
tilis enzyme has no effect on the FEV1/VC ratio? Answer
the question by constructing a 95% confidence interval.
Assume that FEV1/VC ratios are normally distributed with
σ = 0.09.

Subject FEV1/VC Subject FEV1/VC

RH 0.61 WS 0.78
RB 0.70 RV 0.84
MB 0.63 EN 0.83
DM 0.76 WD 0.82
WB 0.67 FR 0.74
RB 0.72 PD 0.85
BF 0.64 EB 0.73
JT 0.82 PC 0.85
PS 0.88 RW 0.87
RB 0.82

5.3.3. Mercury pollution is widely recognized as a serious
ecological problem. Much of the mercury released into the
environment originates as a byproduct of coal burning and
other industrial processes. It does not become dangerous
until it falls into large bodies of water, where microor-
ganisms convert it to methylmercury (CH203

3 ), an organic
form that is particularly toxic. Fish are the intermediaries:
They ingest and absorb the methylmercury and are then
eaten by humans. Men and women, however, may not
metabolize CH203

3 at the same rate. In one study investi-
gating that issue, six women were given a known amount
of protein-bound methylmercury. Shown in the follow-
ing table are the half-lives of the methylmercury in their
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systems (114). For men, the average CH203
3 half-life is

believed to be eighty days. Assume that for both genders,
CH203

3 half-lives are normally distributed with a standard
deviation (σ ) of eight days. Construct a 95% confidence
interval for the true female CH203

3 half-life. Based on these
data, is it believable that males and females metabolize
methylmercury at the same rate? Explain.

Females CH203
3 Half-Life

AE 52
EH 69
LJ 73

AN 88
KR 87
LU 56

5.3.4. A physician who has a group of thirty-eight female
patients aged 18 to 24 on a special diet wishes to estimate
the effect of the diet on total serum cholesterol. For this
group, their average serum cholesterol is 188.4 (measured
in mg/100mL). Because of a large-scale government study,
the physician is willing to assume that the total serum
cholesterol measurements are normally distributed with
standard deviation of σ = 40.7. Find a 95% confidence
interval of the mean serum cholesterol of patients on the
special diet. Does the diet seem to have any effect on
their serum cholesterol, given that the national average for
women aged 18 to 24 is 192.0?

5.3.5. Suppose a sample of size n is to be drawn from
a normal distribution where σ is known to be 14.3. How
large does n have to be to guarantee that the length of the
95% confidence interval for μ will be less than 3.06?

5.3.6. What “confidence” would be associated with each
of the following intervals? Assume that the random vari-
able Y is normally distributed and that σ is known.

(a)
(

y − 1.64 · σ√
n
, y + 2.33 · σ√

n

)
(b)
(
−∞, y + 2.58 · σ√

n

)
(c)
(

y − 1.64 · σ√
n
, y
)

5.3.7. Five independent samples, each of size n, are to be
drawn from a normal distribution where σ is known. For
each sample, the interval

(
y − 0.96 · σ√

n
, y + 1.06 · σ√

n

)
will

be constructed. What is the probability that at least four
of the intervals will contain the unknown μ?

5.3.8. Suppose that y1, y2, . . . , yn is a random sam-
ple of size n from a normal distribution where σ

is known. Depending on how the tail-area probabili-
ties are split up, an infinite number of random intervals

having a 95% probability of containing μ can be con-
structed. What is unique about the particular interval(

y − 1.96 · σ√
n
, y + 1.96 · σ√

n

)
?

5.3.9. If the standard deviation (σ) associated with the
pdf that produced the following sample is 3.6, would it be
correct to claim that(

2.61 − 1.96 · 3.6√
20

,2.61 + 1.96 · 3.6√
20

)
= (1.03,4.19)

is a 95% confidence interval for μ? Explain.

2.5 0.1 0.2 1.3
3.2 0.1 0.1 1.4
0.5 0.2 0.4 11.2
0.4 7.4 1.8 2.1
0.3 8.6 0.3 10.1

5.3.10. In 1927, the year he hit sixty home runs, Babe
Ruth batted .356, having collected 192 hits in 540 official
at-bats (140). Based on his performance that season, con-
struct a 95% confidence interval for Ruth’s probability of
getting a hit in a future at-bat.

5.3.11. To buy a thirty-second commercial break dur-
ing the telecast of Super Bowl XXIX cost approxi-
mately $1,000,000. Not surprisingly, potential sponsors
wanted to know how many people might be watch-
ing. In a survey of 1015 potential viewers, 281 said
they expected to see less than a quarter of the adver-
tisements aired during the game. Define the rele-
vant parameter and estimate it using a 90% confidence
interval.

5.3.12. During one of the first “beer wars” in the early
1980s, a taste test between Schlitz and Budweiser was the
focus of a nationally broadcast TV commercial. One hun-
dred people agreed to drink from two unmarked mugs and
indicate which of the two beers they liked better; fifty-four
said, “Bud.” Construct and interpret the corresponding
95% confidence interval for p, the true proportion of
beer drinkers who prefered Budweiser to Schlitz. How
would Budweiser and Schlitz executives each have put
these results in the best possible light for their respective
companies?

5.3.13. The Pew Research Center did a survey of 2253
adults and discovered that 63% of them had broadband
Internet connections in their homes. The survey report
noted that this figure represented a “significant jump”
from the similar figure of 54% from two years earlier. One
way to define “significant jump” is to show that the earlier
number does not lie in the 95% confidence interval. Was
the increase significant by this definition?

Source: http://www.pewinternet.org/Reports/2009/10-Home-Broad
band-Adoption-2009.aspx.

http://www.pewinternet.org/Reports/2009/10-Home-Broadband-Adoption-2009.aspx
http://www.pewinternet.org/Reports/2009/10-Home-Broadband-Adoption-2009.aspx


5.3 Interval Estimation 311

5.3.14. If (0.57, 0.63) is a 50% confidence interval for
p, what does k

n
equal and how many observations were

taken?

5.3.15. Suppose a coin is to be tossed n times for the pur-
pose of estimating p, where p = P(heads). How large must
n be to guarantee that the length of the 99% confidence
interval for p will be less than 0.02?

5.3.16. On the morning of November 9, 1994—the day
after the electoral landslide that had returned Republicans
to power in both branches of Congress—several key races
were still in doubt. The most prominent was the Washing-
ton contest involving Democrat Tom Foley, the reigning
speaker of the house. An Associated Press story showed
how narrow the margin had become (120):

With 99 percent of precincts reporting, Foley trailed
Republican challenger George Nethercutt by just
2,174 votes, or 50.6 percent to 49.4 percent. About
14,000 absentee ballots remained uncounted, mak-
ing the race too close to call.

Let p = P(Absentee voter prefers Foley). How small
could p have been and still have given Foley a 20% chance
of overcoming Nethercutt’s lead and winning the election?

5.3.17. Which of the following two intervals has
the greater probability of containing the binomial
parameter p?[

X

n
− 0.67

√
(X/n)(1 − X/n)

n
,

X

n
+ 0.67

√
(X/n)(1 − X/n)

n

]

or
(

X

n
,∞
)

5.3.18. Examine the first two derivatives of the func-
tion g(p) = p(1 − p) to verify the claim on p. 305 that
p(1 − p)≤ 1

4
for 0 < p < 1.

5.3.19. The financial crisis of 2008 highlighted the issue
of excessive compensation for business CEOs. In a Gallup
poll in the summer of 2009, 998 adults were asked, “Do
you favor or oppose the federal government taking steps
to limit the pay of executives at major companies?”, with
59% responding in favor. The report of the poll noted a
margin of error of ±3 percentage points. Verify the margin
of error and construct a 95% confidence interval.

Source: http://www.gallup.com/poll/120872/Americans-Favor-Gov-
Action-Limit-Executive-Pay.aspx.

5.3.20. Viral infections contracted early during a
woman’s pregnancy can be very harmful to the fetus. One
study found a total of 86 deaths and birth defects among
202 pregnancies complicated by a first-trimester German
measles infection (45). Is it believable that the true pro-
portion of abnormal births under similar circumstances

could be as high as 50%? Answer the question by cal-
culating the margin of error for the sample proportion,
86/202.

5.3.21. Rewrite Definition 5.3.1 to cover the case where
a finite correction factor needs to be included (i.e., situa-
tions where the sample size n is not negligible relative to
the population size N).

5.3.22. A public health official is planning for the supply
of influenza vaccine needed for the upcoming flu season.
She took a poll of 350 local citizens and found that only
126 said they would be vaccinated.

(a) Find the 90% confidence interval for the true pro-
portion of people who plan to get the vaccine.

(b) Find the confidence interval, including the finite cor-
rection factor, assuming the town’s population is
3000.

5.3.23. Given that n observations will produce a bino-
mial parameter estimator, X

n
, having a margin of error

equal to 0.06, how many observations are required for the
proportion to have a margin of error half that size?

5.3.24. Given that a political poll shows that 52% of the
sample favors Candidate A, whereas 48% would vote for
Candidate B, and given that the margin of error associated
with the survey is 0.05, does it make sense to claim that the
two candidates are tied? Explain.

5.3.25. Assume that the binomial parameter p is to be
estimated with the function X

n
, where X is the number

of successes in n independent trials. Which demands the
larger sample size: requiring that X

n
have a 96% probabil-

ity of being within 0.05 of p, or requiring that X
n

have a
92% probability of being within 0.04 of p?

5.3.26. Suppose that p is to be estimated by X
n

and we are
willing to assume that the true p will not be greater than
0.4. What is the smallest n for which X

n
will have a 99%

probability of being within 0.05 of p?

5.3.27. Let p denote the true proportion of college stu-
dents who support the movement to colorize classic films.
Let the random variable X denote the number of stu-
dents (out of n) who prefer colorized versions to black and
white. What is the smallest sample size for which the prob-
ability is 80% that the difference between X

n
and p is less

than 0.02?

5.3.28. University officials are planning to audit 1586 new
appointments to estimate the proportion p who have been
incorrectly processed by the payroll department.

(a) How large does the sample size need to be in order
for X

n
, the sample proportion, to have an 85% chance

of lying within 0.03 of p?
(b) Past audits suggest that p will not be larger than 0.10.

Using that information, recalculate the sample size
asked for in part (a).

http://www.gallup.com/poll/120872/Americans-Favor-Gov-Action-Limit-Executive-Pay.aspx
http://www.gallup.com/poll/120872/Americans-Favor-Gov-Action-Limit-Executive-Pay.aspx
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5.4 Properties of Estimators
The method of maximum likelihood and the method of moments described in
Section 5.2 both use very reasonable criteria to identify estimators for unknown
parameters, yet the two do not always yield the same answer. For example, given
that Y1,Y2, . . . ,Yn is a random sample from the pdf fY (y; θ)= 2y

θ2 , 0 ≤ y ≤ θ , the max-
imum likelihood estimator for θ is θ̂ = Ymax while the method of moments estimator
is θ̂ = 3

2 Y . (See Questions 5.2.12 and 5.2.15.) Implicit in those two formulas is an
obvious question—which should we use?

More generally, the fact that parameters have multiple estimators (actually,
an infinite number of θ̂ ’s can be found for any given θ) requires that we investi-
gate the statistical properties associated with the estimation process. What qualities
should a “good” estimator have? Is it possible to find a “best” θ̂? These and other
questions relating to the theory of estimation will be addressed in the next several
sections.

To understand the mathematics of estimation, we must first keep in mind
that every estimator is a function of a set of random variables—that is, θ̂ =
h(Y1,Y2, . . . ,Yn). As such, any θ̂ , itself, is a random variable: It has a pdf, an
expected value, and a variance, all three of which play key roles in evaluating its
capabilities.

We will denote the pdf of an estimator (at some point u) with the symbol
fθ̂ (u) or pθ̂ (u), depending on whether θ̂ is a continuous or a discrete random vari-
able. Probability calculations involving θ will reduce to integrals of fθ̂ (u) (if θ̂ is
continuous) or sums of pθ̂ (u) (if θ̂ is discrete).

Example
5.4.1

a. Suppose a coin, for which p = P(heads) is unknown, is to be tossed ten times for
the purpose of estimating p with the function p̂ = X

10 , where X is the observed
number of heads. If p = 0.60, what is the probability that

∣∣ X
10 − 0.60

∣∣ ≤ 0.10?
That is, what are the chances that the estimator will fall within 0.10 of the true
value of the parameter? Here p̂ is discrete—the only values X

10 can take on are
0

10 , 1
10 , . . . , 10

10 . Moreover, when p = 0.60,

pp̂

(
k

10

)
= P

(
p̂ = k

10

)
= P(X = k)=

(
10

k

)
(0.60)k(0.40)10−k, k = 0,1, . . . ,10

Therefore,

P

(∣∣∣∣ X

10
− 0.60

∣∣∣∣≤ 0.10

)
= P

(
0.60 − 0.10 ≤ X

10
≤ 0.60 + 0.10

)
= P(5 ≤ X ≤ 7)

=
7∑

k=5

(
10
k

)
(0.60)k(0.40)10−k

= 0.6665

b. How likely is the estimator X
n to lie within 0.10 of p if the coin in part (a) is

tossed one hundred times? Given that n is so large, a Z transformation can be
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0.2 0.3 0.40 0.1 0.5 0.6 0.7 0.8 0.9 1

Values of X/n

Area = 0.6665

when p = 0.60

(Approximate) Dist   of

Area = 0.9586

when p = 0.60

Dist   of
Xn
10

n

X
100

Figure 5.4.1

used to approximate the variation in X
100 . Since E

(
X
n

)= p and Var
(

X
n

)= p(1 −
p)/n, we can write

P

(∣∣∣∣ X

100
− 0.60

∣∣∣∣≤ 0.10

)
= P

(
0.50 ≤ X

100
≤ 0.70

)

= P

⎡⎣0.50 − 0.60√
(0.60)(0.40)

100

≤ X/100 − 0.60√
(0.60)(0.40)

100

≤ 0.70 − 0.60√
(0.60)(0.40)

100

⎤⎦
.= P(−2.04 ≤ Z ≤ 2.04)

= 0.9586

Figure 5.4.1 shows the two probabilities just calculated as areas under the prob-
ability functions describing X

10 and X
100 . As we would expect, the larger sample size

produces a more precise estimator—with n =10, X
10 has only a 67% chance of lying in

the range from 0.50 to 0.70; for n = 100, though, the probability of X
100 falling within

0.10 of the true p (= 0.60) increases to 96%.
Are the additional ninety observations worth the gain in precision that we see in

Figure 5.4.1? Maybe yes and maybe no. In general, the answer to that sort of ques-
tion depends on two factors: (1) the cost of taking additional measurements, and
(2) the cost of making bad decisions or inappropriate inferences because of inaccu-
rate estimates. In practice, both costs—especially the latter—can be very difficult to
quantify.

Unbiasedness

Because they are random variables, estimators will take on different values from
sample to sample. Typically, some samples will yield θe’s that underestimate θ while
others will lead to θe’s that are numerically too large. Intuitively, we would like the
underestimates to somehow “balance out” the overestimates—that is, θ̂ should not
systematically err in any one particular direction.

Figure 5.4.2 shows the pdfs for two estimators, θ̂1 and θ̂2. Common sense tells us
that θ̂1 is the better of the two because fθ̂1

(u) is centered with respect to the true θ ;
θ̂2, on the other hand, will tend to give estimates that are too large because the bulk
of fθ̂2

(u) lies to the right of the true θ .



314 Chapter 5 Estimation

Figure 5.4.2

True θ

f    (u)θ̂ 1

True θ

f    (u)θ̂ 2

Definition 5.4.1. Suppose that Y1,Y2, . . . ,Yn is a random sample from the
continuous pdf fY (y; θ), where θ is an unknown parameter. An estimator
θ̂ [= h(Y1,Y2, . . . ,Yn)] is said to be unbiased (for θ) if E(θ̂) = θ for all θ . [The
same concept and terminology apply if the data consist of a random sample
X1, X2, . . . , Xn drawn from a discrete pdf pX (k; θ)].

Example
5.4.2

It was mentioned at the outset of this section that θ̂1 = 3
2 Y and θ̂2 = Ymax are two

estimators for θ in the pdf fY (y; θ)= 2y
θ2 , 0 ≤ y ≤ θ . Are either or both unbiased?

First we need E(Y ), which is
∫ θ

0 y · 2y
θ2 dy = 2

3θ . Then using the properties of
expected values, we can show that θ̂1 is unbiased for all θ :

E(θ̂1)= E

(
3

2
Y

)
= 3

2
E(Y )= 3

2
E(Y )= 3

2
· 2

3
θ = θ

The maximum likelihood estimator, on the other hand, is obviously biased—
since Ymax is necessarily less than or equal to θ , its pdf will not be centered with
respect to θ , and E(Ymax) will be less than θ . The exact factor by which Ymax tends to
underestimate θ is readily calculated. Recall from Theorem 3.10.1 that

fYmax(y)= nFY (y)n−1 fY (y)

The cdf for Y is

FY (y)=
∫ y

0

2t

θ2
dt = y2

θ2

Then

fYmax(y)= n

(
y2

θ2

)n−1
2y

θ2
= 2n

θ2n
y2n−1,0 ≤ y ≤ θ

Therefore,

E(Ymax)=
∫ θ

0
y · 2n

θ2n
y2n−1dy = 2n

θ2n

∫ θ

0
y2ndy = 2n

θ2n
· θ2n+1

2n + 1
= 2n

2n + 1
θ

lim
n→∞

2n
2n+1θ =θ . Intuitively, this decrease in the bias makes sense because fθ2 becomes

increasingly concentrated around θ as n grows.

Comment For any finite n, we can construct an estimator based on Ymax that is
unbiased. Let θ̂3 = 2n+1

2n · Ymax. Then

E(θ̂3)= E

(
2n + 1

2n
· Ymax

)
= 2n + 1

2n
E(Ymax)= 2n + 1

2n
· 2n

2n + 1
θ = θ
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Example
5.4.3

Let X1, X2, . . . , Xn be a random sample from a discrete pdf pX (k; θ), where θ = E(X)

is an unknown parameter. Consider the estimator

θ̂ =
n∑

i=1

ai Xi

where the ai ’s are constants. For what values of a1,a2, . . . ,an will θ̂ be unbiased?
By assumption, θ = E(X), so

E(θ̂) = E

( n∑
i=1

ai Xi

)

=
n∑

i=1

ai E(Xi )=
n∑

i=1

aiθ

= θ

n∑
i=1

ai

Clearly, θ̂ will be unbiased for any set of ai ’s for which
n∑

i=1
ai = 1.

Example
5.4.4

Given a random sample Y1,Y2, . . . ,Yn from a normal distribution whose parameters
μ and σ 2 are both unknown, the maximum likelihood estimator for σ 2 is

σ̂ 2 = 1

n

n∑
i=1

(Yi − Y )2

(recall Example 5.2.4). Is σ̂ 2 unbiased for σ 2? If not, what function of σ̂ 2 does have
an expected value equal to σ 2?

Notice, first, from Theorem 3.6.1 that for any random variable Y , Var(Y ) =
E(Y 2)−[E(Y )]2. Also, from Section 3.9, for any average, Y , of a sample of n random
variables, Y1,Y2, . . . ,Yn , E(Y )= E(Yi ) and Var(Y )= (1/n)Var(Yi ). Using those results,
we can write

E(σ̂ 2)= E

[
1

n

n∑
i=1

(Yi − Y )2

]

= E

[
1

n

n∑
i=1

(
Y 2

i − 2Yi Y + Y
2)]

= E

[
1

n

(
n∑

i=1

Y 2
i − nY

2

)]

= 1

n

[
n∑

i=1

E
(
Y 2

i

)− nE(Y
2
)

]

= 1

n

[
n∑

i=1

(
σ 2 +μ2

)− n(
σ 2

n
+μ2)

]

= n − 1

n
σ 2

Since the latter is not equal to σ 2, σ̂ 2 is biased.
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To “unbias” the maximum likelihood estimator in this case, we need simply mul-
tiply σ̂ 2 by n

n−1 . By convention, the unbiased version of the maximum likelihood
estimator for σ 2 in a normal distribution is denoted S2 and is referred to as the
sample variance:

S2 = sample variance = n

n − 1
· 1

n

n∑
i=1

(Yi − Y )2

= 1

n − 1

n∑
i=1

(Yi − Y )2

Comment The square root of the sample variance is called the sample standard
deviation:

S = sample standard deviation =
√√√√ 1

n − 1

n∑
i=1

(Yi − Y )2

In practice, S is the most commonly used estimator for σ even though E(S) �= σ

[despite the fact that E(S2)= σ 2].

Questions

5.4.1. Two chips are drawn without replacement from an
urn containing five chips, numbered 1 through 5. The aver-
age of the two drawn is to be used as an estimator, θ̂ ,
for the true average of all the chips (θ = 3). Calculate
P(|θ̂ − 3|> 1.0).

5.4.2. Suppose a random sample of size n = 6 is drawn
from the uniform pdf fY (y; θ) = 1/θ,0 ≤ y ≤ θ , for the
purpose of using θ̂ = Ymax to estimate θ .

(a) Calculate the probability that θ̂ falls within 0.2 of θ

given that the parameter’s true value is 3.0.
(b) Calculate the probability of the event asked for in

part (a), assuming the sample size is 3 instead of 6.

5.4.3. Five hundred adults are asked whether they favor
a bipartisan campaign finance reform bill. If the true pro-
portion of the electorate in favor of the legislation is 52%,
what are the chances that fewer than half of those in the
sample support the proposal? Use a Z transformation to
approximate the answer.

5.4.4. A sample of size n = 16 is drawn from a normal dis-
tribution where σ = 10 but μ is unknown. If μ = 20, what
is the probability that the estimator μ̂= Y will lie between
19.0 and 21.0?

5.4.5. Suppose X1, X2, . . . , Xn is a random sample of size n
drawn from a Poisson pdf where λ is an unknown param-
eter. Show that λ̂ = X is unbiased for λ. For what type of
parameter, in general, will the sample mean necessarily be

an unbiased estimator? (Hint: The answer is implicit in the
derivation showing that X is unbiased for the Poisson λ.)

5.4.6. Let Ymin be the smallest order statistic in a random
sample of size n drawn from the uniform pdf, fY (y; θ) =
1/θ,0 ≤ y ≤ θ . Find an unbiased estimator for θ based on
Ymin.

5.4.7. Let Y be the random variable described in
Example 5.2.3, where fY (y, θ) = e−(y−θ), y ≥ θ , θ > 0. Show
that Ymin − 1

n
is an unbiased estimator of θ .

5.4.8. Suppose that 14, 10, 18, and 21 constitute a random
sample of size 4 drawn from a uniform pdf defined over
the interval [0, θ ], where θ is unknown. Find an unbiased
estimator for θ based on Y ′

3, the third order statistic. What
numerical value does the estimator have for these partic-
ular observations? Is it possible that we would know that
an estimate for θ based on Y ′

3 was incorrect, even if we had
no idea what the true value of θ might be? Explain.

5.4.9. A random sample of size 2,Y1 and Y2, is drawn from
the pdf

fY (y; θ)= 2yθ 2, 0 < y <
1

θ
What must c equal if the statistic c(Y1 + 2Y2) is to be an
unbiased estimator for 1

θ
?

5.4.10. A sample of size 1 is drawn from the uniform pdf
defined over the interval [0, θ ]. Find an unbiased estimator
for θ 2. (Hint: Is θ̂ = Y 2 unbiased?)

5.4.11. Suppose that W is an unbiased estimator for θ .
Can W 2 be an unbiased estimator for θ 2?
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5.4.12. We showed in Example 5.4.4 that σ̂ 2 =
1
n

n∑
i=1

(Yi − Y )
2

is biased for σ 2. Suppose μ is known and does

not have to be estimated by Y . Show that σ̂ 2 = 1
n

n∑
i=1

(Yi −μ)2

is unbiased for σ 2.

5.4.13. As an alternative to imposing unbiasedness, an
estimator’s distribution can be “centered” by requiring
that its median be equal to the unknown parameter θ . If it
is, θ̂ is said to be median unbiased. Let Y1,Y2, . . . ,Yn be a
random sample of size n from the uniform pdf, fY (y; θ) =
1/θ,0 ≤ y ≤ θ . For arbitrary n, is θ̂ = n+1

n
· Ymax median

unbiased? Is it median unbiased for any value of n?

5.4.14. Let Y1,Y2, . . . ,Yn be a random sample of size n
from the pdf fY (y; θ) = 1

θ
e−y/θ , y > 0. Let θ̂ = n · Ymin. Is θ̂

unbiased for θ? Is θ̂ = 1
n

n∑
i=1

Yi unbiased for θ?

5.4.15. An estimator θ̂n = h(W1, . . . , Wn) is said to be
asymptotically unbiased for θ if lim

n→∞
E(θ̂n) = θ . Suppose W

is a random variable with E(W ) = μ and with variance
σ 2. Show that W

2
is an asymptotically unbiased estimator

for μ2.

5.4.16. Is the maximum likelihood estimator for σ 2 in a
normal pdf, where both μ and σ 2 are unknown, asymptot-
ically unbiased?

Efficiency

As we have seen, unknown parameters can have a multiplicity of unbiased estima-
tors. For samples drawn from the uniform pdf, fY (y; θ)=1/θ,0≤ y ≤ θ , for example,

both θ̂ = n+1
n · Ymax and θ̂ = 2

n

n∑
i=1

Yi have expected values equal to θ . Does it matter

which we choose?
Yes. Unbiasedness is not the only property we would like an estimator to have;

also important is its precision. Figure 5.4.3 shows the pdfs associated with two hypo-
thetical estimators, θ̂1 and θ̂2. Both are unbiased for θ , but θ̂2 is clearly the better of
the two because of its smaller variance. For any value r ,

P(θ − r ≤ θ̂2 ≤ θ + r)> P(θ − r ≤ θ̂1 ≤ θ + r)

That is, θ̂2 has a greater chance of being within a distance r of the unknown θ than
does θ̂1.

Definition 5.4.2. Let θ̂1 and θ̂2 be two unbiased estimators for a parameter θ . If

Var(θ̂1)<Var(θ̂2)

we say that θ̂1 is more efficient than θ̂2. Also, the relative efficiency of θ̂1 with
respect to θ̂2 is the ratio Var(θ̂2)/Var(θ̂1).

Figure 5.4.3

θ – r θ θ + r

f    (u)θ^2

^P (| θ  – θ | ≤ r)2

^P (| θ  – θ | ≤ r)1

f    (u)θ̂1
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Example
5.4.5

Let Y1, Y2, and Y3 be a random sample from a normal distribution where both
μ and σ are unknown. Which of the following is a more efficient estimator
for μ?

μ̂1 = 1

4
Y1 + 1

2
Y2 + 1

4
Y3

or

μ̂2 = 1

3
Y1 + 1

3
Y2 + 1

3
Y3

Notice, first, that both μ̂1 and μ̂2 are unbiased for μ:

E(μ̂1)= E

(
1

4
Y1 + 1

2
Y2 + 1

4
Y3

)
= 1

4
E(Y1)+ 1

2
E(Y2)+ 1

4
E(Y3)

= 1

4
μ+ 1

2
μ+ 1

4
μ

=μ

and

E(μ̂2)= E

(
1

3
Y1 + 1

3
Y2 + 1

3
Y3

)
= 1

3
E(Y1)+ 1

3
E(Y2)+ 1

3
E(Y3)

= 1

3
μ+ 1

3
μ+ 1

3
μ

=μ

But Var(μ̂2)< Var(μ̂1) so μ̂2 is the more efficient of the two:

Var(μ̂1)= Var

(
1

4
Y1 + 1

2
Y2 + 1

4
Y3

)
= 1

16
Var(Y1)+ 1

4
Var(Y2)+ 1

16
Var(Y3)

= 3σ 2

8

Var(μ̂2)= Var

(
1

3
Y1 + 1

3
Y2 + 1

3
Y3

)
= 1

9
Var(Y1)+ 1

9
Var(Y2)+ 1

9
Var(Y3)

= 3σ 2

9

(The relative efficiency of μ̂2 to μ̂1 is

3σ 2

8

/
3σ 2

9

or 1.125.)
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Example
5.4.6

Let Y1, . . . ,Yn be a random sample from the pdf fY (y; θ) = 2y
θ2 , 0 ≤ y ≤ θ . We know

from Example 5.4.2 that θ̂1 = 3
2 Y and θ̂2 = 2n+1

2n Ymax are both unbiased for θ . Which
estimator is more efficient?

First, let us calculate the variance of θ̂1 = 3
2 Y . To do so, we need the variance of

Y . To that end, note that

E(Y 2)=
∫ θ

0
y2 · 2y

θ2
dy = 2

θ2

∫ θ

0
y3dy = 2

θ2
· θ4

4
= 1

2
θ2

and

Var(Y )= E(Y 2)− E(Y )2 = 1

2
θ2 −
(

2

3
θ

)2

= θ2

18

Then

Var(θ̂1)= Var

(
3

2
Y

)
= 9

4
Var(Y )= 9

4

Var(Y )

n
= 9

4n
· θ2

18
= θ2

8n

To address the variance of θ̂2 = 2n+1
2n Ymax, we start with finding the variance of

Ymax. Recall that its pdf is

nFY (y)n−1 fY (y)= 2n

θ2n
y2n−1,0 ≤ y ≤ θ

From that expression, we obtain

E(Y 2
max)=

∫ θ

0
y2 · 2n

θ2n
y2n−1dy = 2n

θ2n

∫ θ

0
y2n+1dy = 2n

θ2n
· θ2n+2

2n + 2
= n

n + 1
θ2

and then

Var(Ymax)= E(Y 2
max)− E(Ymax)

2 = n

n + 1
θ2 −
(

2n

2n + 1
θ

)2

= n

(n + 1)(2n + 1)2
θ2

Finally,

Var(θ̂2)= Var

(
2n + 1

2n
Ymax

)
= (2n + 1)2

4n2
Var(Ymax)= (2n + 1)2

4n2
· n

(n + 1)(2n + 1)2
θ2

= 1

4n(n + 1)
θ2

Note that Var(θ̂2)= 1
4n(n+1)

θ2 < 1
8n θ2 = Var(θ̂1) for n > 1, so we say that θ̂2 is more

efficient than θ̂1. The relative efficiency of θ̂2 with respect to θ̂1 is the ratio of their
variances:

Var(θ̂1)

Var(θ̂2)
= 1

8n
θ2 ÷ 1

4n(n + 1)
θ2 = 4n(n + 1)

8n
= (n + 1)

2

Questions

5.4.17. Let X1, X2, . . . , Xn denote the outcomes of a series
of n independent trials, where

Xi =
{

1 with probability p
0 with probability 1 − p

for i = 1,2, . . . ,n. Let X = X1 + X2 + · · · + Xn .

(a) Show that p̂1 = X1 and p̂2 = X
n

are unbiased estima-
tors for p.

(b) Intuitively, p̂2 is a better estimator than p̂1 because
p̂1 fails to include any of the information about the
parameter contained in trials 2 through n. Verify that
speculation by comparing the variances of p̂1 and p̂2.
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5.4.18. Suppose that n = 5 observations are taken from
the uniform pdf, fY (y; θ) = 1/θ,0 ≤ y ≤ θ , where θ is
unknown. Two unbiased estimators for θ are

θ̂1 = 6

5
· Ymax and θ̂2 = 6 · Ymin

Which estimator would be better to use? [Hint: What must
be true of Var(Ymax) and Var(Ymin) given that fY (y; θ) is
symmetric?] Does your answer as to which estimator is
better make sense on intuitive grounds? Explain.

5.4.19. Let Y1,Y2, . . . ,Yn be a random sample of size n
from the pdf fY (y; θ)= 1

θ
e−y/θ , y > 0.

(a) Show that θ̂1 = Y1, θ̂2 = Y , and θ̂3 = n · Ymin are all
unbiased estimators for θ .

(b) Find the variances of θ̂1, θ̂2, and θ̂3.
(c) Calculate the relative efficiencies of θ̂1 to θ̂3 and θ̂2

to θ̂3.

5.4.20. Given a random sample of size n from a Pois-
son distribution, λ̂1 = X1 and λ̂2 = X are two unbiased
estimators for λ. Calculate the relative efficiency of λ̂1

to λ̂2.

5.4.21. If Y1,Y2, . . . ,Yn are random observations from a
uniform pdf over [0, θ ], both θ̂1 = ( n+1

n

) · Ymax and θ̂2 =
(n + 1). Ymin are unbiased estimators for θ . Show that
Var(θ̂2)/Var(θ̂1)= n2.

5.4.22. Suppose that W1 is a random variable with mean
μ and variance σ 2

1 and W2 is a random variable with
mean μ and variance σ 2

2. From Example 5.4.3, we know
that cW1 + (1 − c)W2 is an unbiased estimator of μ for
any constant c > 0. If W1 and W2 are independent, for
what value of c is the estimator cW1 + (1 − c)W2 most
efficient?

5.5 Minimum-Variance Estimators: The Cramér-Rao
Lower Bound
Given two estimators, θ̂1 and θ̂2, each unbiased for the parameter θ , we know from
Section 5.4 which is “better”—the one with the smaller variance. But nothing in that
section speaks to the more fundamental question of how good θ̂1 and θ̂2 are relative
to the infinitely many other unbiased estimators for θ . Is there a θ̂3, for example,
that has a smaller variance than either θ̂1 or θ̂2 has? Can we identify the unbiased
estimator having the smallest variance? Addressing those concerns is one of the
most elegant, yet practical, theorems in all of mathematical statistics, a result known
as the Cramér-Rao lower bound.

Suppose a random sample of size n is taken from, say, a continuous probability
distribution fY (y; θ), where θ is an unknown parameter. Associated with fY (y; θ) is
a theoretical limit below which the variance of any unbiased estimator for θ cannot
fall. That limit is the Cramér-Rao lower bound. If the variance of a given θ̂ is equal
to the Cramér-Rao lower bound, we know that estimator is optimal in the sense that
no unbiased θ̂ can estimate θ with greater precision.

Theorem
5.5.1

(Cramér-Rao Inequality.) Let fY (y; θ) be a continuous pdf with continuous first-order
and second-order derivatives. Also, suppose that the set of y values, where fY (y; θ) �=0,
does not depend on θ .

Let Y1,Y2, . . . ,Yn be a random sample from fY (y; θ), and let θ̂ = h(Y1,Y2, . . . ,Yn)
be any unbiased estimator of θ . Then

Var(θ̂)≥
{

nE

[(
∂ ln fY (Y ; θ)

∂θ

)2
]}−1

=
{
−nE

[
∂2 ln fY (Y ; θ)

∂θ2

]}−1

[A similar statement holds if the n observations come from a discrete pdf, pX (k; θ)].

Proof See (93). �
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Example
5.5.1

Suppose the random variables X1, X2, . . . , Xn denote the number of successes
(0 or 1) in each of n independent trials, where p= P(Success occurs at any given trial)
is an unknown parameter. Then

pXi (k; p)= pk(1 − p)1−k, k = 0,1; 0 < p < 1

Let X = X1 + X2 + · · · + Xn = total number of successes and define p̂ = X
n . Clearly,

p̂ is unbiased for p
[

E( p̂)= E
(

X
n

)= E(X)

n = np
n = p

]
. How does Var( p̂) compare with

the Cramér-Rao lower bound for pXi (k; p)?
Note, first, that

Var( p̂)= Var

(
X

n

)
= 1

n2
Var(X)= 1

n2
np(1 − p)= p(1 − p)

n

(since X is a binomial random variable). To evaluate, say, the second form of the
Cramér-Rao lower bound, we begin by writing

ln pXi (Xi ; p)= Xi ln p + (1 − Xi ) ln(1 − p)

Moreover,

∂ ln pXi (Xi ; p)

∂p
= Xi

p
− 1 − Xi

1 − p

and

∂2 ln pXi (Xi ; p)

∂p2
=− Xi

p2
− 1 − Xi

(1 − p)2

Taking the expected value of the second derivative gives

E

[
∂2 ln pXi (Xi ; p)

∂p2

]
=− p

p2
− (1 − p)

(1 − p)2
=− 1

p(1 − p)

The Cramér-Rao lower bound, then, reduces to

1

−n
[
− 1

p(1−p)

] = p(1 − p)

n

which equals the variance of p̂ = X
n . It follows that X

n is the preferred statistic for
estimating the binomial parameter p: No unbiased estimator can possibly be more
precise.

Definition 5.5.1. Let  denote the set of all estimators θ̂ = h(Y1,Y2, . . . ,Yn)

that are unbiased for the parameter θ in the continuous pdf fY (y; θ). We say
that θ̂∗ is a best (or minimum-variance) estimator if θ̂∗ ∈ and

Var(θ̂∗)≤ Var(θ̂) for all θ̂ ∈

[Similar terminology applies if  is the set of all unbiased estimators for the
parameter  in a discrete pdf, pX (k; θ)].

Related to the notion of a best estimator is the concept of efficiency. The connec-
tion is spelled out in Definition 5.5.2 for the case where θ̂ is based on data coming
from a continuous pdf fY (y; θ). The same terminology applies if the data are a set
of Xi ’s from a discrete pdf pX (k; θ).
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Definition 5.5.2. Let Y1,Y2, . . . ,Yn be a random sample of size n drawn from
the continuous pdf fY (y; θ). Let θ̂ = h(Y1,Y2, . . . ,Yn) be an unbiased estimator
for θ .

a. The unbiased estimator θ̂ is said to be efficient if the variance of θ̂ equals
the Cramér-Rao lower bound associated with fY (y; θ).

b. The efficiency of an unbiased estimator θ̂ is the ratio of the Cramér-Rao
lower bound for fY (y; θ) to the variance of θ̂ .

Comment The designations “efficient” and “best” are not synonymous. If the vari-
ance of an unbiased estimator is equal to the Cramér-Rao lower bound, then that
estimator by definition is a best estimator. The converse, though, is not always true.
There are situations for which the variances of no unbiased estimators achieve the
Cramér-Rao lower bound. None of those, then, is efficient, but one (or more) could
still be termed best. For the independent trials described in Example 5.5.1, p̂ = X

n is
both efficient and best.

Example
5.5.2

If Y1,Y2, . . . ,Yn is a random sample from fY (y; θ) = 2y/θ2,0 ≤ y ≤ θ, θ̂ = 3
2 Y is an

unbiased estimator for θ (see Example 5.4.2). Show that the variance of θ̂ is less
than the Cramér-Rao lower bound for fY (y; θ).

From Example 5.4.6, we know that

Var(θ̂)= θ2

8n

To calculate the Cramér-Rao lower bound for fY (y; θ), we first note that

ln fY (Y ; θ)= ln(2Y θ−2)= ln 2Y − 2 ln θ

and

∂ ln fY (Y ; θ)

∂θ
= −2

θ

Therefore,

E

[[
∂ ln fY (Y ; θ)

∂θ

]2
]

= E

(
4

θ2

)
=
∫ θ

0

4

θ2
· 2y

θ2
dy

= 4

θ2

and {
nE

[(
∂ ln fY (Y ; θ)

∂θ

)2
]}−1

= θ2

4n

Is the variance of θ̂ less than the Cramér-Rao lower bound? Yes, θ2

8n < θ2

4n . Is the
statement of Theorem 5.5.1 contradicted? No, because the theorem does not apply
in this situation: The set of y’s where fY (y; θ) �= 0 is a function of θ , a condition that
violates one of the Cramér-Rao assumptions.



5.6 Sufficient Estimators 323

Questions

5.5.1. Let Y1,Y2, . . . ,Yn be a random sample from
fY (y; θ) = 1

θ
e−y/θ , y > 0. Compare the Cramér-Rao lower

bound for fY (y; θ) to the variance of the maximum like-

lihood estimator for θ, θ̂ = 1
n

n∑
i=1

Yi . Is Y a best estimator

for θ?

5.5.2. Let X1, X2, . . . , Xn be a random sample of size
n from the Poisson distribution, pX (k;λ) = e−λλk

k! , k =
0,1, . . .. Show that λ̂ = 1

n

n∑
i=1

Xi is an efficient estimator

for λ.

5.5.3. Suppose a random sample of size n is taken from a
normal distribution with mean μ and variance σ 2, where
σ 2 is known. Compare the Cramér-Rao lower bound for

fY (y;μ) with the variance of μ̂ = Y = 1
n

n∑
i=1

Yi . Is Y an

efficient estimator for μ?

5.5.4. Let Y1,Y2, . . . ,Yn be a random sample from the
uniform pdf fY (y; θ) = 1/θ , 0 ≤ y ≤ θ . Compare the

Cramér-Rao lower bound for fY (y; θ) with the variance of
the unbiased estimator θ̂ = n+1

n
· Ymax. Discuss.

5.5.5. Let X have the pdf fX (k; θ)= (θ−1)k−1

θk , k =1,2,3, . . .,
θ > 1, which is geometric (p = 1/θ). For this pdf E(X) = θ

and Var(X) = θ(θ − 1) (see Theorem 4.4.1). Is the statistic
X efficient?

5.5.6. Let Y1,Y2, . . . ,Yn be a random sample of size n from
the pdf

fY (y; θ)= 1

(r − 1)!θ r
yr−1e−y/θ , y > 0

(a) Show that θ̂ = 1
r
Y is an unbiased estimator for θ .

(b) Show that θ̂ = 1
r
Y is a minimum-variance estimator

for θ .

5.5.7. Prove the equivalence of the two forms given for
the Cramér-Rao lower bound in Theorem 5.5.1. [Hint: Dif-
ferentiate the equation

∫ ∞
−∞ fY (y)dy = 1 with respect to θ

and deduce that
∫ ∞

−∞
∂ ln fY (y)

∂θ
fY (y)dy = 1. Then differenti-

ate again with respect to θ .]

5.6 Sufficient Estimators
Statisticians have proven to be quite diligent (and creative) in articulating properties
that good estimators should exhibit. Sections 5.4 and 5.5, for example, intro-
duced the notions of an estimator being unbiased and having minimum variance;
Section 5.7 will explain what it means for an estimator to be “consistent.” All of
those properties are easy to motivate, and they impose conditions on the proba-
bilistic behavior of θ̂ that make eminently good sense. In this section, we look at a
deeper property of estimators, one that is not so intuitive but has some particularly
important theoretical implications.

Whether or not an estimator is sufficient refers to the amount of “information”
it contains about the unknown parameter. Estimates, of course, are calculated using
values obtained from random samples [drawn from either pX (k; θ) or fY (y; θ)]. If
everything that we can possibly know from the data about θ is encapsulated in the
estimate θe, then the corresponding estimator θ̂ is said to be sufficient. A comparison
of two estimators, one sufficient and the other not, should help clarify the concept.

An Estimator That Is Sufficient

Suppose that a random sample of size n—X1 = k1, X2 = k2, . . . , Xn = kn—is taken
from the Bernoulli pdf,

pX (k; p)= pk(1 − p)1−k, k = 0,1

where p is an unknown parameter. We know from Example 5.1.1 that the maximum
likelihood estimator for p is
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p̂ =
(

1

n

) n∑
i=1

Xi

[and the maximum likelihood estimate is pe = ( 1
n

) n∑
i=1

ki ]. To show that p̂ is a suf-

ficient estimator for p requires that we calculate the conditional probability that
X1 = k1, . . . , Xn = kn given that p̂ = pe.

Generalizing the Comment following Example 3.11.3, we can write

P(X1 = k1, . . . , Xn = kn | p̂ = pe)= P(X1 = k1, . . . , Xn = kn ∩ p̂ = pe)

P( p̂ = pe)

= P(X1 = k1, . . . , Xn = kn)

P( p̂ = pe)

But

P(X1 = k1, . . . , Xn = kn) = pk1(1 − p)1−k1 · · · pkn (1 − p)1−kn

= p

n∑
i=1

ki

(1 − p)
n−

n∑
i=1

ki

= pnpe (1 − p)n−npe

and

P( p̂ = pe)= P

(
n∑

i=1

Xi = npe

)
=
(

n

npe

)
pnpe (1 − p)n−npe

since
n∑

i=1
Xi has a binomial distribution with parameters n and p (recall Example

3.9.3). Therefore,

P(X1 = k1, . . . , Xn = kn | p̂ = pe)= pnpe (1 − p)n−npe(
n

npe

)
pnpe (1 − p)n−npe

= 1(
n

npe

) (5.6.1)

Notice that P(X1 = k1, . . . , Xn = kn | p̂ = pe) is not a function of p. That is pre-

cisely the condition that makes p̂ = ( 1
n

) n∑
i=1

Xi a sufficient estimator. Equation 5.6.1

says, in effect, that everything the data can possibly tell us about the parameter
p is contained in the estimate pe. Remember that, initially, the joint pdf of the
sample, P(X1 = k1, . . . , Xn = kn), is a function of the ki ’s and p. What we have just
shown, though, is that if that probability is conditioned on the value of this partic-
ular estimate—that is, on p̂ = pe—then p is eliminated and the probability of the

sample is completely determined [in this case, it equals
(

n
npe

)−1
, where

(
n

npe

)
is the

number of ways to arrange the 0’s and 1’s in a sample of size n for which p̂ = pe].
If we had used some other estimator—say, p̂∗—and if P(X1 = k1, . . . , Xn = kn |

p̂∗ = p∗
e ) had remained a function of p, the conclusion would be that the information

in p∗
e was not “sufficient” to eliminate the parameter p from the conditional prob-

ability. A simple example of such a p̂∗ would be p̂∗ = X1. Then p∗
e would be k1 and

the conditional probability of X1 = k1, . . . , Xn = kn given that p̂∗ = p∗
e would remain

a function of p:

P(X1 = k1, . . . , Xn = kn | p̂∗ = k1)= p

n∑
i=1

ki

(1− p)
n −

n∑
i=1

ki

pk1(1− p)1−k1
= p

n∑
i=2

ki

(1 − p)
n−1−

n∑
i=2

ki
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Comment Some of the dice problems we did in Section 2.4 have aspects that paral-
lel to some extent the notion of an estimator being sufficient. Suppose, for example,
we roll a pair of fair dice without being allowed to view the outcome. Our objective
is to calculate the probability that the sum showing is an even number. If we had no
other information, the answer would be 1

2 . Suppose, though, that two people do see
the outcome—which was, in fact, a sum of 7—and each is allowed to characterize
the outcome without providing us with the exact sum that occurred. Person A tells
us that “the sum was less than or equal to 7”; Person B says that “the sum was an
odd number.”

Whose information is more helpful? Person B’s. The conditional probability of
the sum being even given that the sum is less than or equal to 7 is 9

21 , which still
leaves our initial question largely unanswered:

P(Sum is even | sum ≤ 7) = P(2)+ P(4)+ P(6)

P(2)+ P(3)+ P(4)+ P(5)+ P(6)+ P(7)

=
1

36 + 3
36 + 5

36
1
36 + 2

36 + 3
36 + 4

36 + 5
36 + 6

36

= 9

21

In contrast, Person B utilized the data in a way that definitely answered the original
question:

P(Sum is even | Sum is odd)= 0

In a sense, B’s information was “sufficient”; A’s information was not.

An Estimator That Is Not Sufficient

Suppose a random sample of size n—Y1, Y2, . . . ,Yn—is drawn from the pdf
fY (y; θ) = 2y

θ2 , 0 ≤ y ≤ θ , where θ is an unknown parameter. Recall that the method
of moments estimator is

θ̂ = 3

2
Y = 3

2n

n∑
i=1

Yi

This statistic is not sufficient because all the information in the data that pertains to
the parameter θ is not necessarily contained in the numerical value θe.

If θ̂ were a sufficient statistic, then any two random samples of size n having
the same value for θe should yield exactly the same information about θ . How-
ever, a simple numerical example shows this not to be the case. Consider two
random samples of size 3—y1 = 3, y2 = 4, y3 = 5 and y1 = 1, y2 = 3, y3 = 8. In both
cases,

θe = 3

2
y = 3

2 · 3

3∑
i=1

yi = 6

Do both samples, though, convey the same information about the possible value of
θ? No. Based on the first sample, the true θ could, in fact, be equal to 4. On the
other hand, the second sample rules out the possibility that θ is 4 because one of the
observations (y3 = 8) is larger than 4, but according to the definition of the pdf, all
Yi ’s must be less than θ .
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A Formal Definition

Suppose that X1 = k1, . . . , Xn = kn is a random sample of size n from the discrete pdf
pX (k; θ), where θ is an unknown parameter. Conceptually, θ̂ is a sufficient statistic
for θ if

P(X1 = k1, . . . , Xn = kn | θ̂ = θe)= P(X1 = k1, . . . , Xn = kn ∩ θ̂ = θe)

P(θ̂ = θe)

=

n∏
i=1

pX (ki ; θ)

pθ̂ (θe; θ)
= b(k1, . . . , kn) (5.6.2)

where pθ̂ (θe; θ) is the pdf of the statistic evaluated at the point θ̂ = θe and
b(k1, . . . , kn) is a constant independent of θ . Equivalently, the condition that qualifies
a statistic as being sufficient can be expressed by cross-multiplying Equation 5.6.2.

Definition 5.6.1. Let X1 = k1, . . . , Xn = kn be a random sample of size n from
pX (k; θ). The statistic θ̂ = h(X1, . . . , Xn) is sufficient for θ if the likelihood func-
tion, L(θ), factors into the product of the pdf for θ̂ and a constant that does not
involve θ—that is, if

L(θ)=
n∏

i=1

pX (ki ; θ)= pθ̂ (θe; θ)b(k1, . . . , kn)

A similar statement holds if the data consist of a random sample Y1 =
y1, . . . ,Yn = yn drawn from a continuous pdf fY (y; θ).

Comment If θ̂ is sufficient for θ , then any one-to-one function of θ̂ is also a sufficient
statistic for θ . As a case in point, we showed on p. 324 that

p̂ =
(

1

n

) n∑
i=1

Xi

is a sufficient statistic for the parameter p in a Bernoulli pdf. It is also true, then, that

p̂∗ = n p̂ =
n∑

i=1

Xi

is sufficient for p.

Example
5.6.1

Let X1 = k1, . . . , Xn = kn be a random sample of size n from the Poisson pdf,
pX (k;λ)= e−λλk/k!, k = 0,1,2, . . .. Show that

λ̂ =
n∑

i=1

Xi

is a sufficient statistic for λ.
From Example 3.12.10, we know that λ̂, being a sum of n independent Poisson

random variables, each with parameter λ, is itself a Poisson random variable with
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parameter nλ. By Definition 5.6.1, then, λ̂ is a sufficient statistic for λ if the sample’s
likelihood function factors into a product of the pdf for λ̂ times a constant that is
independent of λ.

But

L(λ)=
n∏

i=1

e−λλki /ki ! = e−nλλ

n∑
i=1

ki
/ n∏

i=1

ki !

=
e−nλn

n∑
i=1

ki

λ

n∑
i=1

ki
(

n∑
i=1

ki

)
!(

n∑
i=1

ki

)
!

n∏
i=1

ki !n
n∑

i=1
ki

= e−nλ(nλ)

n∑
i=1

ki(
n∑

i=1
ki

)
!

·

(
n∑

i=1
ki

)
!

n∏
i=1

ki !n
n∑

i=1
ki

= pλ̂(λe;λ) · b(k1, . . . , kn) (5.6.3)

proving that λ̂ =
n∑

i=1
Xi is a sufficient statistic for λ.

Comment The factorization in Equation 5.6.3 implies that λ̂ =
n∑

i=1
Xi is a sufficient

statistic for λ. It is not, however, an unbiased estimator for λ:

E(λ̂)=
n∑

i=1

E(Xi )=
n∑

i=1

λ = nλ

Constructing an unbiased estimator based on the sufficient statistic, though, is a
simple matter. Let

λ̂∗ = 1

n
λ̂ = 1

n

n∑
i=1

Xi

Then E(λ̂∗)= 1
n E(λ̂)= 1

n nλ=λ, so λ̂∗ is unbiased for λ. Moreover, λ̂∗ is a one-to-one
function of λ̂, so, by the Comment on p. 326, λ̂∗ is, itself, a sufficient estimator
for λ.

A Second Factorization Criterion

Using Definition 5.6.1 to verify that a statistic is sufficient requires that the pdf
pθ̂ [h(k1, . . . , kn); θ ] or fθ̂ [h(y1, . . . , yn); θ ] be explicitly identified as one of the two
factors whose product equals the likelihood function. If θ̂ is complicated, though,
finding its pdf may be prohibitively difficult. The next theorem gives an alternative
factorization criterion for establishing that a statistic is sufficient. It does not require
that the pdf for θ̂ be known.

Theorem
5.6.1

Let X1 = k1, . . . , Xn = kn be a random sample of size n from the discrete pdf pX (k; θ).
The statistic θ̂ = h(X1, . . . , Xn) is sufficient for θ if and only if there are functions
g[h(k1, . . . , kn); θ] and b(k1, . . . , kn) such that
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L(θ)= g[h(k1, . . . , kn); θ ] · b(k1, . . . , kn) (5.6.4)

where the function b(k1, . . . , kn) does not involve the parameter θ . A similar statement
holds in the continuous case.

Proof First, suppose that θ̂ is sufficient for θ . Then the factorization criterion of
Definition 5.6.1 includes Equation 5.6.4 as a special case.

Now, assume that Equation 5.6.4 holds. The theorem will be proved if it can
be shown that g[b(k1, . . . , kn); θ̇] can always be “converted” to include the pdf of θ̂

(at which point Definition 5.6.1 would apply). Let c be some value of the function
b(k1, . . . , kn) and let A be the set of samples of size n that constitute the inverse image
of c—that is, A = h−1(c). Then

pθ̂ (c; θ)=
∑

(k1,k2,...,kn)εA

pX1,X2,...,Xn (k1, k2, . . . , kn)=
∑

(k1,k2,...,kn)εA

n∏
i=1

pXi (ki )

=
∑

(k1,k2,...,kn)εA

g(c; θ) · b(k1, k2, . . . , kn)= g(c; θ) ·
∑

(k1,k2,...,kn)εA

b(k1, k2, . . . , kn)

Since we are interested only in points where pθ̂ (c; θ) �= 0, we can assume that∑
(k1,k2,...,kn)εA

b(k1, k2, . . . , kn) �= 0. Therefore,

g(c; θ)= pθ̂ (c; θ) · 1∑
(k1,k2,...,kn)εA

b(k1, k2, . . . , kn)
(5.6.5)

Substituting the right-hand side of Equation 5.6.5 into Equation 5.6.4 shows that
θ̂ qualifies as a sufficient statistic for θ . A similar argument can be made if the
data consist of a random sample Y1 = y1, . . . ,Yn = yn drawn from a continuous pdf
fY (y; θ). See (200) for more details. �

Example
5.6.2

Suppose Y1, . . . ,Yn is a random sample from fY (y; θ)= 2y
θ2 , 0 ≤ y ≤ θ . We know from

Question 5.2.12 that the maximum likelihood estimator for θ is θ̂ = Ymax. Is Ymax also
sufficient for θ?

Since the set of Y values where fY (y; θ) �= 0 depends on θ , the likelihood func-
tion must be written in a way to include that restriction. The device achieving that
goal is called an indicator function. We define the function I[0,θ](y) by

I[0,θ](y)=
{

1 0 ≤ y ≤ θ

0 otherwise

Then we can write fY (y; θ)= 2y
θ2 · I[0,θ](y) for all y.

The likelihood function is

L(θ)=
n∏

i=1

2yi

θ2
· I[0,θ](yi )=

(
n∏

i=1

2yi

)(
1

θ2n

) n∏
i=1

I[0,θ](yi )

But the critical fact is that

n∏
i=1

I[0,θ](yi )= I[0,θ](ymax)
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Thus the likelihood function decomposes in such a way that the factor involving θ

contains only the yi ’s through ymax:

L(θ)=
(

n∏
i=1

2yi

)(
1

θ2n

) n∏
i=1

I[0,θ](yi )=
[

I[0,θ](ymax)

θ2n

]
·
(

n∏
i=1

2yi

)

This decomposition meets the criterion of Theorem 5.6.1, and Ymax is sufficient for θ .
(Why doesn’t this argument work for Ymin?)

Sufficiency as It Relates to Other Properties of Estimators

This chapter has constructed a rather elaborate facade of mathematical properties
and procedures associated with estimators. We have asked whether θ̂ is unbiased,
efficient, and/or sufficient. How we find θ̂ has also come under scrutiny—some esti-
mators have been derived using the method of maximum likelihood; others have
come from the method of moments. Not all of these aspects of estimators and
estimation, though, are entirely disjoint—some are related and interconnected in
a variety of ways.

Suppose, for example, that a sufficient estimator θ̂S exists for a parameter θ , and
suppose that θ̂M is the maximum likelihood estimator for that same θ . If, for a given
sample, θ̂S = θe, we know from Theorem 5.6.1 that

L(θ)= g(θe; θ) · b(k1, . . . , kn)

Since the maximum likelihood estimate, by definition, maximizes L(θ), it must also
maximize g(θe; θ). But any θ that maximizes g(θe; θ) will necessarily be a function of
θe. It follows, then, that maximum likelihood estimators are necessarily functions of
sufficient estimators—that is, θ̂M = f (θ̂S) (which is the primary theoretical justifica-
tion for why maximum likelihood estimators are preferred to method of moments
estimators).

Sufficient estimators also play a critical role in the search for efficient
estimators—that is, unbiased estimators whose variance equals the Cramér-Rao
lower bound. There will be an infinite number of unbiased estimators for any
unknown parameter in any pdf. That said, there may be a subset of those unbi-
ased estimators that are functions of sufficient estimators. If so, it can be proved [see
(93)] that the variance of every unbiased estimator based on a sufficient estimator
will necessarily be less than the variance of every unbiased estimator that is not a
function of a sufficient estimator. It follows, then, that to find an efficient estimator
for θ , we can restrict our attention to functions of sufficient estimators for θ .

Questions

5.6.1. Let X1, X2, . . . , Xn be a random sample of size
n from the geometric distribution, pX (k; p) = (1 −
p)k−1 p, k = 1,2, . . .. Show that p̂ =

n∑
i=1

Xi is sufficient

for p.

5.6.2. Let X1, X2, and X3 be a set of three indepen-
dent Bernoulli random variables with unknown parameter
p = P(Xi =1). It was shown on p. 324 that p̂ = X1 + X2 + X3

is sufficient for p. Show that the linear combination p̂∗ =
X1 + 2X2 + 3X3 is not sufficient for p.

5.6.3. If θ̂ is sufficient for θ , show that any one-to-one
function of θ̂ is also sufficient for θ .

5.6.4. Show that σ̂ 2 =
n∑

i=1
Y 2

i is sufficient for σ 2 if

Y1,Y2, . . . ,Yn is a random sample from a normal pdf with
μ= 0.
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5.6.5. Let Y1,Y2, . . . ,Yn be a random sample of size n from
the pdf of Question 5.5.6,

fY (y; θ)= 1

(r − 1)!θ r
yr−1e−y/θ , 0 ≤ y

for positive parameter θ and r a known positive integer.
Find a sufficient statistic for θ .

5.6.6. Let Y1,Y2, . . . ,Yn be a random sample of size n from
the pdf fY (y; θ) = θyθ−1,0 ≤ y ≤ 1. Use Theorem 5.6.1 to

show that W =
n∏

i=1
Yi is a sufficient statistic for θ . Is the

maximum likelihood estimator of θ a function of W ?

5.6.7. Suppose a random sample of size n is drawn from
the pdf

fY (y; θ)= e−(y−θ), θ ≤ y

(a) Show that θ̂ = Ymin is sufficient for the threshold
parameter θ .

(b) Show that Ymax is not sufficient for θ .

5.6.8. Suppose a random sample of size n is drawn from
the pdf

fY (y; θ)= 1

θ
, 0 ≤ y ≤ θ

Find a sufficient statistic for θ .

5.6.9. A probability model gW (w; θ) is said to be
expressed in exponential form if it can be written as

gW (w; θ)= eK (w)p(θ)+S(w)+q(θ)

where the range of W is independent of θ . Show that

θ̂ =
n∑

i=1
K (Wi ) is sufficient for θ .

5.6.10. Write the pdf fY (y;λ) = λe−λy, y > 0, in expo-
nential form and deduce a sufficient statistic for λ (see
Question 5.6.9). Assume that the data consist of a random
sample of size n.

5.6.11. Let Y1,Y2, . . . ,Yn be a random sample from a
Pareto pdf,

fY (y; θ)= θ/(1 + y)θ+1, 0 ≤ y ≤∞; 0 <θ <∞
Write fY (y; θ) in exponential form and deduce a sufficient
statistic for θ (see Question 5.6.9).

5.7 Consistency
The properties of estimators that we have examined thus far—for instance, unbi-
asedness and sufficiency—have assumed that the data consist of a fixed sample size
n. It sometimes makes sense, though, to consider the asymptotic behavior of estima-
tors: We may find, for example, that an estimator possesses a desirable property in
the limit that it fails to exhibit for any finite n.

Recall Example 5.4.4, which focused on the maximum likelihood estimator for

σ 2 in a sample of size n drawn from a normal pdf [that is, on σ̂ 2 = 1
n

n∑
i=1

(Yi − Y )2].

For any finite n, σ̂ 2 is biased:

E

[
1

n

n∑
i=1

(Yi − Y )2

]
= n − 1

n
σ 2 �= σ 2

As n goes to infinity, though, the limit of E(σ̂ 2) does equal σ 2, and we say that σ̂ 2 is
asymptotically unbiased.

Introduced in this section is a second asymptotic characteristic of an estima-
tor, a property known as consistency. Unlike asymptotic unbiasedness, consistency
refers to the shape of the pdf for θ̂n and how that shape changes as a function of n.
(To emphasize the fact that the estimator for a parameter is now being viewed as a
sequence of estimators, we will write θ̂n instead of θ̂ .)

Definition 5.7.1. An estimator θ̂n = h(W1, W2, . . . , Wn) is said to be consistent
for θ if it converges in probability to θ—that is, if for all ε > 0,

lim
n→∞ P(| θ̂n − θ |< ε)= 1
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Comment To solve certain kinds of sample-size problems, it can be helpful to think
of Definition 5.7.1 in an epsilon/delta context; that is, θ̂n is consistent for θ if for all
ε > 0 and δ > 0, there exists an n(ε, δ) such that

P(|θ̂n − θ |< ε)> 1 − δ for n > n(ε, δ)

Example
5.7.1

Let Y1,Y2, . . . ,Yn be a random sample from the uniform pdf

fY (y; θ)= 1

θ
, 0 ≤ y ≤ θ

and let θ̂n = Ymax. We already know that Ymax is biased for θ , but is it consistent?
Recall from Question 5.4.2 that

fYmax(y)= nyn−1

θn
, 0 ≤ y ≤ θ

Therefore,

P(|θ̂n − θ |<ε)= P(θ − ε < θ̂n <θ) =
∫ θ

θ−ε

nyn−1

θn
dy = yn

θn

∣∣∣∣θ
θ−ε

= 1 −
(

θ − ε

θ

)n

Since [(θ − ε)/θ ] < 1, it follows that [(θ − ε)/θ ]n → 0 as n → ∞. Therefore,
lim

n→∞ P(|θ̂n − θ | <ε) = 1, proving that θ̂n = Ymax is consistent for θ .

Figure 5.7.1 illustrates the convergence of θ̂n . As n increases, the shape of fYmax

(y) changes in such a way that the pdf becomes increasingly concentrated in an
ε-neighborhood of θ . For any n > n(ε, δ), P(|θ̂n − θ | <ε)> 1 − δ.

θ + ε

0 1

θ

θ – ε

2 3

^P (| θ  – θ | < ε)  1 – δ2

nn(ε , δ )

^P (| θ  – θ  | < ε) > 1 – δn

Figure 5.7.1

If θ , ε, and δ are specified, we can calculate n(ε, δ), the smallest sample size that
will enable θ̂n to achieve a given precision. For example, suppose θ = 4. How large a
sample is required to give θ̂n an 80% chance of lying within 0.10 of θ?

In the terminology of the Comment on p. 331, ε = 0.10, δ = 0.20, and

P(|θ̂ − 4| < 0.10)= 1 −
(

4 − 0.10

4

)n

≥ 1 − 0.20

Therefore,

(0.975)n(ε,δ) = 0.20

which implies that n(ε, δ)= 64.
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A useful result for establishing consistency is Chebyshev’s inequality, which
appears here as Theorem 5.7.1. More generally, the latter serves as an upper bound
for the probability that any random variable lies outside an ε-neighborhood of its
mean.

Theorem
5.7.1

(Chebyshev’s inequality.) Let W be any random variable with mean μ and variance
σ 2. For any ε > 0,

P(|W −μ| <ε)≥ 1 − σ 2

ε2

or, equivalently,

P(|W −μ| ≥ ε)≤ σ 2

ε2

Proof In the continuous case,

Var(Y ) =
∫ ∞

−∞
(y −μ)2 fY (y)dy

=
∫ μ−ε

−∞
(y −μ)2 fY (y)dy +

∫ μ+ε

μ−ε

(y −μ)2 fY (y)dy +
∫ ∞

μ+ε

(y −μ)2 fY (y)dy

Omitting the nonnegative middle integral gives an inequality:

Var(Y ) ≥
∫ μ−ε

−∞
(y −μ)2 fY (y)dy +

∫ ∞

μ+ε

(y −μ)2 fY (y)dy

≥
∫

|y−μ|≥ε

(y −μ)2 fY (y)dy

≥
∫

|y−μ|≥ε

ε2 fY (y)dy

= ε2 P(|Y −μ| ≥ ε)

Division by ε2 completes the proof. (If the random variable is discrete, replace the
integrals with summations.) �

Example
5.7.2

Suppose that X1, X2, . . . , Xn is a random sample of size n from a discrete pdf

pX (k;μ), where E(X) = μ and Var(X) = σ 2 < ∞. Let μ̂n = ( 1
n

) n∑
i=1

Xi . Is μ̂n a

consistent estimator for μ?
According to Chebyshev’s inequality,

P(|μ̂n −μ| <ε)> 1 − Var(μ̂n)

ε2

But Var(μ̂n)= Var
(

1
n

n∑
i=1

Xi

)
= 1

n2

n∑
i=1

Var(Xi )= (1/n2) · nσ 2 = σ 2/n, so

P(|μ̂n −μ| <ε)> 1 − σ 2

nε2

For any ε, δ, and σ 2, an n can be found that makes σ 2

nε2 < δ. Therefore, lim
n→∞ P(|μ̂n −

μ| <ε)= 1 (i.e., μ̂n is consistent for μ).
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Comment The fact that the sample mean, μ̂n , is necessarily a consistent estimator
for the true mean μ, no matter what pdf the data come from, is often referred to as
the weak law of large numbers. It was first proved by Chebyshev in 1866.

Comment We saw in Section 5.6 that one of the theoretical reasons that justifies
using the method of maximum likelihood to identify good estimators is the fact
that maximum likelihood estimators are necessarily functions of sufficient statis-
tics. As an additional rationale for seeking maximum likelihood estimators, it can be
proved under very general conditions that maximum likelihood estimators are also
consistent (see 93).

Questions

5.7.1. How large a sample must be taken from a normal
pdf where E(Y ) = 18 in order to guarantee that μ̂n = Y n =
1
n

n∑
i=1

Yi has a 90% probability of lying somewhere in the

interval [16, 20]? Assume that σ = 5.0.

5.7.2. Let Y1,Y2, . . . ,Yn be a random sample of size n from

a normal pdf having μ = 0. Show that S 2
n = 1

n

n∑
i=1

Y 2
i is a

consistent estimator for σ 2 = Var(Y ).

5.7.3. Suppose Y1,Y2, . . . ,Yn is a random sample from the
exponential pdf, fY (y;λ)= λe−λy , y > 0.

(a) Show that λ̂n = Y1 is not consistent for λ.

(b) Show that λ̂n =
n∑

i=1
Yi is not consistent for λ.

5.7.4. An estimator θ̂n is said to be squared-error consis-
tent for θ if lim

n→∞
E[(θ̂n − θ)2] = 0.

(a) Show that any squared-error consistent θ̂n is asymp-
totically unbiased (see Question 5.4.15).

(b) Show that any squared-error consistent θ̂n is consis-
tent in the sense of Definition 5.7.1.

5.7.5. Suppose θ̂n = Ymax is to be used as an estima-
tor for the parameter θ in the uniform pdf, fY (y; θ) =
1/θ,0≤ y ≤θ . Show that θ̂n is squared-error consistent (see
Question 5.7.4).

5.7.6. If 2n + 1 random observations are drawn from
a continuous and symmetric pdf with mean μ and if
fY (μ;μ) �= 0, then the sample median, Y ′

n+1, is unbiased for
μ, and Var(Y ′

n+1)
.= 1/(8[ fY (μ;μ)]2n) [see (54)]. Show that

μ̂n = Y ′
n+1 is consistent for μ.

5.8 Bayesian Estimation
Bayesian analysis is a set of statistical techniques based on inverse probabilities cal-
culated from Bayes’ Theorem (recall Section 2.4). In particular, Bayesian statistics
provide formal methods for incorporating prior knowledge into the estimation of
unknown parameters.

An interesting example of a Bayesian solution to an unusual estimation problem
occurred some years ago in the search for a missing nuclear submarine. In the spring
of 1968, the USS Scorpion was on maneuvers with the Sixth Fleet in Mediterranean
waters. In May, she was ordered to proceed to her homeport of Norfolk, Virginia.
The last message from the Scorpion was received on May 21, and indicated her
position to be about fifty miles south of the Azores, a group of islands eight hundred
miles off the coast of Portugal. Navy officials decided that the sub had sunk some-
where along the eastern coast of the United States. A massive search was mounted,
but to no avail, and the Scorpion’s fate remained a mystery.

Enter John Craven, a Navy expert in deep-water exploration, who believed the
Scorpion had not been found because it had never reached the eastern seaboard and
was still somewhere near the Azores. In setting up a search strategy, Craven divided
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the area near the Azores into a grid of n squares, and solicited the advice of a group
of veteran submarine commanders on the chances of the Scorpion having been lost
in each of those regions. Combining their opinions resulted in a set of probabilities,
P(A1), P(A2), . . . , P(An), that the sub had sunk in areas 1, 2, . . . , n, respectively.

Now, suppose P(Ak) was the largest of the P(Ai )’s. Then area k would be the
first region searched. Let Bk be the event that the Scorpion would be found if it had
sunk in area k and area k was searched. Assume that the sub was not found. From
Theorem 2.4.2,

P(Ak

∣∣ BC
k )= P(BC

k

∣∣Ak)P(Ak)

P
(
BC

k

∣∣Ak
)
P(Ak)+ P

(
BC

k

∣∣AC
k

)
P
(

AC
k

)
becomes an updated P(Ak)—call it P∗(Ak). The remaining P(Ai )’s, i �= k, can then

be normalized to form the revised probabilities P∗(Ai ), i �= k, where
n∑

i=1
P∗(Ai )= 1.

If P∗(A j ) was the largest of the P∗(Ai )’s, then area j would be searched next. If the
sub was not found there, a third set of probabilities, P∗∗(A1), P∗∗(A2), . . . , P∗∗(An),
would be calculated in the same fashion, and the search would continue.

In October of 1968, the USS Scorpion was, indeed, found near the Azores;
all ninety-nine men aboard had perished. Why it sunk has never been disclosed.
One theory has suggested that one of its torpedoes accidentally exploded; Cold
War conspiracy advocates think it may have been sunk while spying on a group
of Soviet subs. What is known is that the strategy of using Bayes’ Theorem to
update the location probabilities of where the Scorpion might have sunk proved
to be successful.

Prior Distributions and Posterior Distributions

Conceptually, a major difference between Bayesian analysis and non-Bayesian
analysis is the assumptions associated with unknown parameters. In a non-Bayesian
analysis (which would include all the statistical methodology in this book except
the present section), unknown parameters are viewed as constants; in a Bayesian
analysis, parameters are treated as random variables, meaning they have a pdf.

At the outset in a Bayesian analysis, the pdf assigned to the parameter may
be based on little or no information and is referred to as the prior distribution.
As soon as some data are collected, it becomes possible—via Bayes’ Theorem—
to revise and refine the pdf ascribed to the parameter. Any such updated pdf is
referred to as a posterior distribution. In the search for the USS Scorpion, the
unknown parameters were the probabilities of finding the sub in each of the grid
areas surrounding the Azores. The prior distribution on those parameters were
the probabilities P(A1), P(A2), . . . , P(An). Each time an area was searched and
the sub not found, a posterior distribution was calculated—the first was the set
of probabilities P∗(A1), P∗(A2), . . . , P∗(An); the second was the set of probabilities
P∗∗(A1), P∗∗(A2), . . . , P∗∗(An); and so on.

Example
5.8.1

Suppose a retailer is interested in modeling the number of calls arriving at a phone
bank in a five-minute interval. Section 4.2 established that the Poisson distribution
would be the pdf to choose. But what value should be assigned to the Poisson’s
parameter, λ?

If the rate of calls was constant over a twenty-four-hour period, an estimate λe

for λ could be calculated by dividing the total number of calls received during a full
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day by 288, the latter being the number of five-minute intervals in a twenty-four-
hour period. If the random variable X , then, denotes the number of calls received
during a random five-minute interval, the estimated probability that X = k would be

pX (k)= e−λe λk
e

k! , k = 0,1,2, . . ..
In reality, though, the incoming call rate is not likely to remain constant over an

entire twenty-four-hour period. Suppose, in fact, that an examination of telephone
logs for the past several months suggests that λ equals 10 about three-quarters of
the time, and it equals 8 about one-quarter of the time. Described in Bayesian
terminology, the rate parameter is a random variable �, and the (discrete) prior
distribution for � is defined by two probabilities:

p�(8)= P(�= 8)= 0.25

and

p�(10)= P(�= 10)= 0.75

Now, suppose certain facets of the retailer’s operation have recently changed
(different products to sell, different amounts of advertising, etc.). Those changes
may very well affect the distribution associated with the call rate. Updating the prior
distribution for � requires (a) some data and (b) an application of Bayes’ Theorem.
Being both frugal and statistically challenged, the retailer decides to construct a
posterior distribution for � on the basis of a single observation. To that end, a five-
minute interval is preselected at random and the corresponding value for X is found
to be 7. How should p�(8) and p�(10) be revised?

Using Bayes’ Theorem,

P(�= 10 | X = 7) = P(X = 7 | �= 10)P(�= 10)

P(X = 7 | �= 8)P(�= 8)+ P(X = 7 | �= 10)P(�= 10)

= e−10 107

7! (0.75)(
e−8 87

7!
)
(0.25)+ e−10 107

7! (0.75)

= (0.090)(0.75)

(0.140)(0.25)+ (0.090)(0.75)
= 0.659

which implies that

P(�= 8 | X = 7)= 1 − 0.659 = 0.341

Notice that the posterior distribution for � has changed in a way that makes sense
intuitively. Initially, P(�=8) was 0.25. Since the data point, x =7, is more consistent
with � = 8 than with � = 10, the posterior pdf has increased the probability that
� = 8 (from 0.25 to 0.341) and decreased the probability that � = 10 (from 0.75 to
0.659).

Definition 5.8.1. Let W be a statistic dependent on a parameter θ . Call its pdf
fW (w | θ). Assume that θ is the value of a random variable , whose prior dis-
tribution is denoted p(θ), if  is discrete, and f(θ), if  is continuous. The
posterior distribution of , given that W =w, is the quotient

gθ (θ | W =w)=
⎛⎝ pW (w|θ) f(θ)∫∞

−∞ pW (w|θ) f(θ)dθ
if W is discrete

fW (w|θ) f(θ)∫∞
−∞ fW (w|θ) fθ (θ)dθ

if W is continuous

[Note: If  is discrete, call its pdf pθ (θ) and replace the integrations with
summations.]



336 Chapter 5 Estimation

Comment Definition 5.8.1 can be used to construct a posterior distribution even
if no information is available on which to base a prior distribution. In such cases,
the uniform pdf is substituted for either p(θ) or f(θ) and referred to as a
noninformative prior.

Example
5.8.2

Max, a video game pirate (and Bayesian), is trying to decide how many illegal copies
of Zombie Beach Party to have on hand for the upcoming holiday season. To get a
rough idea of what the demand might be, he talks with n potential customers and
finds that X = k would buy a copy for a present (or for themselves). The obvious
choice for a probability model for X , of course, would be the binomial pdf. Given n
potential customers, the probability that k would actually buy one of Max’s illegal
copies is the familiar

pX (k | θ)=
(n

k

)
θ k(1 − θ)n−k, k = 0,1, . . . ,n

where the maximum likelihood estimate for θ is given by θe = k
n .

It may very well be the case, though, that Max has some additional insight about
the value of θ on the basis of similar video games that he illegally marketed in
previous years. Suppose he suspects, for example, that the percentage of potential
customers who will buy Zombie Beach Party is likely to be between 3% and 4% and
probably will not exceed 7%. A reasonable prior distribution for , then, would be
a pdf mostly concentrated over the interval 0 to 0.07 with a mean or median in the
0.035 range.

One such probability model whose shape would comply with the restraints that
Max is imposing is the beta pdf. Written with  as the random variable, the (two-
parameter) beta pdf is given by

f(θ)= �(r + s)

�(r)�(s)
θ r−1(1 − θ)s−1, 0 ≤ θ ≤ 1

The beta distribution with r = 2 and s = 4 is pictured in Figure 5.8.1. By choosing
different values for r and s, f(θ) can be skewed more sharply to the right or
to the left, and the bulk of the distribution can be concentrated close to zero or
close to one. The question is, if an appropriate beta pdf is used as a prior dis-
tribution for , and if a random sample of k potential customers (out of n) said
they would buy the video game, what would be a reasonable posterior distribution
for ?
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From Definition 5.8.1 for the case where W (= X) is discrete and  is continuous,

g(θ | X = k)= pX (k | θ) f(θ)∫∞
−∞ pX (k | θ) f(θ)dθ

Substituting into the numerator gives

pX (k | θ) f(θ)=
(n

k

)
θ k(1 − θ)n−k �(r + s)

�(r)�(s)
θ r−1(1 − θ)s−1

=
(n

k

) �(r + s)

�(r)�(s)
θ k+r−1(1 − θ)n−k+s−1

so

g(θ | X = k) =
( n

k

)
�(r+s)
�(r)�(s) θ

k+r−1(1 − θ)n−k+s−1∫ 1
0

( n
k

)
�(r+s)
�(r)�(s) θ

k+r−1(1 − θ)n−k+s−1 dθ

=
[ ( n

k

)
�(r+s)
�(r)�(s)∫ 1

0

( n
k

)
�(r+s)
�(r)�(s) θ

k+r−1(1 − θ)n−k+s−1 dθ

]
θ k+r−1(1 − θ)n−k+s−1

Notice that if the parameters r and s in the beta pdf were relabeled k + r and
n − k + s, respectively, the equation for f(θ) would be

f(θ)= �(n + r + s)

�(k + r)�(n − k + s)
θ k+r−1(1 − θ)n−k+s−1

But those same exponents for θ and (1 − θ) appear outside the brackets in the
expression for g(θ | X =k). Since there can be only one f(θ) whose variable factors
are θ k+r−1(1 − θ)n−k+s−1, it follows that g(θ | X = k) is a beta pdf with parameters
k + r and n − k + s.

The final step in the construction of a posterior distribution for  is to choose
values for r and s that would produce a (prior) beta distribution having the config-
uration described on p. 336—that is, with a mean or median at 0.035 and the bulk
of the distribution between 0 and 0.07. It can be shown [see (92)] that the expected
value of a beta pdf is r/(r + s). Setting 0.035, then, equal to that quotient implies
that

s
.= 28r

By trial and error with a calculator that can integrate a beta pdf, the values r =4 and
s = 28(4) = 102 are found to yield an f(θ) having almost all of its area to the left
of 0.07. Substituting those values for r and s into g(θ | X = k) gives the completed
posterior distribution:

g(θ | X = k) = �(n + 106)

�(k + 4)�(n − k + 102)
θ k+4−1(1 − θ)n−k+102−1

= (n + 105)!
(k + 3)!(n − k + 101)!θ

k+3(1 − θ)n−k+101

Example
5.8.3

Certain prior distributions “fit” especially well with certain parameters in the sense
that the resulting posterior distributions are easy to work with. Example 5.8.2 was
a case in point—assigning a beta prior distribution to the unknown parameter in a
binomial pdf led to a beta posterior distribution. A similar relationship holds if a
gamma pdf is used as the prior distribution for the parameter in a Poisson model.
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Suppose X1, X2, . . . , Xn denotes a random sample from the Poisson pdf, pX (k |
θ) = e−θ θ k/k!, k = 0,1, . . .. Let W =

n∑
i=1

Xi . By Example 3.12.10, W has a Poisson

distribution with parameter nθ—that is, pW (w | θ)= e−nθ (nθ)w/w!,w = 0,1,2, . . ..
Let the gamma pdf,

f(θ)= μs

�(s)
θ s−1e−μθ , 0 <θ <∞

be the prior distribution assigned to . Then

g(θ | W =w)= pW (w | θ) f(θ)∫
θ

pW (w | θ) f(θ)dθ

where

pW (w | θ) f(θ)= e−nθ (nθ)w

w!
μs

�(s)
θ s−1e−μθ

= nw

w!
μs

�(s)
θw+s−1e−(μ+n)θ

Now, using the same argument that simplified the calculation of the posterior
distribution in Example 5.8.2, we can write

g(θ | W =w)=
[

nw

w!
μs

�(s)∫
θ

pW (w | θ) f(θ)dθ

]
θw+s−1e−(μ+n)θ

But the only pdf having the factors θw+s−1e−(μ+n)θ is the gamma distribution with
parameters w + s and μ+ n. It follows, then, that

g(θ | W =w)= (μ+ n)w+s

�(w + s)
θw+s−1e−(μ+n)θ

Case Study 5.8.1

Predicting the annual number of hurricanes that will hit the U.S. mainland is a
problem receiving a great deal of public attention, given the disastrous sum-
mer of 2004, when four major hurricanes struck Florida causing billions of
dollars of damage and several mass evacuations. For all the reasons discussed
in Section 4.2, the obvious pdf for modeling the number of hurricanes reach-
ing the mainland is the Poisson, where the unknown parameter θ would be the
expected number in a given year.

Table 5.8.1 shows the numbers of hurricanes that actually did come ashore
for three fifty-year periods. Use that information to construct a posterior
distribution for θ . Assume that the prior distribution is a gamma pdf.

(Continued on next page)
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Table 5.8.1

Years Number of Hurricanes

1851–1900 88
1901–1950 92
1951–2000 72

Not surprisingly, meteorologists consider the data from the earliest period,
1851 to 1900 to be the least reliable. Those eighty-eight hurricanes, then, will be
used to formulate the prior distribution. Let

f(θ)= μs

�(s)
θ s−1e−μθ , 0 <θ <∞

Recall from Theorem 4.6.3 that for a gamma pdf, E() = s/μ. For the years
from 1851 to 1900, though, the sample average number of hurricanes per year
was 88

50 . Setting the latter equal to E() allows s = 88 and μ = 50 to be assigned
to the gamma’s parameters. That is, we can take the prior distribution to be

f(θ)= 5088

�(88)
θ88−1e−50θ

Also, the posterior distribution given at the end of Example 5.8.3 becomes

g(θ | W =w)= (50 + n)w+88

�(w + 88)
θw+87e−(50+n)θ

The data, then, to incorporate into the posterior distribution would be the
fact that w = 92 + 72 = 164 hurricanes occurred over the most recent n = 100
years included in the database. Therefore,

g(θ | W =w)= (50 + 100)164+88

�(164 + 88)
θ164+87e−(50+100)θ = (150)252

�(252)
θ251e−150θ

Example
5.8.4

In the examples seen thus far, the joint pdf gW,θ (w, θ) = pW (w | θ) fθ (θ) of a statistic
W and a parameter  [with a prior distribution fθ (θ)] was the starting point in find-
ing the posterior distribution of . For some applications, though, the objective is
not to derive gθ (θ | W =w), but, rather, to find the marginal pdf of W .

For instance, suppose a sample of size n = 1 is drawn from a Poisson pdf, pW (w |
θ) = e−θ θw/w!,w = 0,1, . . . , where the prior distribution is the gamma pdf, fθ (θ) =
μs

�(s) θ
s−1e−μθ . According to Example 5.8.3,

gW,θ (w, θ)= pW (w | θ) fθ (θ)= 1

w!
μs

�(s)
θw+s−1e−(μ+1)θ

What is the corresponding marginal pdf of W —that is, pW (w)?
Recall Theorem 3.7.2. Integrating the joint pdf of W and  over θ gives

pW (w)=
∫ ∞

0
gW,θ (w, θ)dθ

=
∫ ∞

0

1

w!
μs

�(s)
θw+s−1e−(μ+1)θ dθ
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= 1

w!
μs

�(s)

∫ ∞

0
θw+s−1e−(μ+1)θ dθ

= 1

w!
μs

�(s)

�(w + s)

(μ+ 1)w+s

= �(w + s)

w!�(s)

(
μ

μ+ 1

)s ( 1

μ+ 1

)w

But �(w+s)
w!�(s) =

(
w+s−1

w

)
. Finally, let p = μ/(μ + 1), so 1 − p = 1/(μ + 1), and the

marginal pdf reduces to a negative binomial distribution with parameters s and p:

pW (w)=
(

w + s − 1

w

)
ps(1 − p)w

(see Question 4.5.6).

Case Study 5.8.2

Psychologists use a special coordination test to study a person’s likelihood of
making manual errors. For any given person, the number of such errors made
on the test is known to follow a Poisson distribution with some particular value
for the rate parameter, θ . But as we all know (from watching the clumsy peo-
ple around us who spill things and get in our way), θ varies considerably from
person to person. Suppose, in fact, that variability in  can be described by a
gamma pdf. If so, the marginal pdf of the number of errors made by a individual
should have a negative binomial distribution (according to Example 5.8.4).

Columns 1 and 2 of Table 5.8.2 show the number of errors made on the coor-
dination test by a sample of 504 subjects—82 made zero errors, 57 made one
error, and so on. To know whether those responses can be adequately modeled

Table 5.8.2

Number of Observed Negative Binomial Predicted
Errors, w Frequency Frequency

0 82 79.2
1 57 57.1
2 46 46.3
3 39 38.9
4 33 33.3
5 28 28.8
6 25 25.1
7 22 22.0
8 19 19.3
9 17 17.0

10 15 15.0
11 13 13.3
12 12 11.8
13 10 10.4

(Continued on next page)
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Table 5.8.2 (continued)

Number of Observed Negative Binomial Predicted
Errors, w Frequency Frequency

14 9 9.3
15 8 8.3
16 7 7.3
17 6 6.5
18 6 5.8
19 5 5.2
20 5 4.6
21 4 4.1
22 4 3.7
23 3 3.3
24 3 2.9
25 3 2.6
26 2 2.4
27 2 2.1
28 2 1.9
29 2 1.7
30 2 1.5

≥31 13 13.1

Total 504 504.0

by a negative binomial distribution requires that the parameters p and s be
estimated. To that end, it should be noted that the maximum likelihood estimate

for p in a negative binomial is ns/
n∑

i=1
wi . Expected frequencies, then, can be

calculated by choosing a value for s and solving for p. By trial and error, the
entries shown in Column 3 were based on a negative binomial pdf for which
s = 0.8 and p = (504)(0.8)/3821 = 0.106. Clearly, the model fits exceptionally
well, which supports the analysis carried out in Example 5.8.4.

Bayesian Estimation

Fundamental to the philosophy of Bayesian analysis is the notion that all relevant
information about an unknown parameter, θ , is encoded in the parameter’s pos-
terior distribution, g(θ | W = w). Given that premise, an obvious question arises:
How can g(θ | W = w) be used to calculate an appropriate point estimator, θ̂? One
approach, similar to using the likelihood function to find a maximum likelihood esti-
mator, is to differentiate the posterior distribution, in which case the value for which
dg(θ | W =w)/dθ = 0—that is, the mode—becomes θ̂ .

For theoretical reasons, though, a method much preferred by Bayesians is to use
some key ideas from decision theory as a framework for identifying a reasonable θ̂ .
In particular, Bayesian estimates are chosen to minimize the risk associated with θ̂ ,
where the risk is the expected value of the loss incurred by the error in the estimate.
Presumably, as θ̂ − θ gets further away from 0—that is, as the estimation error gets
larger—the loss associated with θ̂ will increase.

Definition 5.8.2. Let θ̂ be an estimator for θ based on a statistic W . The loss
function associated with θ̂ is denoted L(θ̂ , θ), where L(θ̂ , θ)≥ 0 and L(θ, θ)= 0.
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Example
5.8.5

It is typically the case that quantifying in any precise way the consequences, eco-
nomic or otherwise, of θ̂ not being equal to θ is all but impossible. The “generic”
loss functions defined in those situations are chosen primarily for their mathemati-
cal convenience. Two of the most frequently used are L(θ̂ , θ)=|θ̂ − θ | and L(θ̂ , θ)=
(θ̂ − θ)2. Sometimes, though, the context in which a parameter is being estimated
does allow for a loss function to be defined in a very specific and relevant way.

Consider the inventory dilemma faced by Max, the Bayesian video game pirate
whose illegal activities were described in Example 5.8.2. The unknown parameter
in question was θ , the proportion of his n potential customers who would purchase
a copy of Zombie Beach Party. Suppose that Max decides—for whatever reasons—
to estimate θ with θ̂ . As a consequence, it would follow that he should have n θ̂

copies of the video game available. That said, what would be the corresponding loss
funciton?

Here, the implications of θ̂ not being equal to θ are readily quantifiable. If θ̂ < θ ,
then n(θ − θ̂ ) sales will be lost (at a cost of, say, $c per video). On the other hand,
if θ̂ > θ , there will be n(θ̂ − θ) unsold videos, each of which will incur a storage cost
of, say, $d per unit. The loss function that applies to Max’s situation, then, is clearly
defined:

L(θ̂ , θ)=
{

$cn(θ − θ̂ ) if θ̂ < θ

$dn(θ̂ − θ) if θ̂ > θ

Definition 5.8.3. Let L(θ̂ , θ) be the loss function associated with an estimate of
the parameter θ . Let gθ (θ | W = w) be the posterior distribution of the random
variable . Then the risk associated with θ̂ is the expected value of the loss
function with respect to the posterior distribution of θ .

risk =
{∫

θ
L(θ̂ , θ)g(θ | W =w)dθ if  is continuous∑

all θ

L(θ̂ , θ)g(θ | W =w) if  is discrete

Using the Risk Function to Find θ̂

Given that the risk function represents the expected loss associated with the esti-
mator θ̂ , it makes sense to look for the θ̂ that minimizes the risk. Any θ̂ that achieves
that objective is said to be a Bayes estimate. In general, finding the Bayes estimate
requires solving the equation d(risk)/d θ̂ = 0. For two of the most frequently used
loss functions, L(θ̂ , θ)=|θ̂ − θ | and L(θ̂ , θ)= (θ̂ − θ)2, though, there is a much easier
way to calculate θ̂ .

Theorem
5.8.1

Let gθ (θ | W =w) be the posterior distribution for the unknown parameter θ .

a. If the loss function associated with θ̂ is L(θ̂ , θ) = |θ̂ − θ |, then the Bayes estimate
for θ is the median of g(θ | W =w).

b. If the loss function associated with θ̂ is L(θ̂ , θ) = (θ̂ − θ)2, then the Bayes estimate
for θ is the mean of g(θ | W =w).



5.8 Bayesian Estimation 343

Proof

a. The proof follows from a general result for the expected value of a random
variable. The fact that the pdf in the expectation here is a posterior distribution
is irrelevant. The derivation will be given for a continuous random variable
(having a finite expected value); the proof for the discrete case is similar.

Let fW (w) be the pdf for the random variable W , where the median of W is
m. Then

E(|W − m|) =
∫ ∞

−∞
|w − m| fW (w)dw

=
∫ m

−∞
(m −w) fW (w)dw +

∫ ∞

m
(w − m) fW (w)dw

= m
∫ m

−∞
fW (w)dw −

∫ m

−∞
w fW (w)dw

+
∫ ∞

m
w fW (w)dw − m

∫ ∞

m
fW (w)dw

The first and last integrals are equal by definition of the median so,

E(|W − m|)=−
∫ m

−∞
w fW (w)dw +

∫ ∞

m
w fW (w)dw

Now, suppose m ≥ 0 (the proof for negative m is similar). Splitting the first
integral into two parts gives

E(|W − m|)=−
∫ 0

−∞
w fW (w)dw −

∫ m

0
w fW (w)dw +

∫ ∞

m
w fW (w)dw

Notice that the middle integral is positive, so changing its negative sign to a plus
implies that

E(|W − m|)≤−
∫ 0

−∞
w fW (w)dw +

∫ m

0
w fW (w)dw +

∫ ∞

m
w fW (w)dw

≤
∫ 0

−∞
−w fW (w)dw +

∫ ∞

0
w fW (w)dw

Therefore,

E(|W − m|)≤ E(|W |) (5.8.1)

Finally, suppose b is any constant. Then

1

2
= P(W ≤ m)= P(W − b ≤ m − b),

showing that m − b is the median of the random variable W − b. Applying
Equation 5.8.1 to the variable W − b, we can write

E(|W − m|)= E[|(W − b)− (m − b)|] ≤ E(|W − b|)
which implies that the median of g(θ | W =w) is the Bayes estimate for θ when
L(θ̂ , θ)= |θ̂ − θ |.
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b. Let W be any random variable whose mean is μ and whose variance is finite,
and let b be any constant. Then

E[(W − b)2] = E[(W −μ)+ (μ− b)]2

= E[(W −μ)2] + 2(μ− b)E(W −μ)+ (μ− b)2

= Var(W )+ 0 + (μ− b)2

implying that E[(W − b)]2 is minimized when b = μ. It follows that the Bayes
estimate for θ , given a quadratic loss function, is the mean of the posterior
distribution. �

Example
5.8.6

Recall Example 5.8.3, where the parameter in a Poisson distribution was assumed to

have a gamma prior distribution. For a random sample of size n, where W =
n∑

i=1
Xi ,

pW (w|θ)= e−nθ (nθ)w/w!, w = 0,1,2, . . .

f(θ)= μs

�(s)
θ s−1e−μθ

which resulted in the posterior distribution being a gamma pdf with parameters
w + s and μ+ n.

Suppose the loss function associated with θ̂ is quadratic, L(θ̂ , θ) = (θ̂ − θ)2. By
part (b) of Theorem 5.8.1, the Bayes estimate for θ is the mean of the posterior
distribution. From Theorem 4.6.3, though, the mean of g(θ | W = w) is (w + s)/
(μ+ n).

Notice that
w + s

μ+ n
= n

μ+ n

(w
n

)
+ μ

μ+ n

(
s

μ

)
which shows that the Bayes estimate is a weighted average of w

n , the maximum like-
lihood estimate for θ and s

μ
, the mean of the prior distribution. Moreover, as n gets

large, the Bayes estimate converges to the maximum likelihood estimate.

Questions

5.8.1. Suppose that X is a geometric random variable,
where pX (k|θ) = (1 − θ)k−1θ, k = 1,2, . . . . Assume that the
prior distribution for θ is the beta pdf with parameters r
and s. Find the posterior distribution for θ .

5.8.2. Find the squared-error loss [L(θ̂ , θ) = (θ̂ − θ)2]
Bayes estimate for θ in Example 5.8.2 and express it as
a weighted average of the maximum likelihood estimate
for θ and the mean of the prior pdf.

5.8.3. Suppose the binomial pdf described in Example
5.8.2 refers to the number of votes a candidate might
receive in a poll conducted before the general election.
Moreover, suppose a beta prior distribution has been
assigned to θ , and every indicator suggests the election
will be close. The pollster, then, has good reason for con-
centrating the bulk of the prior distribution around the

value θ = 1
2
. Setting the two beta parameters r and s both

equal to 135 will accomplish that objective (in the event
r = s = 135, the probability of θ being between 0.45 and
0.55 is approximately 0.90).

(a) Find the corresponding posterior distribution.
(b) Find the squared-error loss Bayes estimate for θ

and express it as a weighted average of the maxi-
mum likelihood estimate for θ and the mean of the
prior pdf.

5.8.4. What is the squared-error loss Bayes estimate for
the parameter θ in a binomial pdf, where θ has a uniform
distribution—that is, a noninformative prior? (Recall that
a uniform prior is a beta pdf for which r = s = 1.)

5.8.5. In Questions 5.8.2–5.8.4, is the Bayes estimate
unbiased? Is it asymptotically unbiased?
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5.8.6. Suppose that Y is a gamma random variable with
parameters r and θ and the prior is also gamma with
parameters s and μ. Show that the posterior pdf is gamma
with parameters r + s and y +μ.

5.8.7. Let Y1,Y2, . . . ,Yn be a random sample from a
gamma pdf with parameters r and θ , where the prior dis-
tribution assigned to θ is the gamma pdf with parameters
s and μ. Let W = Y1 + Y2 + · · · + Yn . Find the posterior pdf
for θ .

5.8.8. Find the squared-error loss Bayes estimate for θ in
Question 5.8.7.

5.8.9. Consider, again, the scenario described in Exam-
ple 5.8.2—a binomial random variable X has parameters n
and θ , where the latter has a beta prior with integer param-
eters r and s. Integrate the joint pdf pX (k | θ) f(θ) with
respect to θ to show that the marginal pdf of X is given by

pX (k)=
(

k+r−1
k

) (
n−k+s−1

n−k

)(
n+r+s−1

n

) , k = 0,1, . . . ,n

5.9 Taking a Second Look at Statistics (Beyond
Classical Estimation)
The theory of estimation presented in this chapter can properly be called classical.
It is a legacy of the late nineteenth and early twentieth centuries, culminating in the
work of R.A. Fisher, especially his foundational paper published in 1922 (47).

This chapter covers the historical, yet still vibrant, theory and technique of esti-
mation. This material is the basis for many of the modern advances in statistics.
And, these approaches still provide useful methods for estimating parameters and
building models.

But statistics, like every other branch of knowledge, progresses. As is the case
for most sciences, the computer has dramatically changed the landscape. Classi-
cal problems—such as finding maximum likelihood estimators—that were difficult,
if not impossible, to solve in Fisher’s day can now be attacked through computer
approximations.

However, modern computers not only give new methods for old problems,
but they also provide new avenues of approach. One such set of new methods
goes under the general name of resampling. One part of resampling is known as
bootstrapping. This technique is useful when classical inference is impossible.

A general explication of bootstrapping is not possible in this section, but an
example of its application to estimating the standard error should provide a sense of
the idea.

The standard error of an estimator θ̂ is just its standard deviation; that is,√
Var(θ̂). The standard error, or an approximation of it, is an essential part of the

construction of confidence intervals. For the normal case, Y is the basis of the con-
fidence interval, and its standard error is σ/

√
n. If X is a binomial random variable

with parameters n and p, then the standard error
√

p(1−p)

n is readily approximated

by
√

k
n (1− k

n )
n , where k is the observed number of successes.

In general, though, estimating the standard error may not be so straightforward.
As a case in point, consider the gamma pdf with r = 2 and unknown parameter
θ , fY (y; θ) = 1

θ2 ye−y/θ . Recall from Example 5.2.2 that the maximum likelihood
estimator for θ is 1

2 Y . Then its variance is

Var(
1

2
Y )= 1

4
Var(Y )= 1

4

Var(Y )

n
= 1

4n
2θ2 = θ2

2n

and the standard error is the square root of the variance, or θ√
2n

.
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To understand the technique of the bootstrapping estimate of the standard error
in this case, let us consider a numerical example, given in a series of steps.

Step 1. Bootstrapping begins with a random sample from the pdf of interest. If we
let n = 15, Table 5.9.1 is the given sample from fY (y; θ)= 1

θ2 ye−y/θ :

Table 5.9.1

30.987 9.949 26.720 9.651 29.137
47.653 33.250 4.933 17.923 2.400
7.580 9.941 16.624 28.514 10.693

Step 2. The sum of the entries in the table is 285.955, so the maximum likelihood
estimate of the parameter θ is

θe = 1

2
y = 1

2
· 1

15
(285.955)= 9.5318

Step 3. Then using the estimate θe = 9.5318 for θ , two hundred random samples
from the pdf fY (y; 9.5318) = 1

(9.5318)2 ye−y/9.5318 are generated. How this is done
using Minitab will be discussed in Appendix 5.A.1.

It suffices here to note that samples appear as an array of numbers with
fifteen columns and two hundred rows. Each row represents a random sample
of size 15 from the indicated gamma pdf.

Table 5.9.2

19.445 10.867 6.183 3.517 20.388 51.501 14.735 52.809 11.244 59.533 15.135 15.579 14.354 22.670 2
11.808 4.380 12.44 9.208 9.222 2.674 63.703 36.037 46.190 22.793 23.329 40.706 23.872 40.909 4

.

. (Additional 197 rows)

.
7.536 4.693 7.452 22.606 11.512 2.136 2.718 25.778 16.023 27.405 18.801 65.723 0.853 7.536 4

Step 4. Use each row of Table 5.9.2 to obtain θe = 1
2 y, the estimate of the unknown

parameter θ . For the first row in Table 5.9.2, we obtain θe = 11.2873, and for the
second, θe = 11.6986.

Step 5. From Step 4, two hundred estimates of θ result. Calculate the sample stan-
dard deviation of these two hundred numbers, which gives the value 1.83491.
This is the bootstrap estimate of the standard error.
The value of θ that generated the original sample in Table 5.9.1 was 10. Thus,
the actual standard error is

θ√
2n

= 10√
2 · 15

= 1.82574

The bootstrap estimate of 1.83491 is quite close to the actual value.

Appendix 5.A.1 Minitab Applications

Because of their ability to generate random observations from many of the standard
probability distributions, computers can be very effective in illustrating estimation
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properties and procedures. We have also seen in Sections 4.7 and 5.9 that computers
are essential tools for new estimation techniques.

The meaning of confidence intervals can also be nicely demonstrated using
Minitab’s RANDOM command. Deriving formulas for confidence intervals is
straightforward, but calling attention to their variability from sample to sample is
best accomplished using a Monte Carlo analysis. Example 5.3.1 is a case in point.
The fifty simulated 95% confidence intervals displayed in Table 5.3.1 reinforce the
interpretation that should be accorded to any particular evaluation of the formula(

y − 1.96 0.8√
4
, y + 1.96 0.8√

4

)
.

The distributions of estimators—and some of their important properties—can
also be easily examined using the computer. Recall the serial number analysis
described in Case Study 1.2.2. If the production numbers to be estimated are large,
then the assumption that the captured serial numbers represent a random sample
from a discrete uniform pdf can reasonably be replaced by the assumption that the
captured serial numbers represent a random sample from the (easier-to-work-with)
continuous uniform pdf, defined over the interval [0, θ ]. Two unbiased estimators for
θ , then, would be

θ̂1 = (2/n)

n∑
i=1

Yi

and

θ̂2 =[(n + 1)/n]Ymax

Question 5.4.18 gave a special case of the more general result that

Var(θ̂2)= θ2/[n(n + 2)] < Var(θ̂1)= θ2/3n

But suppose the complexity of two unbiased estimators precluded the calculation of
their variances. How would we decide which to use? Probably the simplest solution
would be to simulate each one’s distribution and compare their sample standard
deviations.

Figures 5.A.1.1 and 5.A.1.2 illustrate that technique on the two estimators

θ̂1 = (2/n)

n∑
i=1

Yi and θ̂2 =[(n + 1)/n]Ymax

for the uniform parameter θ . Suppose that n = 5 serial numbers have been “cap-
tured” and the true value for θ is 3400. Figure 5.A.1.1 shows the Minitab syntax
for generating two hundred samples of size 5 from fY (y; θ) = 1/3400, 0 ≤ y ≤
3400, and calculating θ̂1. The DESCRIBE command shows that the average of the
θe’s is 3383.8 and the sample standard deviation of the two hundred estimates is
913.2.

In contrast, Figure 5.A.1.2 details a similar simulation (two hundred sam-
ples, each of size 5) for the estimator θ̂2. The accompanying DESCRIBE out-
put lends support to the claim that θ̂2 is the better estimator—it shows the
average θe to be closer to the true value of 3400 than the average θe cal-
culated from θ̂1 (3398.4 versus 3383.8) and its sample standard deviation is
smaller than the sample standard deviation of the θes from θ̂1 (563.9 versus
913.2).
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Figure 5.A.1.1 MTB > random 200 c1–c5;
SUBC > uniform 0 3400.
MTB > rmean c1–c5 c6
MTB > let c7 = 2 ∗c6
MTB > histogram c7;
SUBC > start 2800;
SUBC > increment 200.

Histogram of C7 N = 200
48 Obs. below the first class

Midpoint Count
2800 12 ************
3000 12 ************
3200 19 *******************
3400 13 *************
3600 22 **********************
3800 17 *****************
4000 11 ***********
4200 14 **************
4400 8 ********
4600 10 **********
4800 3 ***
5000 6 ******
5200 3 ***
5400 2 **

MTB > describe c7

N MEAN MEDIAN TRMEAN STDEV SEMEAN
C7 200 3383.8 3418.3 3388.6 913.2 64.6

MIN MAX Q1 Q3
C7 997.0 5462.9 2718.0 4002.1

Figure 5.A.1.2 MTB > random 200 c1–c5;
SUBC > uniform 0 3400.
MTB > rmaximum c1–c5 c6
MTB > let c7 = (6/5)*c6
MTB > histogram c7;
SUBC > start 2800;
SUBC > increment 200.

Histogram of C7 N = 200
32 Obs. below the first class
Midpoint Count

2800 8 ********
3000 10 **********
3200 17 *****************
3400 22 **********************
3600 36 ************************************
3800 37 *************************************
4000 38 **************************************

MTB > describe c7
N MEAN MEDIAN TRMEAN STDEV SEMEAN

C7 200 3398.4 3604.6 3437.1 563.9 39.9
MIN MAX Q1 Q3

C7 1513.9 4077.4 3093.2 3847.9
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The sample necessary for the bootstrapping example in Section 5.9 was gener-
ated by a similar set of commands:

MTB > random 200 c1-c15;
SUBC > gamma 2 10.

Given the array in Table 5.9.2, the estimate of the parameter from each row sample
was obtained by

MTB > rmean c1-c15 c16

MTB > let c17 = .5∗ c16

Finally, the bootstrap estimate was the standard deviation of the numbers in Column
17 given by

MTB > stdev c17

with the resulting printout

Standard deviation of C17 = 1.83491
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As a young man, Laplace went to Paris to seek his fortune as a mathematician,
disregarding his father’s wishes that he enter the clergy. He soon became a protégé of
d’Alembert and at the age of twenty-four was elected to the Academy of Sciences.
Laplace was recognized as one of the leading figures of that group for his work in
physics, celestial mechanics, and pure mathematics. He also enjoyed some political
prestige, and his friend, Napoleon Bonaparte, made him Minister of the Interior for a
brief period. With the restoration of the Bourbon monarchy, Laplace renounced
Napoleon for Louis XVIII, who later made him a marquis.

—Pierre-Simon, Marquis de Laplace (1749–1827)

6.1 Introduction
Inferences, as we saw in Chapter 5, often reduce to numerical estimates of param-
eters, in the form of either single points or confidence intervals. But not always. In
many experimental situations, the conclusion to be drawn is not numerical and is
more aptly phrased as a choice between two conflicting theories, or hypotheses. A
court psychiatrist, for example, may be called upon to pronounce an accused mur-
derer either “sane” or “insane”; the FDA must decide whether a new flu vaccine is
“effective” or “ineffective”; a geneticist concludes that the inheritance of eye color
in a certain strain of Drosophila melanogaster either “does” or “does not” follow
classical Mendelian principles. In this chapter we examine the statistical methodol-
ogy and the attendant consequences involved in making decisions of this sort.

The process of dichotomizing the possible conclusions of an experiment and
then using the theory of probability to choose one option over the other is known
as hypothesis testing. The two competing propositions are called the null hypothesis
(written H0) and the alternative hypothesis (written H1). How we go about choosing
between H0 and H1 is conceptually similar to the way a jury deliberates in a court
trial. The null hypothesis is analogous to the defendant: Just as the latter is presumed
innocent until “proven” guilty, so is the null hypothesis “accepted” unless the data

350
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argue overwhelmingly to the contrary. Mathematically, choosing between H0 and
H1 is an exercise in applying courtroom protocol to situations where the “evidence”
consists of measurements made on random variables.

Chapter 6 focuses on basic principles—in particular, on the probabilistic struc-
ture that underlies the decision-making process. Most of the important specific
applications of hypothesis testing will be taken up later, beginning in Chapter 7.

6.2 The Decision Rule
Imagine an automobile company looking for additives that might increase gas
mileage. As a pilot study, they send thirty cars fueled with a new additive on a road
trip from Boston to Los Angeles. Without the additive, those same cars are known
to average 25.0 mpg with a standard deviation (σ ) of 2.4 mpg.

Suppose it turns out that the thirty cars average y = 26.3 mpg with the additive.
What should the company conclude? If the additive is effective but the position
is taken that the increase from 25.0 to 26.3 is due solely to chance, the company
will mistakenly pass up a potentially lucrative product. On the other hand, if the
additive is not effective but the firm interprets the mileage increase as “proof” that
the additive works, time and money will ultimately be wasted developing a product
that has no intrinsic value.

In practice, researchers would assess the increase from 25.0 mpg to 26.3 mpg by
framing the company’s choices in the context of the courtroom analogy mentioned
in Section 6.1. Here, the null hypothesis, which is typically a statement reflecting the
status quo, would be the assertion that the additive has no effect; the alternative
hypothesis would claim that the additive does work. By agreement, we give H0 (like
the defendant) the benefit of the doubt. If the road trip average, then, is “close”
to 25.0 in some probabilistic sense still to be determined, we must conclude that
the new additive has not demonstrated its superiority. The problem is that whether
26.3 mpg qualifies as being “close” to 25.0 mpg is not immediately obvious.

At this point, rephrasing the question in random variable terminology will prove
helpful. Let y1, y2, . . ., y30 denote the mileages recorded by each of the cars during
the cross-country test run. We will assume that the yi ’s are normally distributed with
an unknown mean μ. Furthermore, suppose that prior experience with road tests of
this type suggests that σ will equal 2.4.1 That is,

fY (y;μ)= 1√
2π(2.4)

e− 1
2

(
y−μ
2.4

)2
, −∞< y <∞

The two competing hypotheses, then, can be expressed as statements about μ. In
effect, we are testing

H0:μ= 25.0 (Additive is not effective)

versus

H1:μ> 25.0 (Additive is effective)

Values of the sample mean, y, less than or equal to 25.0 are certainly not grounds
for rejecting the null hypothesis; averages a bit larger than 25.0 would also lead to
that conclusion (because of the commitment to give H0 the benefit of the doubt). On
the other hand, we would probably view a cross-country average of, say, 35.0 mpg as

1 In practice, the value of σ usually needs to be estimated; we will return to that more frequently encountered
scenario in Chapter 7.
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exceptionally strong evidence against the null hypothesis, and our decision would
be “reject H0.” In effect, somewhere between 25.0 and 35.0 there is a point—call it
y ∗—where for all practical purposes the credibility of H0 ends (see Figure 6.2.1).

Figure 6.2.1 Possible
sample means

25.0 y*

Values of y not
markedly inconsistent

with the H
assertion that μ = 25

0

Values of y
that would
appear to
refute H0

Finding an appropriate numerical value for y ∗ is accomplished by combining
the courtroom analogy with what we know about the probabilistic behavior of Y .
Suppose, for the sake of argument, we set y ∗ equal to 25.25—that is, we would reject
H0 if y ≥ 25.25. Is that a good decision rule? No. If 25.25 defined “close,” then H0

would be rejected 28% of the time even if H0 were true:

P(We reject H0 | H0 is true) = P(Y ≥ 25.25 | μ= 25.0)

= P

(
Y − 25.0

2.4/
√

30
≥ 25.25 − 25.0

2.4/
√

30

)
= P(Z ≥ 0.57)

= 0.2843

(see Figure 6.2.2). Common sense, though, tells us that 28% is an inappropriately
large probability for making this kind of incorrect inference. No jury, for example,
would convict a defendant knowing it had a 28% chance of sending an innocent
person to jail.

Figure 6.2.2

25.525.0

y* = 25.25

24.524.023.5 26.0 26.5
y

0Area = P (Y ≥ y * | H   is true)

0 = 0.2843
Distribution of Y when
H  : μ = 25.0 is true 

0Reject H

1.0

0.5

Clearly, we need to make y ∗ larger. Would it be reasonable to set y ∗ equal
to, say, 26.50? Probably not, because setting y ∗ that large would err in the other
direction by giving the null hypothesis too much benefit of the doubt. If y ∗ = 26.50,

the probability of rejecting H0 if H0 were true is only 0.0003:

P(We reject H0 | H0 is true)= P(Y ≥ 26.50 | μ= 25.0)

= P

(
Y − 25.0

2.4/
√

30
≥ 26.50 − 25.0

2.4/
√

30

)
= P(Z ≥ 3.42)

= 0.0003
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(see Figure 6.2.3). Requiring that much evidence before rejecting H0 would be anal-
ogous to a jury not returning a guilty verdict unless the prosecutor could produce a
roomful of eyewitnesses, an obvious motive, a signed confession, and a dead body
in the trunk of the defendant’s car!

Figure 6.2.3

25.525.0

y* = 26.50

24.524.023.5 26.0 26.5
y

0Area = P (Y ≥ y * | H   is true)

0

= 0.0003

Distribution of Y when
H  : μ = 25.0 is true 

0Reject H

1.0

0.5

If a probability of 0.28 represents too little benefit of the doubt being accorded
to H0 and 0.0003 represents too much, what value should we choose for P(Y ≥ y ∗ |
H0 is true)? While there is no way to answer that question definitively or mathemat-
ically, researchers who use hypothesis testing have come to the consensus that the
probability of rejecting H0 when H0 is true should be somewhere in the neighbor-
hood of 0.05. Experience seems to suggest that when a 0.05 probability is used, null
hypotheses are neither dismissed too capriciously nor embraced too wholeheart-
edly. (More will be said about this particular probability, and its consequences, in
Section 6.3.)

Comment In 1768, British troops were sent to Boston to quell an outbreak of civil
disturbances. Five citizens were killed in the aftermath, and several soldiers were
subsequently put on trial for manslaughter. Explaining the guidelines under which a
verdict was to be reached, the judge told the jury, “If upon the whole, ye are in any
reasonable doubt of their guilt, ye must then, agreeable to the rule of law, declare
them innocent” (177). Ever since, the expression “beyond all reasonable doubt”
has been a frequently used indicator of how much evidence is needed in a jury
trial to overturn a defendant’s presumption of innocence. For many experimenters,
choosing y ∗ such that

P(We reject H0 | H0 is true)= 0.05

is comparable to a jury convicting a defendant only if the latter’s guilt is established
“beyond all reasonable doubt.”

Suppose the 0.05 “criterion” is applied here. Finding the corresponding y ∗ is a
calculation similar to what was done in Example 4.3.6. Given that

P(Y ≥ y ∗ | H0 is true)= 0.05

it follows that

P

(
Y − 25.0

2.4/
√

30
≥ y ∗ − 25.0

2.4/
√

30

)
= P

(
Z ≥ y ∗ − 25.0

2.4/
√

30

)
= 0.05
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But we know from Appendix A.1 that P(Z ≥ 1.64)= 0.05. Therefore,

y ∗ − 25.0

2.4/
√

30
= 1.64 (6.2.1)

which implies that y ∗ = 25.718.
The company’s statistical strategy is now completely determined: They should

reject the null hypothesis that the additive has no effect if y ≥ 25.718. Since the
sample mean was 26.3, the appropriate decision is, indeed, to reject H0. It appears
that the additive does increase mileage.

Comment It must be remembered that rejecting H0 does not prove that H0 is false,
any more than a jury’s decision to convict guarantees that the defendant is guilty.
The 0.05 decision rule is simply saying that if the true mean (μ) is 25.0, sample
means (y) as large or larger than 25.718 are expected to occur only 5% of the time.
Because of that small probability, a reasonable conclusion when y ≥ 25.718 is that μ

is not 25.0.
Table 6.2.1 is a computer simulation of this particular 0.05 decision rule. A total

of seventy-five random samples, each of size 30, have been drawn from a normal
distribution having μ = 25.0 and σ = 2.4. The corresponding y for each sample is
then compared with y ∗ = 25.718. As the entries in the table indicate, five of the
samples lead to the erroneous conclusion that H0:μ= 25.0 should be rejected.

Since each sample mean has a 0.05 probability of exceeding 25.718 (when
μ =25.0), we would expect 75(0.05), or 3.75, of the data sets to result in a “reject

Table 6.2.1

y ≥ 25.718? y ≥ 25.718? y ≥ 25.718?

25.133 no 25.259 no 25.200 no
24.602 no 25.866 yes 25.653 no
24.587 no 25.623 no 25.198 no
24.945 no 24.550 no 24.758 no
24.761 no 24.919 no 24.842 no
24.177 no 24.770 no 25.383 no
25.306 no 25.080 no 24.793 no
25.601 no 25.307 no 24.874 no
24.121 no 24.004 no 25.513 no
25.516 no 24.772 no 24.862 no
24.547 no 24.843 no 25.034 no
24.235 no 25.771 yes 25.150 no
25.809 yes 24.233 no 24.639 no
25.719 yes 24.853 no 24.314 no
25.307 no 25.018 no 25.045 no
25.011 no 25.176 no 24.803 no
24.783 no 24.750 no 24.780 no
25.196 no 25.578 no 25.691 no
24.577 no 24.807 no 24.207 no
24.762 no 24.298 no 24.743 no
25.805 yes 24.807 no 24.618 no
24.380 no 24.346 no 25.401 no
25.224 no 25.261 no 24.958 no
24.371 no 25.062 no 25.678 no
25.033 no 25.391 no 24.795 no
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H0” conclusion. Reassuringly, the observed number of incorrect inferences (= 5) is
quite close to that expected value.

Definition 6.2.1. If H0:μ = μo is rejected using a 0.05 decision rule, the
difference between y and μo is said to be statistically significant.

Expressing Decision Rules in Terms of Z Ratios

As we have seen, decision rules are statements that spell out the conditions under
which a null hypothesis is to be rejected. The format of those statements, though,
can vary. Depending on the context, one version may be easier to work with than
another.

Recall Equation 6.2.1. Rejecting H0:μ= 25.0 when

y ≥ y ∗ = 25.0 + 1.64 · 2.4√
30

= 25.718

is clearly equivalent to rejecting H0 when

y − 25.0

2.4/
√

30
≥ 1.64 (6.2.2)

(if one rejects the null hypothesis, the other will necessarily do the same).
We know from Chapter 4 that the random variable Y−25.0

2.4/
√

30
has a standard normal

distribution (if μ = 25.0). When a particular y is substituted for Y (as in Inequality
6.2.2), we call y−25.0

2.4/
√

30
the observed z. Choosing between H0 and H1 is typically (and

most conveniently) done in terms of the observed z. In Section 6.4, though, we will
encounter certain questions related to hypothesis testing that are best answered by
phrasing the decision rule in terms of y ∗.

Definition 6.2.2. Any function of the observed data whose numerical value
dictates whether H0 is accepted or rejected is called a test statistic. The set of
values for the test statistic that result in the null hypothesis being rejected is
called the critical region and is denoted C . The particular point in C that sepa-
rates the rejection region from the acceptance region is called the critical value.

Comment For the gas mileage example, both y and y−25.0
2.4/

√
30

qualify as test statistics.
If the sample mean is used, the associated critical region would be written

C ={y; y ≥ 25.718}
(and 25.718 is the critical value). If the decision rule is framed in terms of a Z ratio,

C =
{

z; z = y − 25.0

2.4/
√

30
≥ 1.64

}
In this latter case, the critical value is 1.64.

Definition 6.2.3. The probability that the test statistic lies in the critical region
when H0 is true is called the level of significance and is denoted α.
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Comment In principle, the value chosen for α should reflect the consequences of
making the mistake of rejecting H0 when H0 is true. As those consequences get more
severe, the critical region C should be defined so that α gets smaller. In practice,
though, efforts to quantify the costs of making incorrect inferences are arbitrary at
best. In most situations, experimenters abandon any such attempts and routinely set
the level of significance equal to 0.05. If another α is used, it is likely to be either
0.001, 0.01, or 0.10.

Here again, the similarity between hypothesis testing and courtroom protocol is
worth keeping in mind. Just as experimenters can make α larger or smaller to reflect
the consequences of mistakenly rejecting H0 when H0 is true, so can juries demand
more or less evidence to return a conviction. For juries, any such changes are usually
dictated by the severity of the possible punishment. A grand jury deciding whether
or not to indict someone for fraud, for example, will inevitably require less evidence
to return a conviction than will a jury impaneled for a murder trial.

One-Sided Versus Two-Sided Alternatives

In most hypothesis tests, H0 consists of a single number, typically the value of the
parameter that represents the status quo. The “25.0” in H0:μ = 25.0, for example, is
the mileage that would be expected when the additive has no effect. If the mean of a
normal distribution is the parameter being tested, our general notation for the null
hypothesis will be H0:μ=μo, where μo is the status quo value of μ.

Alternative hypotheses, by way of contrast, invariably embrace entire ranges of
parameter values. If there is reason to believe before any data are collected that the
parameter being tested is necessarily restricted to one particular “side” of H0, then
H1 is defined to reflect that limitation and we say that the alternative hypothesis is
one-sided. Two variations are possible: H1 can be one-sided to the left (H1:μ < μo)

or it can be one-sided to the right (H1:μ > μo). If no such a priori information is
available, the alternative hypothesis needs to accommodate the possibility that the
true parameter value might lie on either side of μ0. Any such alternative is said to
be two-sided. For testing H0:μ=μo, the two-sided alternative is written H1:μ �=μo.

In the gasoline example, it was tacitly assumed that the additive either would
have no effect (in which case μ = 25.0 and H0 would be true) or would increase
mileage (implying that the true mean would lie somewhere “to the right” of H0).
Accordingly, we wrote the alternative hypothesis as H1:μ > 25.0. If we had reason
to suspect, though, that the additive might interfere with the gasoline’s combustibil-
ity and possibly decrease mileage, it would have been necessary to use a two-sided
alternative (H1:μ �= 25.0).

Whether the alternative hypothesis is defined to be one-sided or two-sided is
important because the nature of H1 plays a key role in determining the form of the
critical region. We saw earlier that the 0.05 decision rule for testing

H0:μ= 25.0

versus

H1:μ> 25.0

calls for H0 to be rejected if y−25.0
2.4/

√
30

≥ 1.64. That is, only if the sample mean is
substantially larger than 25.0 will we reject H0.

If the alternative hypothesis had been two-sided, sample means either much
smaller than 25.0 or much larger than 25.0 would be evidence against H0 (and in
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support of H1). Moreover, the 0.05 probability associated with the critical region
C would be split into two halves, with 0.025 being assigned to the left-most por-
tion of C , and 0.025 to the right-most portion. From Appendix Table A.1, though,
P(Z ≤ −1.96) = P(Z ≥ 1.96) = 0.025, so the two-sided 0.05 decision rule would call
for H0:μ= 25.0 to be rejected if y−25.0

2.4/
√

30
is either (1)≤ −1.96 or (2)≥ 1.96.

Testing H0: μ = μo (σ Known)

Let zα be the number having the property that P(Z ≥ zα) = α. Values for zα can
be found from the standard normal cdf tabulated in Appendix A.1. If α = 0.05, for
example, z.05 = 1.64 (see Figure 6.2.4). Of course, by the symmetry of the normal
curve, −zα has the property that P(Z ≤−zα)=α.

Figure 6.2.4

0 .05z      = 1.64

Zf   (z)
0.4

0.2
Area = 0.05 

z

Theorem
6.2.1

Let y1, y2, . . . , yn be a random sample of size n from a normal distribution where σ is
known. Let z = y−μo

σ/
√

n
.

a. To test H0:μ=μo versus H1:μ>μo at the α level of significance, reject H0 if z ≥ zα .
b. To test H0:μ=μo versus H1:μ<μo at the α level of significance, reject H0 if z ≤−zα .
c. To test H0:μ = μo versus H1:μ �= μo at the α level of significance, reject H0 if z is

either (1) ≤ −zα/2 or (2) ≥ zα/2. �

Example
6.2.1

As part of a “Math for the Twenty-First Century” initiative, Bayview High was cho-
sen to participate in the evaluation of a new algebra and geometry curriculum. In
the recent past, Bayview’s students were considered “typical,” having earned scores
on standardized exams that were very consistent with national averages.

Two years ago, a cohort of eighty-six Bayview sophomores, all randomly
selected, were assigned to a special set of classes that integrated algebra and geom-
etry. According to test results that have just been released, those students averaged
502 on the SAT-I math exam; nationwide, seniors averaged 494 with a standard devi-
ation of 124. Can it be claimed at the α = 0.05 level of significance that the new
curriculum had an effect?

To begin, we define the parameter μ to be the true average SAT-I math score
that we could expect the new curriculum to produce. The obvious “status quo”
value for μ is the current national average—that is, μo = 494. The alternative
hypothesis here should be two-sided because the possibility certainly exists that a
revised curriculum—however well intentioned—would actually lower a student’s
achievement.

According to part (c) of Theorem 6.2.1, then, we should reject H0:μ = 494 in
favor of H1:μ �= 494 at the α = 0.05 level of significance if the test statistic z is either
(1) ≤ −z.025(=−1.96) or (2)≥ z.025(= 1.96). But y = 502, so
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z = 502 − 494

124/
√

86
= 0.60

implying that our decision should be “Fail to reject H0.” Even though Bayview’s
502 is eight points above the national average, it does not follow that the improve-
ment was due to the new curriculum: An increase of that magnitude could easily
have occurred by chance, even if the new curriculum had no effect whatsoever (see
Figure 6.2.5).

0 1.96
z = 0.60

Zf   (z)

Area = 0.025 Area = 0.025 

0.4

0.2

–1.96

Reject H0 Reject H0

Figure 6.2.5

Comment If the null hypothesis is not rejected, we should phrase the conclusion
as “Fail to reject H0” rather than “Accept H0.” Those two statements may seem to
be the same, but, in fact, they have very different connotations. The phrase “Accept
H0” suggests that the experimenter is concluding that H0 is true. But that may not
be the case. In a court trial, when a jury returns a verdict of “Not guilty,” they are
not saying that they necessarily believe that the defendant is innocent. They are
simply asserting that the evidence—in their opinion—is not sufficient to overturn
the presumption that the defendant is innocent. That same distinction applies to
hypothesis testing. If a test statistic does not fall in the critical region (which was
the case in Example 6.2.1), the proper interpretation is to conclude that we “Fail to
reject H0.”

The P-Value

There are two general ways to quantify the amount of evidence against H0 that is
contained in a given set of data. The first involves the level of significance concept
introduced in Definition 6.2.3. Using that format, the experimenter selects a value
for α (usually 0.05 or 0.01) before any data are collected. Once α is specified, a cor-
responding critical region can be identified. If the test statistic falls in the critical
region, we reject H0 at the α level of significance. Another strategy is to calculate a
P-value.

Definition 6.2.4. The P-value associated with an observed test statistic is the
probability of getting a value for that test statistic as extreme as or more
extreme than what was actually observed (relative to H1) given that H0 is
true.
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Comment Test statistics that yield small P-values should be interpreted as evidence
against H0. More specifically, if the P-value calculated for a test statistic is less than
or equal to α, the null hypothesis can be rejected at the α level of significance. Or,
put another way, the P-value is the smallest α at which we can reject H0.

Example
6.2.2

Recall Example 6.2.1. Given that H0:μ = 494 is being tested against H1:μ �= 494,
what P-value is associated with the calculated test statistic, z =0.60, and how should
it be interpreted?

If H0:μ = 494 is true, the random variable Z = Y−494
124/

√
86

has a standard normal
pdf. Relative to the two-sided H1, any value of Z greater than or equal to 0.60 or
less than or equal to −0.60 qualifies as being “as extreme as or more extreme than”
the observed z. Therefore, by Definition 6.2.4,

P-value = P(Z ≥ 0.60)+ P(Z ≤−0.60)

= 0.2743 + 0.2743

= 0.5486

(see Figure 6.2.6).

0

0.60

More extreme

– 0.60

More extreme

0.4

Area = 0.2743

P-value  = 0.2743 + 0.2743
= 0.5486

Area = 0.2743

z

Zf   (z)

Figure 6.2.6

As noted in the preceding comment, P-values can be used as decision rules. In
Example 6.2.1, 0.05 was the stated level of significance. Having determined here that
the P-value associated with z = 0.60 is 0.5486, we know that H0:μ = 494 would not
be rejected at the given α. Indeed, the null hypothesis would not be rejected for any
value of α up to and including 0.5486.

Notice that the P-value would have been halved had H1 been one-sided. Sup-
pose we were confident that the new algebra and geometry classes would not
lower a student’s math SAT. The appropriate hypothesis test in that case would be
H0:μ= 494 versus H1:μ> 494. Moreover, only values in the right-hand tail of fZ (z)
would be considered more extreme than the observed z = 0.60, so

P-value = P(Z ≥ 0.60)= 0.2743

Questions

6.2.1. State the decision rule that would be used to test
the following hypotheses. Evaluate the appropriate test
statistic and state your conclusion.

(a) H0:μ = 120 versus H1:μ < 120; y = 114.2,n = 25, σ =
18, α = 0.08
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(b) H0:μ= 42.9 versus H1:μ �= 42.9; y = 45.1,n = 16, σ =
3.2, α = 0.01

(c) H0:μ = 14.2 versus H1:μ > 14.2; y = 15.8,n = 9, σ =
4.1, α = 0.13

6.2.2. An herbalist is experimenting with juices extracted
from berries and roots that may have the ability to affect
the Stanford-Binet IQ scores of students afflicted with
mild cases of attention deficit disorder (ADD). A ran-
dom sample of twenty-two children diagnosed with the
condition have been drinking Brain-Blaster daily for two
months. Past experience suggests that children with ADD
score an average of 95 on the IQ test with a standard devi-
ation of 15. If the data are to be analyzed using the α=0.06
level of significance, what values of y would cause H0 to be
rejected? Assume that H1 is two-sided.

6.2.3. (a) Suppose H0:μ = μo is rejected in favor of
H1:μ �= μo at the α = 0.05 level of significance. Would
H0 necessarily be rejected at the α = 0.01 level of
significance?
(b) Suppose H0:μ = μo is rejected in favor of H1:μ �= μo

at the α = 0.01 level of significance. Would H0 necessarily
be rejected at the α = 0.05 level of significance?

6.2.4. Company records show that drivers get an aver-
age of 32,500 miles on a set of Road Hugger All-Weather
radial tires. Hoping to improve that figure, the company
has added a new polymer to the rubber that should help
protect the tires from deterioration caused by extreme
temperatures. Fifteen drivers who tested the new tires
have reported getting an average of 33,800 miles. Can the
company claim that the polymer has produced a statis-
tically significant increase in tire mileage? Test H0:μ =
32,500 against a one-sided alternative at the α = 0.05
level. Assume that the standard deviation (σ) of the tire
mileages has not been affected by the addition of the
polymer and is still 4000 miles.

6.2.5. If H0:μ = μo is rejected in favor of H1:μ > μo, will
it necessarily be rejected in favor of H1:μ �= μo? Assume
that α remains the same.

6.2.6. A random sample of size 16 is drawn from a nor-
mal distribution having σ = 6.0 for the purpose of testing
H0:μ = 30 versus H1:μ �= 30. The experimenter chooses
to define the critical region C to be the set of sam-
ple means lying in the interval (29.9, 30.1). What level
of significance does the test have? Why is (29.9, 30.1)
a poor choice for the critical region? What range of y
values should comprise C , assuming the same α is to
be used?

6.2.7. Recall the breath analyzers described in Exam-
ple 4.3.5. The following are thirty blood alcohol deter-
minations made by Analyzer GTE-10, a three-year-old

unit that may be in need of recalibration. All thirty
measurements were made using a test sample on which a
properly adjusted machine would give a reading of 12.6%.

12.3 12.7 13.6 12.7 12.9 12.6
12.6 13.1 12.6 13.1 12.7 12.5
13.2 12.8 12.4 12.6 12.4 12.4
13.1 12.9 13.3 12.6 12.6 12.7
13.1 12.4 12.4 13.1 12.4 12.9

(a) If μ denotes the true average reading that Ana-
lyzer GTE-10 would give for a person whose blood
alcohol concentration is 12.6%, test

H0:μ= 12.6

versus

H1:μ �= 12.6

at the α = 0.05 level of significance. Assume that
σ = 0.4. Would you recommend that the machine be
readjusted?

(b) What statistical assumptions are implicit in the
hypothesis test done in part (a)? Is there any rea-
son to suspect that those assumptions may not be
satisfied?

6.2.8. Calculate the P-values for the hypothesis tests indi-
cated in Question 6.2.1. Do they agree with your decisions
on whether or not to reject H0?

6.2.9. Suppose H0:μ = 120 is tested against H1:μ �= 120.
If σ = 10 and n = 16, what P-value is associated with the
sample mean y = 122.3? Under what circumstances would
H0 be rejected?

6.2.10 As a class research project, Rosaura wants to see
whether the stress of final exams elevates the blood pres-
sures of freshmen women. When they are not under any
untoward duress, healthy eighteen-year-old women have
systolic blood pressures that average 120 mm Hg with a
standard deviation of 12 mm Hg. If Rosaura finds that the
average blood pressure for the fifty women in Statistics
101 on the day of the final exam is 125.2, what should she
conclude? Set up and test an appropriate hypothesis.

6.2.11. As input for a new inflation model, economists
predicted that the average cost of a hypothetical “food
basket” in east Tennessee in July would be $145.75. The
standard deviation (σ ) of basket prices was assumed to be
$9.50, a figure that has held fairly constant over the years.
To check their prediction, a sample of twenty-five baskets
representing different parts of the region were checked in
late July, and the average cost was $149.75. Let α =0.05. Is
the difference between the economists’ prediction and the
sample mean statistically significant?
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6.3 Testing Binomial Data—H0: p = po
Suppose a set of data—k1, k2, . . . , kn—represents the outcomes of n Bernoulli trials,
where ki = 1 or 0, depending on whether the ith trial ended in success or failure,
respectively. If p = P(ith trial ends in success) is unknown, it may be appropriate to
test the null hypothesis H0: p = po, where po is some particularly relevant (or status
quo) value of p. Any such procedure is called a binomial hypothesis test because
the appropriate test statistic is the sum of the ki ’s—call it k—and we know from
Theorem 3.2.1 that the total number of successes, X , in a series of independent trials
has a binomial distribution,

pX (k; p)= P(X = k)=
(

n

k

)
pk(1 − p)n−k, k = 0,1,2, . . . ,n

Two different procedures for testing H0: p = po need to be considered, the
distinction resting on the magnitude of n. If

0 < npo − 3
√

npo(1 − po)< npo + 3
√

npo(1 − po)< n (6.3.1)

a “large-sample” test of H0: p = po is done, based on an approximate Z ratio.
Otherwise, a “small-sample” decision rule is used, one where the critical region
is defined in terms of the exact binomial distribution associated with the random
variable X .

A Large-Sample Test for the Binomial Parameter p

Suppose the number of observations, n, making up a set of Bernoulli random vari-
ables is sufficiently large that Inequality 6.3.1 is satisfied. We know in that case from
Section 4.3 that the random variable X−npo√

npo(1−po)
has approximately a standard normal

pdf, fZ (z) if p = po. Values of X−npo√
npo(1−po)

close to zero, of course, would be evidence in

favor of H0: p = po [since E
(

X−npo√
npo(1−po)

)
=0 when p = po]. Conversely, the credibility

of H0: p = po clearly diminishes as X−npo√
npo(1−po)

moves further and further away from
zero. The large-sample test of H0: p = po, then, takes the same basic form as the test
of H0:μ=μo in Section 6.2.

Theorem
6.3.1

Let k1, k2, . . . , kn be a random sample of n Bernoulli random variables for which
0 < npo − 3

√
npo(1 − po)<npo + 3

√
npo(1 − po)<n. Let k = k1 + k2 +· · ·+ kn denote

the total number of “successes” in the n trials. Define z = k−npo√
npo(1−po)

.

a. To test H0: p = po versus H1: p > po at the α level of significance, reject H0 if
z ≥ zα .

b. To test H0: p = po versus H1: p < po at the α level of significance, reject H0 if
z ≤ −zα .

c. To test H0: p = po versus H1: p �= po at the α level of significance, reject H0 if z is
either (1) ≤ −zα/2 or (2) ≥ zα/2. �
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Case Study 6.3.1

In gambling parlance, a point spread is a hypothetical increment added to the
score of the presumably weaker of two teams playing. By intention, its magni-
tude should have the effect of making the game a toss-up; that is, each team
should have a 50% chance of beating the spread.

In practice, setting the “line” on a game is a highly subjective endeavor,
which raises the question of whether or not the Las Vegas crowd actually gets
it right (113). Addressing that issue, a recent study examined the records of
124 National Football League games; it was found that in sixty-seven of the
matchups (or 54%), the favored team beat the spread. Is the difference between
54% and 50% small enough to be written off to chance, or did the study uncover
convincing evidence that oddsmakers are not capable of accurately quantifying
the competitive edge that one team holds over another?

Let p = P(Favored team beats spread). If p is any value other than 0.50,
the bookies are assigning point spreads incorrectly. To be tested, then, are the
hypotheses

H0: p = 0.50

versus

H1: p �= 0.50

Suppose 0.05 is taken to be the level of significance.
In the terminology of Theorem 6.3.1, n = 124, po = 0.50, and

ki =
{

1 if favored team beats spread in ith game
0 if favored team does not beat spread in ith game

for i = 1,2, . . . ,124. Therefore, the sum k = k1 + k2 + · · · + k124 denotes the total
number of times the favored team beat the spread.

According to the two-sided decision rule given in part (c) of Theorem 6.3.1,
the null hypothesis should be rejected if z is either less than or equal to
−1.96 (= −z.05/2) or greater than or equal to 1.96 (= z.05/2). But

z = 67 − 124(0.50)√
124(0.50)(0.50)

= 0.90

does not fall in the critical region, so H0 : p = 0.50 should not be rejected at the

α = 0.05 level of significance. The outcomes of these 124 games, in other words,
are entirely consistent with the presumption that bookies know which of two
teams is better, and by how much.

About the Data Here the observed z is 0.90 and H1 is two-sided, so the P-value
is 0.37:

P-value = P(Z ≤−0.90)+ P(Z ≥ 0.90)= 0.1841 + 0.1841
.= 0.37

According to the Comment following Definition 6.2.4, then, the conclusion could be
written

“Fail to reject H0 for any α < 0.37.”

Would it also be correct to summarize the data with the statement
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“Reject H0 at the α = 0.40 level of significance”?

In theory, yes; in practice, no. For all the reasons discussed in Section 6.2, the
rationale underlying hypothesis testing demands that α be kept small (and “small”
usually means less than or equal to 0.10).

It is typically the experimenter’s objective to reject H0, because H0 represents
the status quo, and there is seldom a compelling reason to devote time and money to
a study for the purpose of confirming what is already believed. That being the case,
experimenters are always on the lookout for ways to increase their probability of
rejecting H0. There are a number of entirely appropriate actions that can be taken to
accomplish that objective, several of which will be discussed in Section 6.4. However,
raising α above 0.10 is not one of the appropriate actions; and raising α as high as
0.40 would absolutely never be done.

Case Study 6.3.2

There is a theory that people may tend to “postpone” their deaths until after
some event that has particular meaning to them has passed (134). Birthdays,
a family reunion, or the return of a loved one have all been suggested as the
sorts of personal milestones that might have such an effect. National elections
may be another. Studies have shown that the mortality rate in the United States
drops noticeably during the Septembers and Octobers of presidential election
years. If the postponement theory is to be believed, the reason for the decrease
is that many of the elderly who would have died in those two months “hang on”
until they see who wins.

Some years ago, a national periodical reported the findings of a study
that looked at obituaries published in a Salt Lake City newspaper. Among
the 747 decedents, the paper identified that only 60, or 8.0%, had died in the
three-month period preceding their birth months (123). If individuals are dying
randomly with respect to their birthdays, we would expect 25% to die during
any given three-month interval. What should we make, then, of the decrease
from 25% to 8%? Has the study provided convincing evidence that the death
months reported for the sample do not constitute a random sample of months?

Imagine the 747 deaths being divided into two categories: those that
occurred in the three-month period prior to a person’s birthday and those that
occurred at other times during the year. Let ki = 1 if the ith person belongs to
the first category and ki = 0, otherwise. Then k = k1 + k2 + · · · + k747 denotes the
total number of deaths in the first category. The latter, of course, is the value of
a binomial random variable with parameter p, where

p = P(Person dies in three months prior to birth month)

If people do not postpone their deaths (to wait for a birthday), p should be
3
12 , or 0.25; if they do, p will be something less than 0.25. Assessing the decrease
from 25% to 8%, then, is done with a one-sided binomial hypothesis test:

H0: p = 0.25

versus

H1: p < 0.25

(Continued on next page)
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(Case Study 6.3.2 continued)

Let α = 0.05. According to part (b) of Theorem 6.3.1, H0 should be rejected
if

z = k − npo√
npo(1 − po)

≤−z.05 =−1.64

Substituting for k,n, and po, we find that the test statistic falls far to the left of
the critical value:

z = 60 − 747(0.25)√
747(0.25)(0.75)

=−10.7

The evidence is overwhelming, therefore, that the decrease from 25%
to 8% is due to something other than chance. Explanations other than the
postponement theory, of course, may be wholly or partially responsible for
the nonrandom distribution of deaths. Still, the data show a pattern entirely
consistent with the notion that we do have some control over when we die.

About the Data A similar conclusion was reached in a study conducted among
the Chinese community living in California. The “significant event” in that case
was not a birthday—it was the annual Harvest Moon festival, a celebration that
holds particular meaning for elderly women. Based on census data tracked over a
twenty-four-year period, it was determined that fifty-one deaths among elderly Chi-
nese women should have occurred during the week before the festivals, and fifty-two
deaths after the festivals. In point of fact, thirty-three died the week before and
seventy died the week after (22).

A Small-Sample Test for the Binomial Parameter p

Suppose that k1, k2, . . . , kn is a random sample of Bernoulli random variables where
n is too small for Inequality 6.3.1 to hold. The decision rule, then, for testing
H0: p = po that was given in Theorem 6.3.1 would not be appropriate. Instead, the
critical region is defined by using the exact binomial distribution (rather than a
normal approximation).

Example
6.3.1

Suppose that n = 19 elderly patients are to be given an experimental drug designed
to relieve arthritis pain. The standard treatment is known to be effective in 85% of
similar cases. If p denotes the probability that the new drug will reduce a patient’s
pain, the researcher wishes to test

H0: p = 0.85

versus

H1: p �= 0.85

The decision will be based on the magnitude of k, the total number in the sample for
whom the durg is effective—that is, on

k = k1 + k2 + · · ·+ k19
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where

ki =
{

0 if the new drug fails to relieve ith patient’s pain
1 if the new drug does relieve ith patient’s pain

What should the decision rule be if the intention is to keep α somewhere near
10%? [Note that Theorem 6.3.1 does not apply here because Inequality 6.3.1 is not
satisfied—specifically, npo + 3

√
npo(1 − po) = 19(0.85) + 3

√
19(0.85)(0.15) = 20.8 is

not less than n(= 19).]
If the null hypothesis is true, the expected number of successes would be npo =

19(0.85). or 16.2. It follows that values of k to the extreme right or extreme left of
16.2 should constitute the critical region.

MTB > pdf;
SUBC > binomial 19 0.85.

Probability Density Function

Binomial with n = 19 and p = 0.85

x P(X = x)
6 0.000000

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

7 0.000002
8 0.000018
9 0.000123 → P(X ≤ 13) = 0.053696

10 0.000699
11 0.003242
12 0.012246
13 0.037366
14 0.090746
15 0.171409
16 0.242829
17 0.242829
18 0.152892
19 0.045599 → P(X = 19) = 0.045599

Figure 6.3.1

Figure 6.3.1 is a Minitab printout of pX (k)= (19
k

)
(0.85)k(0.15)19−k . By inspection,

we can see that the critical region

C ={k: k ≤ 13 or k = 19}
would produce an α close to the desired 0.10 (and would keep the probabilities
associated with the two sides of the rejection region roughly the same). In random
variable notation,

P(X ∈ C | H0 is true) = P(X ≤ 13 | p = 0.85)+ P(X = 19 | p = 0.85)

= 0.053696 + 0.045599

= 0.099295
.= 0.10

Questions

6.3.1. Commercial fishermen working certain parts of
the Atlantic Ocean sometimes find their efforts hindered
by the presence of whales. Ideally, they would like to
scare away the whales without frightening the fish. One
of the strategies being experimented with is to transmit
underwater the sounds of a killer whale. On the fifty-
two occasions that technique has been tried, it worked
twenty-four times (that is, the whales immediately left

the area). Experience has shown, though, that 40% of
all whales sighted near fishing boats leave of their own
accord, probably just to get away from the noise of the
boat.

(a) Let p = P(Whale leaves area after hearing sounds of
killer whale). Test H0: p = 0.40 versus H1: p > 0.40 at
the α =0.05 level of significance. Can it be argued on
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the basis of these data that transmitting underwater
predator sounds is an effective technique for clearing
fishing waters of unwanted whales?

(b) Calculate the P-value for these data. For what values
of α would H0 be rejected?

6.3.2. Efforts to find a genetic explanation for why
certain people are right-handed and others left-handed
have been largely unsuccessful. Reliable data are diffi-
cult to find because of environmental factors that also
influence a child’s “handedness.” To avoid that compli-
cation, researchers often study the analogous problem
of “pawedness” in animals, where both genotypes and
the environment can be partially controlled. In one such
experiment (27), mice were put into a cage having a feed-
ing tube that was equally accessible from the right or
the left. Each mouse was then carefully watched over a
number of feedings. If it used its right paw more than
half the time to activate the tube, it was defined to be
“right-pawed.” Observations of this sort showed that 67%
of mice belonging to strain A/J are right-pawed. A simi-
lar protocol was followed on a sample of thirty-five mice
belonging to strain A/HeJ. Of those thirty-five, a total of
eighteen were eventually classified as right-pawed. Test
whether the proportion of right-pawed mice found in the
A/HeJ sample was significantly different from what was
known about the A/J strain. Use a two-sided alternative
and let 0.05 be the probability associated with the critical
region.

6.3.3. Defeated in his most recent attempt to win a con-
gressional seat because of a sizeable gender gap, a politi-
cian has spent the last two years speaking out in favor
of women’s rights issues. A newly released poll claims to
have contacted a random sample of 120 of the politician’s
current supporters and found that 72 were men. In the
election that he lost, exit polls indicated that 65% of those
who voted for him were men. Using an α = 0.05 level of
significance, test the null hypothesis that the proportion
of his male supporters has remained the same. Make the
alternative hypothesis one-sided.

6.3.4. Suppose H0: p = 0.45 is to be tested against H1: p >

0.45 at the α = 0.14 level of significance, where p = P(ith
trial ends in success). If the sample size is 200, what is
the smallest number of successes that will cause H0 to be
rejected?

6.3.5. Recall the median test described in Example 5.3.2.
Reformulate that analysis as a hypothesis test rather than
a confidence interval. What P-value is associated with the
outcomes listed in Table 5.3.3?

6.3.6. Among the early attempts to revisit the death post-
ponement theory introduced in Case Study 6.3.2 was an
examination of the birth dates and death dates of 348 U.S.
celebrities (134). It was found that 16 of those individuals
had died in the month preceding their birth month. Set up
and test the appropriate H0 against a one-sided H1. Use
the 0.05 level of significance.

6.3.7. What α levels are possible with a decision rule of
the form “Reject H0 if k ≥ k∗” when H0: p = 0.5 is to be
tested against H1: p > 0.5 using a random sample of size
n = 7?

6.3.8. The following is a Minitab printout
of the binomial pdf pX (k) = ( 9

k

)
(0.6)k(0.4)9−k,

k = 0,1, . . . ,9. Suppose H0: p = 0.6 is to be tested against
H1: p > 0.6 and we wish the level of significance to be
exactly 0.05. Use Theorem 2.4.1 to combine two different
critical regions into a single randomized decision rule for
which α = 0.05.

MTB > pdf;
SUBC > binomial 9 0.6.
Probability Density Function
Binomial with n = 9 and p = 0.6

x P(X = x)
0 0.000262
1 0.003539
2 0.021234
3 0.074318
4 0.167215
5 0.250823
6 0.250823
7 0.161243
8 0.060466
9 0.010078

6.3.9. Suppose H0: p = 0.75 is to be tested against H1: p <

0.75 using a random sample of size n = 7 and the decision
rule “Reject H0 if k ≤ 3.”

(a) What is the test’s level of significance?
(b) Graph the probability that H0 will be rejected as a

function of p.

6.4 Type I and Type II Errors
The possibility of drawing incorrect conclusions is an inevitable byproduct of
hypothesis testing. No matter what sort of mathematical facade is laid atop the
decision-making process, there is no way to guarantee that what the test tells us
is the truth. One kind of error—rejecting H0 when H0 is true—figured prominently
in Section 6.3: It was argued that critical regions should be defined so as to keep the
probability of making such errors small, often on the order of 0.05.
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In point of fact, there are two different kinds of errors that can be committed
with any hypothesis test: (1) We can reject H0 when H0 is true and (2) we can fail to
reject H0 when H0 is false. These are called Type I and Type II errors, respectively.
At the same time, there are two kinds of correct decisions: (1) We can fail to reject
a true H0 and (2) we can reject a false H0. Figure 6.4.1 shows these four possible
“Decision/State of nature” combinations.

Figure 6.4.1 True State of Nature

H0 is true H1 is true

Fail to Correct Type II
reject H0 decision error

Our
Decision

Type I Correct
Reject H0 error decision

Computing the Probability of Committing a Type I Error

Once an inference is made, there is no way to know whether the conclusion reached
was correct. It is possible, though, to calculate the probability of having made an
error, and the magnitude of that probability can help us better understand the
“power” of the hypothesis test and its ability to distinguish between H0 and H1.

Recall the fuel additive example developed in Section 6.2: H0:μ = 25.0 was to
be tested against H1:μ > 25.0 using a sample of size n = 30. The decision rule stated
that H0 should be rejected if y, the average mpg with the new additive, equalled or
exceeded 25.718. In that case, the probability of committing a Type I error is 0.05:

P(Type I error) = P(Reject H0 | H0 is true)

= P(Y ≥ 25.718 | μ= 25.0)

= P

(
Y − 25.0

2.4/
√

30
≥ 25.718 − 25.0

2.4/
√

30

)
= P(Z ≥ 1.64)= 0.05

Of course, the fact that the probability of committing a Type I error equals 0.05
should come as no surprise. In our earlier discussion of how “beyond reasonable
doubt” should be interpreted numerically, we specifically chose the critical region so
that the probability of the decision rule rejecting H0 when H0 is true would be 0.05.

In general, the probability of committing a Type I error is referred to as a test’s
level of significance and is denoted α (recall Definition 6.2.3). The concept is a crucial
one: The level of significance is a single-number summary of the “rules” by which the
decision process is being conducted. In essence, α reflects the amount of evidence
the experimenter is demanding to see before abandoning the null hypothesis.

Computing the Probability of Committing a Type II Error

We just saw that calculating the probability of a Type I error is a nonproblem:
There are no computations necessary, since the probability equals whatever value
the experimenter sets a priori for α. A similar situation does not hold for Type



368 Chapter 6 Hypothesis Testing

II errors. To begin with, Type II error probabilities are not specified explicitly by
the experimenter; also, each hypothesis test has an infinite number of Type II error
probabilities, one for each value of the parameter admissible under H1.

As an example, suppose we want to find the probability of committing a Type
II error in the gasoline experiment if the true μ (with the additive) were 25.750. By
definition,

P(Type II error | μ= 25.750) = P(We fail to reject H0 | μ= 25.750)

= P(Y < 25.718 | μ= 25.750)

= P

(
Y − 25.75

2.4/
√

30
<

25.718 − 25.75

2.4/
√

30

)
= P(Z <−0.07)= 0.4721

So, even if the new additive increased the fuel economy to 25.750 mpg (from
25 mpg), our decision rule would be “tricked” 47% of the time: that is, it would
tell us on those occasions not to reject H0.

The symbol for the probability of committing a Type II error is β. Figure 6.4.2
shows the sampling distribution of Y when μ= 25.0 (i.e., when H0 is true) and when
μ= 25.750 (H1 is true); the areas corresponding to α and β are shaded.

Figure 6.4.2

25.718

Sampling
distribution
of Y when
H   is true

Sampling
distribution
of Y when
μ = 25.75

β = 0.4721 α = 0.05

1.0

0.5

Accept H0

0

0Reject H

24 25 26 27

Figure 6.4.3

25.718

Sampling
distribution
of Y when
H   is true

Sampling
distribution
of Y when

μ = 26.8

β = 0.0068 α = 0.05

1.0

0.5

Accept H0

0

0Reject H

24 25 26 27 28

Clearly, the magnitude of β is a function of the presumed value for μ. If, for
example, the gasoline additive is so effective as to raise fuel efficiency to 26.8 mpg,
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the probability that our decision rule would lead us to make a Type II error is a much
smaller 0.0068:

P(Type II error | μ= 26.8) = P(We fail to reject H0 | μ= 26.8)

= P(Y < 25.718 | μ= 26.8)= P

(
Y − 26.8

2.4/
√

30
<

25.718 − 26.8

2.4/
√

30

)
= P(Z <−2.47)= 0.0068

(See Figure 6.4.3.)

Power Curves

If β is the probability that we fail to reject H0 when H1 is true, then 1 − β is the
probability of the complement—that we reject H0 when H1 is true. We call 1 − β

the power of the test; it represents the ability of the decision rule to “recognize”
(correctly) that H0 is false.

The alternative hypothesis H1 usually depends on a parameter, which makes
1−β a function of that parameter. The relationship they share can be pictured by
drawing a power curve, which is simply a graph of 1 −β versus the set of all possible
parameter values.

Figure 6.4.4 shows the power curve for testing

H0:μ= 25.0

versus

H1:μ> 25.0

where μ is the mean of a normal distribution with σ = 2.4, and the decision rule is
“Reject H0 if y ≥ 25.718.” The two marked points on the curve represent the (μ,1 −
β) pairs just determined, (25.75, 0.5297) and (26.8, 0.9932). One other point can
be gotten for every power curve, without doing any calculations: When μ = μ0 (the
value specified by H0), 1−β =α. Of course, as the true mean gets further and further
away from the H0 mean, the power will converge to 1.

Figure 6.4.4

25.50 26.00 26.50 27.00

0.5

α

1.0

25.00

Power = 0.72

1 – β

Power = 0.29

Presumed value for μ

Power curves serve two different purposes. On the one hand, they completely
characterize the performance that can be expected from a hypothesis test. In
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Figure 6.4.5

α

1 Method B

Method A

θ0

1 – β

Figure 6.4.4, for example, the two arrows show that the probability of rejecting
H0 : μ = 25 in favor of H1 : μ > 25 when μ = 26.0 is approximately 0.72. (Or, equiv-
alently, Type II errors will be committed roughly 28% of the time when μ = 26.0.)
As the true mean moves closer to μo (and becomes more difficult to distinguish)
the power of the test understandably diminishes. If μ= 25.5, for example, the graph
shows that 1 −β falls to 0.29.

Power curves are also useful for comparing one inference procedure with
another. For every conceivable hypothesis testing situation, a variety of procedures
for choosing between H0 and H1 will be available. How do we know which to use?

The answer to that question is not always simple. Some procedures will be
computationally more convenient or easier to explain than others; some will make
slightly different assumptions about the pdf being sampled. Associated with each
of them, though, is a power curve. If the selection of a hypothesis test is to hinge
solely on its ability to distinguish H0 from H1, then the procedure to choose is the
one having the steepest power curve.

Figure 6.4.5 shows the power curves for two hypothetical methods A and B,
each of which is testing H0: θ = θo versus H1: θ �= θo at the α level of significance.
From the standpoint of power, Method B is clearly the better of the two—it always
has a higher probability of correctly rejecting H0 when the parameter θ is not equal
to θo.

Factors That Influence the Power of a Test

The ability of a test procedure to reject H0 when H0 is false is clearly of prime
importance, a fact that raises an obvious question: What can an experimenter do
to influence the value of 1 −β? In the case of the Z test described in Theorem 6.2.1,
1 − β is a function of α,σ, and n. By appropriately raising or lowering the values of
those parameters, the power of the test against any given μ can be made to equal
any desired level.

The Effect of α on 1 −β

Consider again the test of

H0:μ= 25.0

versus

H1:μ> 25.0
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discussed earlier in this section. In its original form, α =0.05, σ =2.4, n =30, and the
decision rule called for H0 to be rejected if y ≥ 25.718.

Figure 6.4.6 shows what happens to 1 − β (when μ = 25.75) if σ,n, and μ are
held constant but α is increased to 0.10. The top pair of distributions shows the
configuration that appears in Figure 6.4.2; the power in this case is 1 − 0.4721, or
0.53. The bottom portion of the graph illustrates what happens when α is set at 0.10
instead of 0.05—the decision rule changes from “Reject H0 if y ≥ 25.718” to “Reject
H0 if y ≥ 25.561” (see Question 6.4.2) and the power increases from 0.53 to 0.67:

1 −β = P(Reject H0 | H1 is true)

= P(Y ≥ 25.561 | μ= 25.75)

= P

(
Y − 25.75

2.4/
√

30
≥ 25.561 − 25.75

2.4/
√

30

)
= P(Z ≥−0.43)

= 0.6664

Figure 6.4.6
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The specifics of Figure 6.4.6 accurately reflect what is true in general: Increasing
α decreases β and increases the power. That said, it does not follow in practice that
experimenters should manipulate α to achieve a desired 1 − β. For all the reasons
cited in Section 6.2, α should typically be set equal to a number somewhere in the
neighborhood of 0.05. If the corresponding 1 −β against a particular μ is deemed to
be inappropriate, adjustments should be made in the values of σ and/or n.
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The Effects of σ and n on 1 − β

Although it may not always be feasible (or even possible), decreasing σ will neces-
sarily increase 1−β. In the gasoline additive example, σ is assumed to be 2.4 mpg,
the latter being a measure of the variation in gas mileages from driver to driver
achieved in a cross-country road trip from Boston to Los Angeles (recall p. 351).
Intuitively, the environmental differences inherent in a trip of that magnitude would
be considerable. Different drivers would encounter different weather conditions and
varying amounts of traffic, and would perhaps take alternate routes.

Suppose, instead, that the drivers simply did laps around a test track rather than
drive on actual highways. Conditions from driver to driver would then be much more
uniform and the value of σ would surely be smaller. What would be the effect on
1−β when μ= 25.75 (and α = 0.05) if σ could be reduced from 2.4 mpg to 1.2 mpg?

As Figure 6.4.7 shows, reducing σ has the effect of making the H0 distribution
of Y more concentrated around μo(= 25) and the H1 distribution of Y more concen-
trated around μ(= 25.75). Substituting into Equation 6.2.1 (with 1.2 for σ in place

Figure 6.4.7

24 25 26

25.718

27

When σ = 2.4

Sampling
distribution
of Y when
H   is true

Sampling
distribution
of Y when
μ = 25.75

β = 0.4721 α = 0.05

1.0

0.5

Power = 0.53

β = 0.0375 α = 0.05

2.0
Power = 0.96

0

Sampling
distribution
of Y when
H   is true0

Accept H0 Reject H0

Sampling
distribution
of Y when
μ = 25.75

24 25 26 27

When σ = 1.2

25.359

Accept H0 Reject H0



6.4 Type I and Type II Errors 373

of 2.4), we find that the critical value y ∗ moves closer to μo [from 25.718 to 25.359(
= 25 + 1.64 · 1.2√

30

)]
and the proportion of the H1 distribution above the rejection

region (i.e., the power) increases from 0.53 to 0.96:

1 −β = P(Y ≥ 25.359 | μ= 25.75)

= P

(
Z ≥ 25.359 − 25.75

1.2/
√

30

)
= P(Z ≥−1.78)= 0.9625

In theory, reducing σ can be a very effective way of increasing the power of
a test, as Figure 6.4.7 makes abundantly clear. In practice, though, refinements in
the way data are collected that would have a substantial impact on the magnitude
of σ are often either difficult to identify or prohibitively expensive. More typically,
experimenters achieve the same effect by simply increasing the sample size.

Look again at the two sets of distributions in Figure 6.4.7. The increase in 1−β

from 0.53 to 0.96 was accomplished by cutting the denominator of the test statistic(
z = y−25

σ/
√

30

)
in half by reducing the standard deviation from 2.4 to 1.2. The same

numerical effect would be produced if σ were left unchanged but n was increased
from 30 to 120—that is, 1.2√

30
= 2.4√

120
. Because it can easily be increased or decreased,

the sample size is the parameter that researchers almost invariably turn to as the
mechanism for ensuring that a hypothesis test will have a sufficiently high power
against a given alternative.

Example
6.4.1

Suppose an experimenter wishes to test

H0:μ= 100

versus

H1:μ> 100

at the α =0.05 level of significance and wants 1−β to equal 0.60 when μ=103. What
is the smallest (i.e., cheapest) sample size that will achieve that objective? Assume
that the variable being measured is normally distributed with σ = 14.

Finding n, given values for α,1 − β,σ , and μ, requires that two simultaneous
equations be written for the critical value y ∗, one in terms of the H0 distribution
and the other in terms of the H1 distribution. Setting the two equal will yield the
minimum sample size that achieves the desired α and 1 −β.

Consider, first, the consequences of the level of significance being equal to 0.05.
By definition,

α = P(We reject H0 | H0 is true)

= P(Y ≥ y ∗ | μ= 100)

= P

(
Y − 100

14/
√

n
≥ y ∗ − 100

14/
√

n

)

= P

(
Z ≥ y ∗ − 100

14/
√

n

)
= 0.05

But P(Z ≥ 1.64)= 0.05, so
y ∗ − 100

14/
√

n
= 1.64
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or, equivalently,

y ∗ = 100 + 1.64 · 14√
n

(6.4.1)

Similarly,

1 −β = P(We reject H0 | H1 is true)= P(Y ≥ y ∗ | μ= 103)

= P

(
Y − 103

14/
√

n
≥ y ∗ − 103

14/
√

n

)
= 0.60

From Appendix Table A.1, though, P(Z ≥−0.25)= 0.5987
.= 0.60, so

y ∗ − 103

14/
√

n
=−0.25

which implies that

y ∗ = 103 − 0.25 · 14√
n

(6.4.2)

It follows, then, from Equations 6.4.1 and 6.4.2 that

100 + 1.64 · 14√
n

= 103 − 0.25 · 14√
n

Solving for n shows that a minimum of seventy-eight observations must be taken to
guarantee that the hypothesis test will have the desired precision.

Decision Rules for Nonnormal Data

Our discussion of hypothesis testing thus far has been confined to inferences involv-
ing either binomial data or normal data. Decision rules for other types of probability
functions are rooted in the same basic principles.

In general, to test H0: θ =θo, where θ is the unknown parameter in a pdf fY (y; θ),
we initially define the decision rule in terms of θ̂ , where the latter is a sufficient statis-
tic for θ . The corresponding critical region is the set of values of θ̂ least compatible
with θo (but admissible under H1) whose total probability when H0 is true is α. In
the case of testing H0:μ = μo versus H1:μ > μo, for example, where the data are
normally distributed, Y is a sufficient statistic for μ, and the least likely values for
the sample mean that are admissible under H1 are those for which y ≥ y ∗, where
P(Y ≥ y ∗ | H0 is true)=α.

Example
6.4.2

A random sample of size n =8 is drawn from the uniform pdf, fY (y; θ)=1/θ,0≤ y ≤
θ , for the purpose of testing

H0: θ = 2.0

versus

H1: θ < 2.0

at the α = 0.10 level of significance. Suppose the decision rule is to be based on Y ′
8,

the largest order statistic. What would be the probability of committing a Type II
error when θ = 1.7?
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If H0 is true, Y ′
8 should be close to 2.0, and values of the largest order statistic

that are much smaller than 2.0 would be evidence in favor of H1: θ < 2.0. It follows,
then, that the form of the decision rule should be

“Reject H0: θ = 2.0 if y′
8 ≤ c”

where P(Y ′
8 ≤ c | H0 is true)= 0.10.

From Theorem 3.10.1,

fY ′
8
(y; θ = 2)= 8

( y

2

)7 · 1

2
, 0 ≤ y ≤ 2

Therefore, the constant c that appears in the α = 0.10 decision rule must satisfy the
equation ∫ c

0
8
( y

2

)7 · 1

2
dy = 0.10

or, equivalently, ( c

2

)8 = 0.10

implying that c = 1.50.
Now, β when θ = 1.7 is, by definition, the probability that Y ′

8 falls in the
acceptance region when H1: θ = 1.7 is true. That is,

β = P(Y ′
8 > 1.50 | θ = 1.7)=

∫ 1.7

1.50
8
( y

1.7

)7 · 1

1.7
dy

= 1 −
(

1.5

1.7

)8

= 0.63

(See Figure 6.4.8.)
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Figure 6.4.8

Example
6.4.3

Four measurements—k1, k2, k3, k4—are taken on a Poisson random variable, X ,
where pX (k;λ)= e−λλk/k!, k = 0,1,2, . . . , for the purpose of testing

H0: λ = 0.8

versus

H1: λ > 0.8



376 Chapter 6 Hypothesis Testing

What decision rule should be used if the level of significance is to be 0.10, and what
will be the power of the test when λ = 1.2?

From Example 5.6.1, we know that X is a sufficient statistic for λ; the same

would be true, of course, for
4∑

i=1
Xi . It will be more convenient to state the deci-

sion rule in terms of the latter because we already know the probability model that
describes its behavior: If X1, X2, X3, X4 are four independent Poisson random vari-

ables, each with parameter λ, then
4∑

i=1
Xi has a Poisson distribution with parameter

4λ (recall Example 3.12.10).
Figure 6.4.9 is a Minitab printout of the Poisson probability function having

λ = 3.2, which would be the sampling distribution of
4∑

i=1
Xi when H0:λ = 0.8 is true.

MTB > pdf;
SUBC > poisson 3.2.
Probability Density Function
Poisson with mean = 3.2

x P(X = x)
0 0.040762
1 0.130439
2 0.208702
3 0.222616
4 0.178093
5 0.113979

Critical
region

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

6 0.060789
7 0.027789
8 0.011116
9 0.003952

10 0.001265
11 0.000368
12 0.000098
13 0.000024
14 0.000006
15 0.000001
16 0.000000

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
α = P(RejectH0|H0 is true) = 0.105408

Figure 6.4.9

MTB > pdf;
SUBC > poisson 4.8.
Probability Density Function
Poisson with mean = 4.8

x P(X = x)
0 0.008230
1 0.039503
2 0.094807
3 0.151691
4 0.182029
5 0.174748
6 0.139798
7 0.095862
8 0.057517
9 0.030676

10 0.014724
11 0.006425
12 0.002570
13 0.000949
14 0.000325
15 0.000104
16 0.000031
17 0.000009
18 0.000002
19 0.000001
20 0.000000

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

1 −β = P(RejectH0|H1 is true) = 0.348993

Figure 6.4.10
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By inspection, the decision rule “Reject H0:λ = 0.8 if
4∑

i=1
ki ≥ 6” gives an α close to

the desired 0.10.

If H1 is true and λ= 1.2,
4∑

i=1
Xi will have a Poisson distribution with a parameter

equal to 4.8. According to Figure 6.4.10, the probability that the sum of a random
sample of size 4 from such a distribution would equal or exceed 6 (i.e., 1 − β when
λ = 1.2) is 0.348993.

Example
6.4.4

Suppose a random sample of seven observations is taken from the pdf fY (y; θ) =
(θ + 1)yθ , 0 ≤ y ≤ 1, to test

H0: θ = 2

versus

H1: θ > 2

As a decision rule, the experimenter plans to record X , the number of yi ’s that
exceed 0.9, and reject H0 if X ≥4. What proportion of the time would such a decision
rule lead to a Type I error?

To evaluate α = P(Reject H0 | H0 is true), we first need to recognize that X is
a binomial random variable where n = 7 and the parameter p is an area under
fY (y; θ = 2):

p = P(Y ≥ 0.9 | H0 is true)= P[Y ≥ 0.9 | fY (y;2)= 3y2]

=
∫ 1

0.9
3y2 dy

= 0.271

It follows, then, that H0 will be incorrectly rejected 9.2% of the time:

α = P(X ≥ 4 | θ = 2) =
7∑

k=4

(
7
k

)
(0.271)k(0.729)7−k

= 0.092

Comment The basic notions of Type I and Type II errors first arose in a quality-
control context. The pioneering work was done at the Bell Telephone Laboratories:
There the terms producer’s risk and consumer’s risk were introduced for what we
now call α and β. Eventually, these ideas were generalized by Neyman and Pear-
son in the 1930s and evolved into the theory of hypothesis testing as we know it
today.

Questions

6.4.1. Recall the “Math for the Twenty-First Century”
hypothesis test done in Example 6.2.1. Calculate the
power of that test when the true mean is 500.

6.4.2. Carry out the details to verify the deci-
sion rule change cited on p. 371 in connection with
Figure 6.4.6.

6.4.3. For the decision rule found in Question 6.2.2 to
test H0:μ = 95 versus H1:μ �= 95 at the α = 0.06 level of
significance, calculate 1 −β when μ= 90.

6.4.4. Construct a power curve for the α = 0.05 test of
H0:μ=60 versus H1:μ �=60 if the data consist of a random
sample of size 16 from a normal distribution having σ = 4.
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6.4.5. If H0:μ = 240 is tested against H1:μ < 240 at the
α = 0.01 level of significance with a random sample of
twenty-five normally distributed observations, what pro-
portion of the time will the procedure fail to recognize that
μ has dropped to 220? Assume that σ = 50.

6.4.6. Suppose n = 36 observations are taken from a nor-
mal distribution where σ = 8.0 for the purpose of testing
H0:μ= 60 versus H1:μ �= 60 at the α = 0.07 level of signifi-
cance. The lead investigator skipped statistics class the day
decision rules were being discussed and intends to reject
H0 if y falls in the region (60 − y ∗,60 + y ∗).

(a) Find y ∗.
(b) What is the power of the test when μ= 62?
(c) What would the power of the test be when μ = 62 if

the critical region had been defined the correct way?

6.4.7. If H0:μ = 200 is to be tested against H1:μ < 200 at
the α = 0.10 level of significance based on a random sam-
ple of size n from a normal distribution where σ = 15.0,
what is the smallest value for n that will make the power
equal to at least 0.75 when μ= 197?

6.4.8. Will n = 45 be a sufficiently large sample to test
H0:μ = 10 versus H1:μ �= 10 at the α = 0.05 level of signif-
icance if the experimenter wants the Type II error prob-
ability to be no greater than 0.20 when μ = 12? Assume
that σ = 4.

6.4.9. If H0:μ=30 is tested against H1:μ>30 using n =16
observations (normally distributed) and if 1 − β = 0.85
when μ= 34, what does α equal? Assume that σ = 9.

6.4.10. Suppose a sample of size 1 is taken from the pdf
fY (y)= (1/λ)e−y/λ, y > 0, for the purpose of testing

H0:λ= 1
versus

H1:λ> 1

The null hypothesis will be rejected if y ≥ 3.20.

(a) Calculate the probability of committing a Type I
error.

(b) Calculate the probability of committing a Type II
error when λ= 4

3
.

(c) Draw a diagram that shows the α and β calculated in
parts (a) and (b) as areas.

6.4.11. Polygraphs used in criminal investigations typi-
cally measure five bodily functions: (1) thoracic respira-
tion, (2) abdominal respiration, (3) blood pressure and
pulse rate, (4) muscular movement and pressure, and (5)
galvanic skin response. In principle, the magnitude of
these responses when the subject is asked a relevant ques-
tion (“Did you murder your wife?") indicate whether he
is lying or telling the truth. The procedure, of course, is

not infallible, as a recent study bore out (82). Seven expe-
rienced polygraph examiners were given a set of forty
records—twenty were from innocent suspects and twenty
from guilty suspects. The subjects had been asked eleven
questions, on the basis of which each examiner was to
make an overall judgment: “Innocent" or “Guilty." The
results are as follows:

Suspect’s True Status
Innocent Guilty

Examiner’s “Innocent”

Decision “Guilty”
131 15

9 125

What would be the numerical values of α and β in this con-
text? In a judicial setting, should Type I and Type II errors
carry equal weight? Explain.

6.4.12. An urn contains ten chips. An unknown number
of the chips are white; the others are red. We wish to test

H0:exactly half the chips are white

versus

H1:more than half the chips are white

We will draw, without replacement, three chips and reject
H0 if two or more are white. Find α. Also, find β when the
urn is (a) 60% white and (b) 70% white.

6.4.13. Suppose that a random sample of size 5 is drawn
from a uniform pdf:

fY (y; θ)=
{

1
θ
, 0 < y <θ

0, elsewhere

We wish to test

H0: θ = 2
versus

H1: θ > 2

by rejecting the null hypothesis if ymax ≥ k. Find the value
of k that makes the probability of committing a Type I
error equal to 0.05.

6.4.14. A sample of size 1 is taken from the pdf

fY (y)= (θ + 1)yθ , 0 ≤ y ≤ 1

The hypothesis H0: θ =1 is to be rejected in favor of H1: θ >

1 if y ≥ 0.90. What is the test’s level of significance?

6.4.15. A series of n Bernoulli trials is to be observed as
data for testing

H0: p = 1
2

versus
H1: p > 1

2

The null hypothesis will be rejected if k, the observed
number of successes, equals n. For what value of p will
the probability of committing a Type II error equal 0.05?
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6.4.16. Let X1 be a binomial random variable with n = 2
and pX1 = P(success). Let X2 be an independent bino-
mial random variable with n =4 and pX2 = P(success). Let
X = X1 + X2. Calculate α if

H0: pX1 = pX2 = 1
2

versus
H1: pX1 = pX2 > 1

2

is to be tested by rejecting the null hypothesis when k ≥ 5.

6.4.17. A sample of size 1 from the pdf fY (y) = (1 +
θ)yθ ,0 ≤ y ≤ 1, is to be the basis for testing

H0: θ = 1
versus

H1: θ < 1

The critical region will be the interval y ≤ 1
2
. Find an

expression for 1 −β as a function of θ .

6.4.18. An experimenter takes a sample of size 1 from
the Poisson probability model, pX (k) = e−λλk/k!, k =
0,1,2, . . . , and wishes to test

H0:λ= 6
versus

H1:λ< 6

by rejecting H0 if k ≤ 2.

(a) Calculate the probability of committing a Type I
error.

(b) Calculate the probability of committing a Type II
error when λ= 4.

6.4.19. A sample of size 1 is taken from the geometric
probability model, pX (k) = (1 − p)k−1 p, k = 1,2,3, . . . , to
test H0: p = 1

3
versus H1: p > 1

3
. The null hypothesis is to

be rejected if k ≥ 4. What is the probability that a Type II
error will be committed when p = 1

2
?

6.4.20. Suppose that one observation from the exponen-
tial pdf, fY (y) = λe−λy, y > 0, is to be used to test H0:λ =
1 versus H1:λ < 1. The decision rule calls for the null
hypothesis to be rejected if y ≥ ln 10. Find β as a function
of λ.

6.4.21. A random sample of size 2 is drawn from a uni-
form pdf defined over the interval [0, θ ]. We wish to
test

H0: θ = 2
versus

H1: θ < 2

by rejecting H0 when y1 + y2 ≤ k. Find the value for k that
gives a level of significance of 0.05.

6.4.22. Suppose that the hypotheses of Question 6.4.21
are to be tested with a decision rule of the form “Reject
H0: θ =2 if y1 y2 ≤ k∗.” Find the value of k∗ that gives a level
of significance of 0.05 (see Theorem 3.8.5).

6.5 A Notion of Optimality: The Generalized
Likelihood Ratio
In the next several chapters we will be studying some of the particular hypothe-
sis tests that statisticians most often use in dealing with real-world problems. All
of these have the same conceptual heritage—a fundamental notion known as the
generalized likelihood ratio, or GLR. More than just a principle, the generalized
likelihood ratio is a working criterion for actually suggesting test procedures.

As a first look at this important idea, we will conclude Chapter 6 with an appli-
cation of the generalized likelihood ratio to the problem of testing the parameter θ

in a uniform pdf. Notice the relationship here between the likelihood ratio and the
definition of an “optimal” hypothesis test.

Suppose y1, y2, . . . , yn is a random sample from a uniform pdf over the interval
[0, θ ], where θ is unknown, and our objective is to test

H0: θ = θo

versus

H1: θ < θo

at a specified level of significance α. What is the “best” decision rule for choosing
between H0 and H1, and by what criterion is it considered optimal?
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As a starting point in answering those questions, it will be necessary to define
two parameter spaces, ω and �. In general, ω is the set of unknown parameter values
admissible under H0. In the case of the uniform, the only parameter is θ , and the null
hypothesis restricts it to a single point:

ω ={θ : θ = θo}
The second parameter space, �, is the set of all possible values of all unknown
parameters. Here,

�={θ :0 <θ ≤ θo}
Now, recall the definition of the likelihood function, L , from Definition 5.2.1.

Given a sample of size n from a uniform pdf,

L = L(θ)= n
�
i=1

fY (yi ; θ)=
{ (

1
θ

)n
, 0 ≤ yi ≤ θ

0, otherwise

For reasons that will soon be clear, we need to maximize L(θ) twice, once under ω

and again under �. Since θ can take on only one value—θo—under ω,

max
ω

L(θ)= L(θo)=
{ (

1
θo

)n
, 0 ≤ yi ≤ θo

0, otherwise

Maximizing L(θ) under �—that is, with no restrictions—is accomplished by sim-
ply substituting the maximum likelihood estimate for θ into L(θ). For the uni-
form parameter, ymax is the maximum likelihood estimate (recall Question 5.2.10).
Therefore,

max
�

L(θ)=
(

1

ymax

)n

For notational simplicity, we denote max
ω

L(θ) and max
�

L(θ) by L(ωe) and L(�e),

respectively.

Definition 6.5.1. Let y1, y2, . . . , yn be a random sample from fY (y; θ1, . . . , θk).
The generalized likelihood ratio, λ, is defined to be

λ =
max

ω
L(θ1, . . . , θk)

max
�

L(θ1, . . . , θk)
= L(ωe)

L(�e)

For the uniform distribution,

λ = (1/θ0)
n

(1/ymax)n
=
(

ymax

θ0

)n

Note that, in general, λ will always be positive but never greater than 1 (why?).
Furthermore, values of the likelihood ratio close to 1 suggest that the data are very
compatible with H0. That is, the observations are “explained” almost as well by the
H0 parameters as by any parameters [as measured by L(ωe) and L(�e)]. For these
values of λ we should accept H0. Conversely, if L(ωe)/L(�e) were close to 0, the
data would not be very compatible with the parameter values in ω and it would
make sense to reject H0.
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Definition 6.5.2. A generalized likelihood ratio test (GLRT) is one that rejects
H0 whenever

0 <λ ≤ λ∗

where λ∗ is chosen so that

P(0 <�≤ λ∗ | H0 is true)=α

(Note: In keeping with the capital letter notation introduced in Chapter 3, �

denotes the generalized likelihood ratio expressed as a random variable.)

Let f�(λ | H0) denote the pdf of the generalized likelihood ratio when H0 is true.
If f�(λ | H0) were known, λ∗ (and, therefore, the decision rule) could be determined
by solving the equation

α =
∫ λ∗

0
f�(λ | H0)dλ

(see Figure 6.5.1). In many situations, though, f�(λ | H0) is not known, and it
becomes necessary to show that � is a monotonic function of some quantity W ,
where the distribution of W is known. Once we have found such a statistic, any test
based on w will be equivalent to one based on λ.

Here, a suitable W is easy to find. Note that

P(�≤ λ∗ | H0 is true) =α = P

[(
Ymax

θ0

)n

≤ λ∗ | H0 is true

]
= P

(
Ymax

θ0
≤ n

√
λ∗ | H0 is true

)

Figure 6.5.1

0 λ∗ λ

fΛ (λ | H0)

Reject H0

α

Let W = Ymax/θ0 and w ∗ = n
√

λ∗. Then

P(�≤ λ∗ | H0 is true)= P(W ≤w ∗ | H0 is true) (6.5.1)

Here the right-hand side of Equation 6.5.1 can be evaluated from what we already
know about the density function for the largest order statistic from a uniform
distribution. Let fYmax(y; θ0) be the density function for Ymax. Then

fW (w; θ0)= θ0 fYmax(θ0w; θ0) (recall Theorem 3.8.2)

which, from Theorem 3.10.1, reduces to

θ0n(θ0w)n−1

θn
0

= nwn−1, 0 ≤w ≤ 1
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Therefore,

P(W ≤w ∗ | H0 is true)=
∫ w ∗

0
nwn−1dw = (w ∗)n =α

implying that the critical value for W is

w ∗ = n
√

α

That is, the GLRT calls for H0 to be rejected if

w = ymax

θ0
≤ n

√
α

Questions

6.5.1. Let k1, k2, . . . , kn be a random sample from the
geometric probability function

pX (k; p)= (1 − p)k−1 p, k = 1,2, . . .

Find λ, the generalized likelihood ratio for testing H0: p =
p0 versus H1: p �= p0.

6.5.2. Let y1, y2, . . . , y10 be a random sample from an
exponential pdf with unknown parameter λ. Find the form
of the GLRT for H0:λ=λ0 versus H1:λ �=λ0. What integral
would have to be evaluated to determine the critical value
if α were equal to 0.05?

6.5.3. Let y1, y2, . . . , yn be a random sample from a nor-
mal pdf with unknown mean μ and variance 1. Find the
form of the GLRT for H0:μ=μ0 versus H1:μ �=μ0.

6.5.4. In the scenario of Question 6.5.3, suppose the alter-
native hypothesis is H1:μ = μ1, for some particular value
of μ1. How does the likelihood ratio test change in this
case? In what way does the critical region depend on the
particular value of μ1?

6.5.5. Let k denote the number of successes observed
in a sequence of n independent Bernoulli trials, where
p = P(success).

(a) Show that the critical region of the likelihood ratio
test of H0: p = 1

2
versus H1: p �= 1

2
can be written in

the form

k · ln(k)+ (n − k) · ln(n − k)≥ λ∗∗

(b) Use the symmetry of the graph of

f (k)= k · ln(k)+ (n − k) · ln(n − k)

to show that the critical region can be written in the
form ∣∣∣∣k − 1

2

∣∣∣∣≥ c

where c is a constant determined by α.

6.5.6. Suppose a sufficient statistic exists for the parame-
ter θ . Use Theorem 5.6.1 to show that the critical region
of a likelihood ratio test will depend on the sufficient
statistic.

6.6 Taking a Second Look at Statistics (Statistical
Significance versus “Practical” Significance)
The most important concept in this chapter—the notion of statistical significance—
is also the most problematic. Why? Because statistical significance does not always
mean what it seems to mean. By definition, the difference between, say, y and μo is
statistically significant if H0:μ = μo can be rejected at the α = 0.05 level. What that
implies is that a sample mean equal to the observed y is not likely to have come from
a (normal) distribution whose true mean was μo. What it does not imply is that the
true mean is necessarily much different than μo.

Recall the discussion of power curves in Section 6.4 and, in particular, the effect
of n on 1 − β. The example illustrating those topics involved an additive that might
be able to increase a car’s gas mileage. The hypotheses being tested were
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H0:μ= 25.0

versus

H1:μ> 25.0

where σ was assumed to be 2.4 (mpg) and α was set at 0.05. If n = 30, the decision
rule called for H0 to be rejected when y ≥25.718 (see p. 354). Figure 6.6.1 is the test’s
power curve [the point (μ, 1 −β)= (25.75,1 − 0.47) was calculated on p. 368].

Figure 6.6.1 1

0.75

0.50

0.25

25
0

25.5 26

(n = 30)

1 – β

26.5
μ

The important point was made in Section 6.4 that researchers have a variety of
ways to increase the power of a test—that is, to decrease the probability of commit-
ting a Type II error. Experimentally, the usual way is to increase the sample size,
which has the effect of reducing the overlap between the H0 and H1 distributions
(Figure 6.4.7 pictured such a reduction when the sample size was kept fixed but σ

was decreased from 2.4 to 1.2). Here, to show the effect of n on 1 − β, Figure 6.6.2
superimposes the power curves for testing H0:μ = 25.0 versus H1:μ > 25.0 in the
cases where n = 30, n = 60, and n = 900 (keeping α = 0.05 and σ = 2.4).

Figure 6.6.2 1
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There is good news in Figure 6.6.2 and there is bad news in Figure 6.6.2. The
good news—not surprisingly—is that the probability of rejecting a false hypothesis
increases dramatically as n increases. If the true mean μ is 25.25, for example, the
Z test will (correctly) reject H0:μ = 25.0 14% of the time when n = 30, 20% of the
time when n = 60, and a robust 93% of the time when n = 900.

The bad news implicit in Figure 6.6.2 is that any false hypothesis, even one where
the true μ is just “epsilon” away from μo, can be rejected virtually 100% of the
time if a large enough sample size is used. Why is that bad? Because saying that a
difference (between y and μo) is statistically significant makes it sound meaningful
when, in fact, it may be totally inconsequential.
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Suppose, for example, an additive could be found that would increase a car’s
gas mileage from 25.000 mpg to 25.001 mpg. Such a minuscule improvement would
mean basically nothing to the consumer, yet if a large enough sample size were
used, the probability of rejecting H0:μ = 25.000 in favor of H1:μ > 25.000 could
be made arbitrarily close to 1. That is, the difference between y and 25.000 would
qualify as being statistically significant even though it had no “practical significance”
whatsoever.

Two lessons should be learned here, one old and one new. The new lesson is
to be wary of inferences drawn from experiments or surveys based on huge sample
sizes. Many statistically significant conclusions are likely to result in those situations,
but some of those “reject H0’s” may be driven primarily by the sample size. Paying
attention to the magnitude of y − μo (or k

n − po) is often a good way to keep the
conclusion of a hypothesis test in perspective.

The second lesson has been encountered before and will come up again: Ana-
lyzing data is not a simple exercise in plugging into formulas or reading computer
printouts. Real-world data are seldom simple, and they cannot be adequately sum-
marized, quantified, or interpreted with any single statistical technique. Hypothesis
tests, like every other inference procedure, have strengths and weaknesses, assump-
tions and limitations. Being aware of what they can tell us—and how they can trick
us—is the first step toward using them properly.
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I know of scarcely anything so apt to impress the imagination as the wonderful form
of cosmic order expressed by the “law of frequency of error” (the normal
distribution). The law would have been personified by the Greeks and deified, if they
had known of it. It reigns with serenity and in complete self effacement amidst the
wildest confusion. The huger the mob, and the greater the anarchy, the more perfect
is its sway. It is the supreme law of Unreason.

—Francis Galton

7.1 Introduction
Finding probability distributions to describe—and, ultimately, to predict—empirical
data is one of the most important contributions a statistician can make to the
research scientist. Already we have seen a number of functions playing that role.

385
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The binomial is an obvious model for the number of correct responses in the
Pratt-Woodruff ESP experiment (Case Study 4.3.1); the probability of holding a win-
ning ticket in the Florida Lottery is given by the hypergeometric (Example 3.2.6);
and applications of the Poisson have run the gamut from radioactive decay (Case
Study 4.2.2) to the number of wars starting in a given year (Case Study 4.2.3). Those
examples notwithstanding, by far the most widely used probability model in statistics
is the normal (or Gaussian) distribution,

fY (y)= 1√
2πσ

e−(1/2)[(y−μ)/σ ]2
, −∞< y <∞ (7.1.1)

Some of the history surrounding the normal curve has already been discussed in
Chapter 4—how it first appeared as a limiting form of the binomial, but then soon
found itself used most often in nonbinomial situations. We also learned how to find
areas under normal curves and did some problems involving sums and averages.
Chapter 5 provided estimates of the parameters of the normal density and showed
their role in fitting normal curves to data. In this chapter, we will take a second look
at the properties and applications of this singularly important pdf, this time paying
attention to the part it plays in estimation and hypothesis testing.

7.2 Comparing Y−μ

σ/
√

n
and Y−μ

S/
√

n

Suppose that a random sample of n measurements, Y1,Y2, . . . ,Yn , is to be taken on
a trait that is thought to be normally distributed, the objective being to draw an
inference about the underlying pdf’s true mean, μ. If the variance σ 2 is known, we
already know how to proceed: A decision rule for testing H0 : μ = μ0 is given in
Theorem 6.2.1, and the construction of a confidence interval for μ is described in
Section 5.3. As we learned, both of those procedures are based on the fact that the
ratio Z = Y−μ

σ/
√

n
has a standard normal distribution, fZ (z).

In practice, though, the parameter σ 2 is seldom known, so the ratio Y−μ

σ/
√

n
cannot

be calculated, even if a value for the mean—say, μ0—is substituted for μ. Typically,
the only information experimenters have about σ 2 is what can be gleaned from the
Yi ’s themselves. The usual estimator for the population variance, of course, is S2 =

1
n−1

n∑
i=1

(Yi − Y )2, the unbiased version of the maximum likelihood estimator for σ 2.

The question is, what effect does replacing σ with S have on the Z ratio? Are there
are probabilistic differences between Y−μ

σ/
√

n
and Y−μ

S/
√

n
?

Historically, many early practitioners of statistics felt that replacing σ with S
had, in fact, no effect on the distribution of the Z ratio. Sometimes they were right.
If the sample size is very large (which was not an unusual state of affairs in many of
the early applications of statistics), the estimator S is essentially a constant and for
all intents and purposes equal to the true σ . Under those conditions, the ratio Y−μ

S/
√

n

will behave much like a standard normal random variable, Z . When the sample size
n is small, though, replacing σ with S does matter, and it changes the way we draw
inferences about μ.

Credit for recognizing that Y−μ

σ/
√

n
and Y−μ

S/
√

n
do not have the same distribution goes

to William Sealy Gossett. After graduating in 1899 from Oxford with First Class
degrees in Chemistry and Mathematics, Gossett took a position at Arthur Guin-
ness, Son & Co., Ltd., a firm that brewed a thick, dark ale known as stout. Given
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the task of making the art of brewing more scientific, Gossett quickly realized that
any experimental studies would necessarily face two obstacles. First, for a variety
of economic and logistical reasons, sample sizes would invariably be small; and sec-
ond, there would never be any way to know the exact value of the true variance, σ 2,
associated with any set of measurements.

So, when the objective of a study was to draw an inference about μ, Gossett
found himself working with the ratio Y−μ

S/
√

n
, where n was often on the order of four

or five. The more he encountered that situation, the more he became convinced
that ratios of that sort are not adequately described by the standard normal pdf.
In particular, the distribution of Y−μ

S/
√

n
seemed to have the same general bell-shaped

configuration as fZ (z), but the tails were “thicker”—that is, ratios much smaller than
zero or much greater than zero were not as rare as the standard normal pdf would
predict.

Figure 7.2.1 illustrates the distinction between the distributions of Y−μ

σ/
√

n
and Y−μ

S/
√

n

that caught Gossett’s attention. In Figure 7.2.1a, five hundred samples of size n = 4
have been drawn from a normal distribution where the value of σ is known. For
each sample, the ratio Y−μ

σ/
√

4
has been computed. Superimposed over the shaded his-

togram of those five hundred ratios is the standard normal curve, fZ (z). Clearly, the
probabilistic behavior of the random variable Y−μ

σ/
√

4
is entirely consistent with fZ (z).

Figure 7.2.1
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The histogram pictured in Figure 7.2.1b is also based on five hundred samples
of size n = 4 drawn from a normal distribution. Here, though, S has been calculated
for each sample, so the ratios comprising the histogram are Y−μ

S/
√

4
rather than Y−μ

σ/
√

4
.

In this case, the superimposed standard normal pdf does not adequately describe
the histogram—specifically, it underestimates the number of ratios much less than
zero as well as the number much larger than zero (which is exactly what Gossett had
noted).

Gossett published a paper in 1908 entitled “The Probable Error of a Mean,”
in which he derived a formula for the pdf of the ratio Y−μ

S/
√

n
. To prevent disclo-

sure of confidential company information, Guinness prohibited its employees from
publishing any papers, regardless of content. So, Gossett’s work, one of the major
statistical breakthroughs of the twentieth century, was published under the name
“Student.”

Initially, Gossett’s discovery attracted very little attention. Virtually none of his
contemporaries had the slightest inkling of the impact that Gossett’s paper would
have on modern statistics. Indeed, fourteen years after its publication, Gossett sent
R.A. Fisher a tabulation of his distribution, with a note saying, “I am sending you a
copy of Student’s Tables as you are the only man that’s ever likely to use them.”

Fisher very much understood the value of Gossett’s work and believed that Gos-
sett had effected a “logical revolution.” Fisher presented a rigorous mathematical
derivation of Gossett’s pdf in 1924, the core of which appears in Appendix 7.A.2.
Fisher somewhat arbitrarily chose the letter t for the Y−μ

S/
√

n
statistic. Consequently, its

pdf is known as the Student t distribution.

7.3 Deriving the Distribution of Y−μ

S/
√

n

Broadly speaking, the set of probability functions that statisticians have occasion
to use fall into two categories. There are a dozen or so that can effectively model
the individual measurements taken on a variety of real-world phenomena. These
are the distributions we studied in Chapters 3 and 4—most notably, the normal,
binomial, Poisson, exponential, hypergeometric, and uniform. There is a smaller set
of probability distributions that model the behavior of functions based on sets of
n random variables. These are called sampling distributions, and they are typically
used for inference purposes.

The normal distribution belongs to both categories. We have seen a number of
scenarios (IQ scores, for example) where the Gaussian distribution is very effective
at describing the distribution of repeated measurements. At the same time, the nor-
mal distribution is used to model the probabilistic behavior of T = Y−μ

σ/
√

n
. In the latter

capacity, it serves as a sampling distribution.
Next to the normal distribution, the three most important sampling distributions

are the Student t distribution, the chi square distribution, and the F distribution. All
three will be introduced in this section, partly because we need the latter two to
derive fT (t), the pdf for the t ratio, T = Y−μ

S/
√

n
. So, although our primary objective in

this section is to study the Student t distribution, we will in the process introduce the
two other sampling distributions that we will be encountering over and over again
in the chapters ahead.

Deriving the pdf for a t ratio is not a simple matter. That may come as a sur-
prise, given that deducing the pdf for Y−μ

σ/
√

n
is quite easy (using moment-generating
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functions). But going from Y−μ

σ/
√

n
to Y−μ

S/
√

n
creates some major mathematical

complications because T (unlike Z) is the ratio of two random variables, Y and
S, both of which are functions of n random variables, Y1,Y2, . . . ,Yn . In general—
and this ratio is no exception—finding pdfs of quotients of random variables is
difficult, especially when the numerator and denominator random variables have
cumbersome pdfs to begin with.

As we will see in the next few pages, the derivation of fT (t) plays out in several

steps. First, we show that
m∑

j=1
Z2

j , where the Z j ’s are independent standard normal

random variables, has a gamma distribution (more specifically, a special case of the
gamma distribution, called a chi square distribution). Then we show that Y and S2,
based on a random sample of size n from a normal distribution, are independent
random variables and that (n−1)S2

σ 2 has a chi square distribution. Next we derive the
pdf of the ratio of two independent chi square random variables (which is called

the F distribution). The final step in the proof is to show that T 2 =
(

Y−μ

S/
√

n

)2
can be

written as the quotient of two independent chi square random variables, making it
a special case of the F distribution. Knowing the latter allows us to deduce fT (t).

Theorem
7.3.1

Let U =
m∑

j=1
Z2

j , where Z1, Z2, . . . , Zm are independent standard normal random

variables. Then U has a gamma distribution with r = m
2 and λ = 1

2 . That is,

fU (u)= 1

2m/2�
(

m
2

)u(m/2)−1e−u/2, u ≥ 0

Proof First take m = 1. For any u ≥ 0,

FZ2(u) = P(Z2 ≤ u)= P
(−√

u ≤ Z ≤√
u
)= 2P

(
0 ≤ Z ≤√

u
)

= 2√
2π

∫ √
u

0
e−z2/2 dz

Differentiating both sides of the equation for FZ2(u) gives fZ2(u):

fZ2(u)= d

du
FZ2(u)= 2√

2π

1

2
√

u
e−u/2 = 1

21/2�
(

1
2

)u(1/2)−1e−u/2

Notice that fU (u) = fZ2(u) has the form of a gamma pdf with r = 1
2 and λ = 1

2 . By
Theorem 4.6.4, then, the sum of m such squares has the stated gamma distribution
with r = m

(
1
2

)= m
2 and λ = 1

2 . �

The distribution of the sum of squares of independent standard normal random
variables is sufficiently important that it gets its own name, despite the fact that it
represents nothing more than a special case of the gamma distribution.

Definition 7.3.1. The pdf of U =
m∑

j=1
Z2

j , where Z1, Z2, . . . , Zm are independent

standard normal random variables, is called the chi square distribution with m
degrees of freedom.
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The next theorem is especially critical in the derivation of fT (t). Using simple
algebra, it can be shown that the square of a t ratio can be written as the quotient of
two chi square random variables, one a function of Y and the other a function of S2.
By showing that Y and S2 are independent (as Theorem 7.3.2 does), Theorem 3.8.4
can be used to find an expression for the pdf of the quotient.

Theorem
7.3.2

Let Y1,Y2, . . . ,Yn be a random sample from a normal distribution with mean μ and
variance σ 2. Then

a. S2 and Y are independent.

b. (n−1)S2

σ 2 = 1
σ 2

n∑
i=1

(Yi − Y )2 has a chi square distribution with n − 1 degrees of

freedom.

Proof See Appendix 7.A.2 �

As we will see shortly, the square of a t ratio is a special case of an F ran-
dom variable. The next definition and theorem summarize the properties of the
F distribution that we will need to find the pdf associated with the Student t
distribution.

Definition 7.3.2. Suppose that U and V are independent chi square random
variables with n and m degrees of freedom, respectively. A random variable of
the form V/m

U/n is said to have an F distribution with m and n degrees of freedom.

Comment The F in the name of this distribution commemorates the renowned
statistician Sir Ronald Fisher.

Theorem
7.3.3

Suppose Fm,n = V/m
U/n denotes an F random variable with m and n degrees of freedom.

The pdf of Fm,n has the form

fFm,n (w)= �
(

m+n
2

)
mm/2nn/2w(m/2)−1

�
(

m
2

)
�
(

n
2

)
(n + mw)(m+n)/2

, w ≥ 0

Proof We begin by finding the pdf for V/U . From Theorem 7.3.1 we know that
fV (v)= 1

2m/2�(m/2)
v(m/2)−1e−v/2 and fU (u)= 1

2n/2�(n/2)
u(n/2)−1e−u/2.

From Theorem 3.8.4, we have that the pdf of W = V/U is

fV/U (w)=
∫ ∞

0
|u| fU (u) fV (uw)du

=
∫ ∞

0
u

1

2n/2�(n/2)
u(n/2)−1e−u/2 1

2m/2�(m/2)
(uw)(m/2)−1e−uw/2 du

= 1

2(n+m)/2�(n/2)�(m/2)
w(m/2)−1

∫ ∞

0
u

n+m
2 −1e−[(1+w)/2]u du

The integrand is the variable part of a gamma density with r = (n + m)/2 and λ =
(1 +w)/2. Thus, the integral equals the inverse of the density’s constant. This gives
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fV/U = 1

2(n+m)/2�(n/2)�(m/2)
w(m/2)−1 �

(
n+m

2

)
[(1 +w)/2] n+m

2
= �

(
n+m

2

)
�(n/2)�(m/2)

w(m/2)−1

(1 +w)
n+m

2

The statement of the theorem, then, follows from Theorem 3.8.2:

f V/m
U/n

(w)= f n
m V/U (w)= 1

n/m
fV/U

(
w

n/m

)
= m

n
fV/U

(m

n
w
)

�

F Tables

When graphed, an F distribution looks very much like a typical chi square
distribution—values of V/m

U/n can never be negative and the F pdf is skewed sharply
to the right. Clearly, the complexity of fFm,n (r) makes the function difficult to work
with directly. Tables, though, are widely available that give various percentiles of F
distributions for different values of m and n.

Figure 7.3.1 shows fF3,5(r). In general, the symbol Fp,m,n will be used to
denote the 100 pth percentile of the F distribution with m and n degrees of free-
dom. Here, the 95th percentile of fF3,5(r)—that is, F.95,3,5—is 5.41 (see Appendix
Table A.4).

Figure 7.3.1
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Using the F Distribution to Derive the pdf for t Ratios

Now we have all the background results necessary to find the pdf of Y−μ

S/
√

n
. Actually,

though, we can do better than that because what we have been calling the “t ratio”
is just one special case of an entire family of quotients known as t ratios. Finding the
pdf for that entire family will give us the probability distribution for Y−μ

S/
√

n
as well.

Definition 7.3.3. Let Z be a standard normal random variable and let U be a
chi square random variable independent of Z with n degrees of freedom. The
Student t ratio with n degrees of freedom is denoted Tn , where

Tn = Z√
U
n

Comment The term “degrees of freedom” is often abbrieviated by d f .
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Lemma The pdf for Tn is symmetric: fTn (t)= fTn (−t), for all t .

Proof For convenience of notation, let V =
√

U
n . Then by Theorem 3.8.4 and the

symmetry of the pdf of Z ,

fTn (t)=
∫ ∞

0
v fV (v) fZ (tv)dv =

∫ ∞

0
v fV (v) fZ (−tv)dv = fTn (−t)

�

Theorem
7.3.4

The pdf for a Student t random variable with n degrees of freedom is given by

fTn (t)= �
(

n+1
2

)
√

nπ�
(

n
2

)(
1 + t2

n

)(n+1)/2
, −∞< t <∞

Proof Note that T 2
n = Z2

U/n has an F distribution with 1 and n df. Therefore,

fT 2
n
(t)= nn/2�

(
n+1

2

)
�
(

1
2

)
�
(

n
2

) t−1/2 1

(n + t)(n+1)/2
, t > 0

Suppose that t > 0. By the symmetry of fTn (t),

FTn (t)= P(Tn ≤ t)= 1

2
+ P(0 ≤ Tn ≤ t)

= 1

2
+ 1

2
P(−t ≤ Tn ≤ t)

= 1

2
+ 1

2
P
(
0 ≤ T 2

n ≤ t2
)

= 1

2
+ 1

2
FT 2

n
(t2)

Differentiating FTn (t) gives the stated result:

fTn (t)= F ′
Tn

(t)= t · fT 2
n
(t2)

= t
nn/2�

(
n+1

2

)
�
(

1
2

)
�
(

n
2

) (t2)−(1/2) 1

(n + t2)(n+1)/2

= �
(

n+1
2

)
√

nπ �
(

n
2

) · 1[
1 +
(

t2

n

)](n+1)/2
�

Comment Over the years, the lowercase t has come to be the accepted symbol
for the random variable of Definition 7.3.3. We will follow that convention when
the context allows some flexibility. In mathematical statements about distributions,
though, we will be consistent with random variable notation and denote the Student
t ratio as Tn .

All that remains to be verified, then, to accomplish our original goal of finding
the pdf for Y−μ

S/
√

n
is to show that the latter is a special case of the Student t random

variable described in Definition 7.3.3. Theorem 7.3.5 provides the details. Notice
that a sample of size n yields a t ratio in this case having n − 1 degrees of freedom.
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Theorem
7.3.5

Let Y1,Y2, . . . ,Yn be a random sample from a normal distribution with mean μ and
standard deviation σ . Then

Tn−1 = Y −μ

S/
√

n

has a Student t distribution with n − 1 degrees of freedom.

Proof We can rewrite Y−μ

S/
√

n
in the form

Y −μ

S/
√

n
=

Y−μ

σ/
√

n√
(n−1)S2

σ 2(n−1)

But Y−μ

σ/
√

n
is a standard normal random variable and (n−1)S2

σ 2 has a chi square
distribution with n − 1 df. Moreover, Theorem 7.3.2 shows that

Y −μ

σ/
√

n
and

(n − 1)S2

σ 2

are independent. The statement of the theorem follows immediately, then, from
Definition 7.3.3. �

fTn
(t) and fZ (Z): How the Two Pdfs Are Related

Despite the considerable disparity in the appearance of the formulas for fTn (t) and
fZ (z), Student t distributions and the standard normal distribution have much in
common. Both are bell shaped, symmetric, and centered around zero. Student t
curves, though, are flatter.

Figure 7.3.2 is a graph of two Student t distributions—one with 2 df and the
other with 10 df. Also pictured is the standard normal pdf, fZ (z). Notice that as n
increases, fTn (t) becomes more and more like fZ (z).

Figure 7.3.2 0.4

0.2

43210–1–2–3–4

f   (z)Z

f    (t)T2

f      (t)T10

The convergence of fTn (t) to fZ (z) is a consequence of two estimation
properties:

1. The sample standard deviation is asymptotically unbiased for σ .
2. The standard deviation of S goes to 0 as n approaches ∞. (See Question 7.3.4.)

Therefore as n gets large, the probabilistic behavior of Y−μ

S/
√

n
will become increasingly

similar to the distribution of Y−μ

σ/
√

n
—that is, to fZ (z).
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Questions

7.3.1. Show directly—without appealing to the fact that
χ 2

n is a gamma random variable—that fU (u) as stated in
Definition 7.3.1 is a true probability density function.

7.3.2. Find the moment-generating function for a chi
square random variable and use it to show that E

(
χ 2

n

)= n
and Var

(
χ 2

n

)= 2n.

7.3.3. Is it believable that the numbers 65, 30, and 55 are
a random sample of size 3 from a normal distribution with
μ = 50 and σ = 10? Answer the question by using a chi
square distribution. [Hint: Let Zi = (Yi − 50)/10 and use
Theorem 7.3.1.]

7.3.4. Use the fact that (n − 1)S2/σ 2 is a chi square
random variable with n − 1 df to prove that

Var(S2)= 2σ 4

n − 1

(Hint: Use the fact that the variance of a chi square
random variable with k df is 2k.)

7.3.5. Let Y1,Y2, . . . ,Yn be a random sample from a nor-
mal distribution. Use the statement of Question 7.3.4 to
prove that S2 is consistent for σ 2.

7.3.6. If Y is a chi square random variable with n degrees
of freedom, the pdf of (Y −n)/

√
2n converges to fZ (z) as n

goes to infinity (recall Question 7.3.2). Use the asymptotic
normality of (Y − n)/

√
2n to approximate the fortieth per-

centile of a chi square random variable with 200 degrees
of freedom.

7.3.7. Use Appendix Table A.4 to find

(a) F.50,6,7

(b) F.001,15,5

(c) F.90,2,2

7.3.8. Let V and U be independent chi square random
variables with 7 and 9 degrees of freedom, respectively. Is
it more likely that V/7

U/9
will be between (1) 2.51 and 3.29 or

(2) 3.29 and 4.20?

7.3.9. Use Appendix Table A.4 to find the values of x that
satisfy the following equations:

(a) P(0.109 < F4,6 < x)= 0.95
(b) P(0.427 < F11,7 < 1.69)= x
(c) P(Fx,x > 5.35)= 0.01

(d) P(0.115 < F3,x < 3.29)= 0.90

(e) P
(

x <
V/2
U/3

)
= 0.25, where V is a chi square random

variable with 2 df and U is an independent chi square
random variable with 3 df.

7.3.10. Suppose that two independent samples of size n
are drawn from a normal distribution with variance σ 2.
Let S2

1 and S2
2 denote the two sample variances. Use the

fact that (n−1)S2

σ 2 has a chi square distribution with n − 1 df
to explain why

lim
n→∞
m→∞

Fm,n = 1

7.3.11. If the random variable F has an F distribution
with m and n degrees of freedom, show that 1/F has an
F distribution with n and m degrees of freedom.

7.3.12. Use the result claimed in Question 7.3.11 to
express percentiles of fFn,m (r) in terms of percentiles from
fFm,n (r). That is, if we know the values a and b for which
P(a ≤ Fm,n ≤ b) = q , what values of c and d will satisfy the
equation P(c ≤ Fn,m ≤ d) = q? “Check” your answer with
Appendix Table A.4 by comparing the values of F.05,2,8,
F.95,2,8, F.05,8,2, and F.95,8,2.

7.3.13. Show that as n →∞, the pdf of a Student t random
variable with n df converges to fZ (z). (Hint: To show that
the constant term in the pdf for Tn converges to 1/

√
2π ,

use Stirling’s formula,

n! .= √
2πn nne−n)

Also, recall that lim
n→∞
(
1 + a

n

)n = ea .

7.3.14. Evaluate the integral∫ ∞

0

1

1 + x2
dx

using the Student t distribution.

7.3.15. For a Student t random variable Y with n degrees
of freedom and any positive integer k, show that E(Y 2k)

exists if 2k < n. (Hint: Integrals of the form∫ ∞

0

1

(1 + yα)β
dy

are finite if α > 0, β > 0, and αβ > 1.)

7.4 Drawing Inferences About μ

One of the most common of all statistical objectives is to draw inferences about the
mean of the population being represented by a set of data. Indeed, we already took
a first look at that problem in Section 6.2. If the Yi ’s come from a normal distibution
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where σ is known, the null hypothesis H0 : μ = μ0 can be tested by calculating a Z

ratio, Y−μ

σ/
√

n
(recall Theorem 6.2.1).

Implicit in that solution, though, is an assumption not likely to be satisfied:
rarely does the experimenter actually know the value of σ . Section 7.3 dealt
with precisely that scenario and derived the pdf of the ratio Tn−1 = Y−μ

S/
√

n
, where

σ has been replaced by an estimator, S. Given Tn−1 (which we learned has a
Student t distribution with n − 1 degrees of freedom), we now have the tools nec-
essary to draw inferences about μ in the all-important case where σ is not known.
Section 7.4 illustrates these various techniques and also examines the key assump-
tion underlying the “t test” and looks at what happens when that assumption is not
satisfied.

t Tables

We have already seen that doing hypothesis tests and constructing confidence inter-
vals using Y−μ

σ/
√

n
or some other Z ratio requires that we know certain upper and/or

lower percentiles from the standard normal distribution. There will be a similar need
to identify appropriate “cutoffs” from Student t distributions when the inference
procedure is based on Y−μ

S/
√

n
, or some other t ratio.

Figure 7.4.1 shows a portion of the t table that appears in the back of every
statistics book. Each row corresponds to a different Student t pdf. The column
headings give the area to the right of the number appearing in the body of the
table.

Figure 7.4.1 α

df .20 .15 .10 .05 .025 .01 .005

1 1.376 1.963 3.078 6.3138 12.706 31.821 63.657
2 1.061 1.386 1.886 2.9200 4.3027 6.965 9.9248
3 0.978 1.250 1.638 2.3534 3.1825 4.541 5.8409
4 0.941 1.190 1.533 2.1318 2.7764 3.747 4.6041
5 0.920 1.156 1.476 2.0150 2.5706 3.365 4.0321
6 0.906 1.134 1.440 1.9432 2.4469 3.143 3.7074

30 0.854 1.055 1.310 1.6973 2.0423 2.457 2.7500
----------------------------------------------------------------------------------------
∞ 0.84 1.04 1.28 1.64 1.96 2.33 2.58

For example, the entry 4.541 listed in the α = .01 column and the d f = 3 row has
the property that P(T3 ≥ 4.541)= 0.01.

More generally, we will use the symbol tα,n to denote the 100(1−α)th percentile
of fTn (t). That is, P(Tn ≥ tα,n)=α (see Figure 7.4.2). No lower percentiles of Student
t curves need to be tabulated because the symmetry of fTn (t) implies that P(Tn ≤
−tα,n)=α.

The number of different Student t pdfs summarized in a t table varies consid-
erably. Many tables will provide cutoffs for degrees of freedom ranging only from 1
to 30; others will include df values from 1 to 50, or even from 1 to 100. The last row
in any t table, though, is always labeled “∞”: Those entries, of course, correspond
to zα .
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Figure 7.4.2
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Constructing a Confidence Interval for μ

The fact that Y−μ

S/
√

n
has a Student t distribution with n −1 degrees of freedom justifies

the statement that

P

(
−tα/2,n−1 ≤ Y −μ

S/
√

n
≤ tα/2,n−1

)
= 1 −α

or, equivalently, that

P

(
Y − tα/2,n−1 · S√

n
≤μ≤ Y + tα/2,n−1 · S√

n

)
= 1 −α (7.4.1)

(provided the Yi ’s are a random sample from a normal distribution).
When the actual data values are then used to evaluate Y and S, the lower

and upper endpoints identified in Equation 7.4.1 define a 100(1 − α)% confidence
interval for μ.

Theorem
7.4.1

Let y1, y2, . . . , yn be a random sample of size n from a normal distribution with
(unknown) mean μ. A 100(1 −α)% confidence interval for μ is the set of values(

y − tα/2,n−1 · s√
n
, y + tα/2,n−1 · s√

n

)
�

Case Study 7.4.1

To hunt flying insects, bats emit high-frequency sounds and then listen for their
echoes. Until an insect is located, these pulses are emitted at intervals of from
fifty to one hundred milliseconds. When an insect is detected, the pulse-to-pulse
interval suddenly decreases—sometimes to as low as ten milliseconds—thus
enabling the bat to pinpoint its prey’s position. This raises an interesting ques-
tion: How far apart are the bat and the insect when the bat first senses that
the insect is there? Or, put another way, what is the effective range of a bat’s
echolocation system?

The technical problems that had to be overcome in measuring the bat-to-
insect detection distance were far more complex than the statistical problems
involved in analyzing the actual data. The procedure that finally evolved was
to put a bat into an eleven-by-sixteen-foot room, along with an ample supply

(Continued on next page)
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of fruit flies, and record the action with two synchronized sixteen-millimeter
sound-on-film cameras. By examining the two sets of pictures frame by frame,
scientists could follow the bat’s flight pattern and, at the same time, monitor its
pulse frequency. For each insect that was caught (65), it was therefore possible
to estimate the distance between the bat and the insect at the precise moment
the bat’s pulse-to-pulse interval decreased (see Table 7.4.1).

Table 7.4.1

Catch Number Detection Distance (cm)

1 62
2 52
3 68
4 23
5 34
6 45
7 27
8 42
9 83

10 56
11 40

Define μ to be a bat’s true average detection distance. Use the eleven
observations in Table 7.4.1 to construct a 95% confidence interval for μ.

Letting y1 = 62, y2 = 52, . . . , y11 = 40, we have that

11∑
i=1

yi = 532 and
11∑

i=1

y2
i = 29,000

Therefore,

y = 532

11
= 48.4 cm

and

s =
√

11(29,000)− (532)2

11(10)
= 18.1 cm

If the population from which the yi ’s are being drawn is normal, the
behavior of

Y −μ

S/
√

n

will be described by a Student t curve with 10 degrees of freedom. From
Table A.2 in the Appendix,

P(−2.2281 < T10 < 2.2281)= 0.95

(Continued on next page)
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(Case Study 7.4.1 continued)

Accordingly, the 95% confidence interval for μ is[
y − 2.2281

(
s√
11

)
, y + 2.2281

(
s√
11

)]
=
[

48.4 − 2.2281

(
18.1√

11

)
,48.4 + 2.2281

(
18.1√

11

)]
= (36.2 cm, 60.6 cm).

Example
7.4.1

The sample mean and sample standard deviation for the random sample of size
n = 20 given in the following list are 2.6 and 3.6, respectively. Let μ denote the true
mean of the distribution being represented by these yi ’s.

2.5 0.1 0.2 1.3
3.2 0.1 0.1 1.4
0.5 0.2 0.4 11.2
0.4 7.4 1.8 2.1
0.3 8.6 0.3 10.1

Is it correct to say that a 95% confidence interval for μ is the set of following values?(
y − t.025,n−1 · s√

n
, y + t.025,n−1 · s√

n

)
=
(

2.6 − 2.0930 · 3.6√
20

,2.6 + 2.0930 · 3.6√
20

)
= (0.9,4.3)

No. It is true that all the correct factors have been used in calculating (0.9, 4.3),
but Theorem 7.4.1 does not apply in this case because the normality assumption
it makes is clearly being violated. Figure 7.4.3 is a histogram of the twenty yi ’s. The
extreme skewness that is so evident there is not consistent with the presumption that
the data’s underlying pdf is a normal distribution. As a result, the pdf describing the
probabilistic behavior of Y−μ

S/
√

20
would not be fT19(t).
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Figure 7.4.3
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Comment To say that Y−μ

S/
√

20
in this situation is not exactly a T19 random vari-

able leaves unanswered a critical question: Is the ratio approximately a T19 ran-
dom variable? We will revisit the normality assumption—and what happens when
that assumption is not satisfied—later in this section when we discuss a critically
important property known as robustness.

Questions

7.4.1. Use Appendix Table A.2 to find the following
probabilities:

(a) P(T6 ≥ 1.134)

(b) P(T15 ≤ 0.866)

(c) P(T3 ≥ −1.250)

(d) P(−1.055 < T29 < 2.462)

7.4.2. What values of x satisfy the following equations?

(a) P(−x ≤ T22 ≤ x)= 0.98
(b) P(T13 ≥ x)= 0.85
(c) P(T26 < x)= 0.95
(d) P(T2 ≥ x)= 0.025

7.4.3. Which of the following differences is larger?
Explain.

t.05,n − t.10,n or t.10,n − t.15,n

7.4.4. A random sample of size n = 9 is drawn from a nor-
mal distribution with μ = 27.6. Within what interval (−a,
+a) can we expect to find Y−27.6

S/
√

9
80% of the time? 90% of

the time?

7.4.5. Suppose a random sample of size n = 11 is drawn
from a normal distribution with μ = 15.0. For what value
of k is the following true?

P

(∣∣∣∣∣Y − 15.0

S/
√

11

∣∣∣∣∣≥ k

)
= 0.05

7.4.6. Let Y and S denote the sample mean and sam-
ple standard deviation, respectively, based on a set of
n = 20 measurements taken from a normal distribution
with μ = 90.6. Find the function k(S) for which

P[90.6 − k(S)≤ Y ≤ 90.6 + k(S)]= 0.99

7.4.7. Cell phones emit radio frequency energy that is
absorbed by the body when the phone is next to the ear
and may be harmful. The table in the next column gives
the absorption rate for a random sample of twenty cell
phones. (The Federal Communication Commission sets a
maximum of 1.6 watts per kilogram for the absorption rate
of such energy.) Construct a 90% confidence interval for
the true average cell phone absorption rate.

0.87 0.72
1.30 1.05
0.79 0.61
1.45 1.01
1.15 0.20
1.31 0.67
1.09 1.35
0.66 1.27
0.49 1.28
1.40 1.55

Source: reviews.cnet.com/cell-phone-radiation-levels/

7.4.8. The following table lists the typical cost of repairing
the bumper of a moderately priced midsize car damaged
by a corner collision at 3 mph. Use these observations
to construct a 95% confidence interval for μ, the true
average repair cost for all such automobiles with similar
damage. The sample standard deviation for these data is
s = $369.02.

Make/Model
Repair
Cost Make/Model

Repair
Cost

Hyundai Sonata $1019 Honda Accord $1461
Nissan Altima $1090 Volkswagen Jetta $1525
Mitsubishi Galant $1109 Toyota Camry $1670
Saturn AURA $1235 Chevrolet Malibu $1685
Subaru Legacy $1275 Volkswagen Passat $1783
Pontiac G6 $1361 Nissan Maxima $1787
Mazda 6 $1437 Ford Fusion $1889
Volvo S40 $1446 Chrysler Sebring $2484

Source: www.iihs.org/ratings/bumpersbycategory.aspx?

7.4.9. Creativity, as any number of studies have shown, is
very much a province of the young. Whether the focus is
music, literature, science, or mathematics, an individual’s
best work seldom occurs late in life. Einstein, for example,
made his most profound discoveries at the age of twenty-
six; Newton, at the age of twenty-three. The following are
twelve scientific breakthroughs dating from the middle of
the sixteenth century to the early years of the twentieth
century (205). All represented high-water marks in the
careers of the scientists involved.

www.iihs.org/ratings/bumpersbycategory.aspx?
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Discovery Discoverer Year Age, y

Earth goes around sun Copernicus 1543 40
Telescope, basic laws of

astronomy
Galileo 1600 34

Principles of motion,
gravitation, calculus

Newton 1665 23

Nature of electricity Franklin 1746 40
Burning is uniting with

oxygen
Lavoisier 1774 31

Earth evolved by gradual
processes

Lyell 1830 33

Evidence for natural
selection controlling
evolution

Darwin 1858 49

Field equations for light Maxwell 1864 33
Radioactivity Curie 1896 34
Quantum theory Planck 1901 43
Special theory of relativity,

E = mc2
Einstein 1905 26

Mathematical foundations
for quantum theory

Schrödinger 1926 39

(a) What can be inferred from these data about the
true average age at which scientists do their best
work? Answer the question by constructing a 95%
confidence interval.

(b) Before constructing a confidence interval for a set of
observations extending over a long period of time,
we should be convinced that the yi ’s exhibit no biases
or trends. If, for example, the age at which scien-
tists made major discoveries decreased from century
to century, then the parameter μ would no longer
be a constant, and the confidence interval would
be meaningless. Plot “date” versus “age” for these
twelve discoveries. Put “date” on the abscissa. Does
the variability in the yi ’s appear to be random with
respect to time?

7.4.10. How long does it take to fly from Atlanta to New
York’s LaGuardia airport? There are many components
of the time elapsed, but one of the more stable measure-
ments is the actual in-air time. For a sample of sixty-one
flights between these destinations on Sundays in April, the
time in minutes (y) gave the following results:

61∑
i=1

yi = 6450 and
61∑

i=1

y2
i = 684,900

Find a 99% confidence interval for the average flight time.

Source: www.bts.gov/xml/ontimesummarystatistics/src/
dstat/OntimeSummaryDepaturesData.xml.

7.4.11. In a nongeriatric population, platelet counts
ranging from 140 to 440 (thousands per mm3 of blood)

are considered “normal.” The following are the platelet
counts recorded for twenty-four female nursing home
residents (169).

Subject Count Subject Count

1 125 13 180
2 170 14 180
3 250 15 280
4 270 16 240
5 144 17 270
6 184 18 220
7 176 19 110
8 100 20 176
9 220 21 280

10 200 22 176
11 170 23 188
12 160 24 176

Use the following sums:
24∑

i=1

yi = 4645 and
24∑

i=1

y2
i = 959,265

How does the definition of “normal” above compare with
the 90% confidence interval?

7.4.12. If a normally distributed sample of size n =16 pro-
duces a 95% confidence interval for μ that ranges from
44.7 to 49.9, what are the values of y and s?

7.4.13. Two samples, each of size n, are taken from a
normal distribution with unknown mean μ and unknown
standard deviation σ . A 90% confidence interval for μ is
constructed with the first sample, and a 95% confidence
interval for μ is constructed with the second. Will the 95%
confidence interval necessarily be longer than the 90%
confidence interval? Explain.

7.4.14. Revenues reported last week from nine boutiques
franchised by an international clothier averaged $59,540
with a standard deviation of $6860. Based on those figures,
in what range might the company expect to find the
average revenue of all of its boutiques?

7.4.15. What “confidence” is associated with each of the
following random intervals? Assume that the Yi ’s are
normally distributed.

(a)
[

Y − 2.0930

(
S√
20

)
,Y + 2.0930

(
S√
20

)]
(b)
[

Y − 1.345

(
S√
15

)
,Y + 1.345

(
S√
15

)]
(c)
[

Y − 1.7056

(
S√
27

)
,Y + 2.7787

(
S√
27

)]
(d)
[
−∞,Y + 1.7247

(
S√
21

)]

www.bts.gov/xml/ontimesummarystatistics/src/dstat/OntimeSummaryDepaturesData.xml
www.bts.gov/xml/ontimesummarystatistics/src/dstat/OntimeSummaryDepaturesData.xml
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7.4.16. The weather station at Dismal Swamp,
California, recorded monthly precipitation (y) for twenty-

eight years. For these data,
336∑
i=1

yi = 1392.6 and
336∑
i=1

y2
i =

10,518.84.

(a) Find the 95% confidence interval for the mean
monthly precipitation.

(b) The table on the right gives a frequency ditri-
bution for the Dismal Swamp precipitation data.
Does this distribution raise questions about using
Theorem 7.4.1?

Rainfall in inches Frequency

0–1 85
1–2 38
2–3 35
3–4 41
4–5 28
5–6 24
6–7 18
7–8 16
8–9 16

9–10 5
10–11 9
11–12 21

Source: www.wcc.nrcs.usda.gov.

Testing H0 :μ = μo (The One-Sample t Test)

Suppose a normally distributed random sample of size n is observed for the purpose
of testing the null hypothesis that μ = μo. If σ is unknown—which is usually the
case—the procedure we use is called a one-sample t test. Conceptually, the latter is
much like the Z test of Theorem 6.2.1, except that the decision rule is defined in
terms of t = y−μo

s/
√

n
rather than z = y−μo

σ/
√

n
[which requires that the critical values come

from fTn−1(t) rather than fZ (z)].

Theorem
7.4.2

Let y1, y2, . . . , yn be a random sample of size n from a normal distribution where σ is
unknown. Let t = y−μo

s/
√

n
.

a. To test H0 : μ = μo versus H1 : μ > μo at the α level of significance, reject H0 if
t ≥ tα,n−1.

b. To test H0 : μ = μo versus H1 : μ < μo at the α level of significance, reject H0 if
t ≤ −tα,n−1.

c. To test H0 : μ = μo versus H1 : μ �= μo at the α level of significance, reject H0 if t is
either (1)≤ −tα/2,n−1 or (2)≥ tα/2,n−1.

Proof Appendix 7.A.3 gives the complete derivation that justifies using the proce-
dure described in Theorem 7.4.2. In short, the test statistic t = y−μo

s/
√

n
is a monotonic

function of the λ that appears in Definition 6.5.2, which makes the one-sample t test
a GLRT. �

Case Study 7.4.2

Not all rectangles are created equal. Since antiquity, societies have expressed
aesthetic preferences for rectangles having certain width (w) to length (l) ratios.

One “standard” calls for the width-to-length ratio to be equal to the ratio
of the length to the sum of the width and the length. That is,

(Continued on next page)

www.wcc.nrcs.usda.gov
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(Case Study 7.4.2 continued)

w

l
= l

w + l
(7.4.2)

Equation 7.4.2 implies that the width is 1
2 (

√
5−1), or approximately 0.618, times

as long as the length. The Greeks called this the golden rectangle and used it
often in their architecture (see Figure 7.4.4). Many other cultures were similarly
inclined. The Egyptians, for example, built their pyramids out of stones whose
faces were golden rectangles. Today in our society, the golden rectangle remains
an architectural and artistic standard, and even items such as driver’s licenses,
business cards, and picture frames often have w/ l ratios close to 0.618.

w

l

Figure 7.4.4 A golden rectangle
(

w

l
= l

w+l

)
The fact that many societies have embraced the golden rectangle as an aes-

thetic standard has two possible explanations. One, they “learned” to like it
because of the profound influence that Greek writers, philosophers, and artists
have had on cultures all over the world. Or two, there is something unique about
human perception that predisposes a preference for the golden rectangle.

Researchers in the field of experimental aesthetics have tried to test the
plausibility of those two hypotheses by seeing whether the golden rectangle is
accorded any special status by societies that had no contact whatsoever with
the Greeks or with their legacy. One such study (37) examined the w/ l ratios
of beaded rectangles sewn by the Shoshoni Indians as decorations on their
blankets and clothes. Table 7.4.2 lists the ratios found for twenty such rectangles.

If, indeed, the Shoshonis also had a preference for golden rectangles, we
would expect their ratios to be “close” to 0.618. The average value of the entries
in Table 7.4.2, though, is 0.661. What does that imply? Is 0.661 close enough
to 0.618 to support the position that liking the golden rectangle is a human
characteristic, or is 0.661 so far from 0.618 that the only prudent conclusion is
that the Shoshonis did not agree with the aesthetics espoused by the Greeks?

Table 7.4.2 Width-to-Length Ratios of Shoshoni Rectangles

0.693 0.749 0.654 0.670
0.662 0.672 0.615 0.606
0.690 0.628 0.668 0.611
0.606 0.609 0.601 0.553
0.570 0.844 0.576 0.933

(Continued on next page)
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Let μ denote the true average width-to-length ratio of Shoshoni rectangles.
The hypotheses to be tested are

H0 :μ= 0.618

versus

H1 :μ �= 0.618

For tests of this nature, the value of α = 0.05 is often used. For that value of
α and a two-sided test, the critical values, using part (c) of Theorem 7.4.2 and
Appendix Table A.2, are t.025,19 = 2.0930 and −t.025,19 =−2.0930.

The data in Table 7.4.2 have y = 0.661 and s = 0.093. Substituting these
values into the t ratio gives a test statistic that lies just inside of the interval
between −2.0930 and 2.0930:

t = y −μ0

s/
√

n
= 0.661 − 0.618

0.093/
√

20
= 2.068

Thus, these data do not rule out the possibility that the Shoshoni Indians also
embraced the golden rectangle as an aesthetic standard.

About the Data Like π and e, the ratio w/ l for golden rectangles (more commonly
referred to as either phi or the golden ratio), is an irrational number with all sorts of
fascinating properties and connections.

Algebraically, the solution of the equation

w

l
= l

w + l

is the continued fraction

w

l
= 1 + 1

1 + 1

1 + 1

1 + 1

1 + · · ·
Among the curiosities associated with phi is its relationship with the Fibonacci series.
The latter, of course, is the famous sequence in which each term is the sum of its two
predecessors—that is,

1 1 2 3 5 8 13 21 34 55 89 . . .

Example
7.4.2

Three banks serve a metropolitan area’s inner-city neighborhoods: Federal Trust,
American United, and Third Union. The state banking commission is concerned
that loan applications from inner-city residents are not being accorded the same con-
sideration that comparable requests have received from individuals in rural areas.
Both constituencies claim to have anecdotal evidence suggesting that the other
group is being given preferential treatment.

Records show that last year these three banks approved 62% of all the home
mortgage applications filed by rural residents. Listed in Table 7.4.3 are the approval
rates posted over that same period by the twelve branch offices of Federal Trust
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Table 7.4.3

Bank Location Affiliation Percent Approved

1 3rd & Morgan AU 59
2 Jefferson Pike TU 65
3 East 150th & Clark TU 69
4 Midway Mall FT 53
5 N. Charter Highway FT 60
6 Lewis & Abbot AU 53
7 West 10th & Lorain FT 58
8 Highway 70 FT 64
9 Parkway Northwest AU 46

10 Lanier & Tower TU 67
11 King & Tara Court AU 51
12 Bluedot Corners FT 59

(FT), American United (AU), and Third Union (TU) that work primarily with the
inner-city community. Do these figures lend any credence to the contention that
the banks are treating inner-city residents and rural residents differently? Analyze
the data using an α = 0.05 level of significance.

As a starting point, we might want to test

H0 :μ= 62

versus

H1 :μ �= 62

where μ is the true average approval rate for all inner-city banks. Table 7.4.4 summa-
rizes the analysis. The two critical values are ± t.025,11 =±2.2010, and the observed t

ratio is −1.66
(
= 58.667−62

6.946/
√

12

)
, so our decision is “Fail to reject H0.”

Table 7.4.4

Banks n y s t Ratio Critical Value Reject H0?

All 12 58.667 6.946 −1.66 ±2.2010 No

About the Data The “overall” analysis of Table 7.4.4, though, may be too simplis-
tic. Common sense would tell us to look also at the three banks separately. What
emerges, then, is an entirely different picture (see Table 7.4.5). Now we can see
why both groups felt discriminated against: American United (t =−3.63) and Third

Table 7.4.5

Banks n y s t Ratio Critical Value Reject H0?

American United 4 52.25 5.38 −3.63 ±3.1825 Yes
Federal Trust 5 58.80 3.96 −1.81 ±2.7764 No
Third Union 3 67.00 2.00 +4.33 ±4.3027 Yes
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Union (t =+4.33) each had rates that differed significantly from 62%—but in oppo-
site directions! Only Federal Trust seems to be dealing with inner-city residents and
rural residents in an even-handed way.

Questions

7.4.17. Recall the Bacillus subtilis data in Question 5.3.2.
Test the null hypothesis that exposure to the enzyme does
not affect a worker’s respiratory capacity (as measured by
the FEV1/VC ratio). Use a one-sided H1 and let α = 0.05.
Assume that σ is not known.

7.4.18. Recall Case Study 5.3.1. Assess the credibility of
the theory that Etruscans were native Italians by test-
ing an appropriate H0 against a two-sided H1. Set α

equal to 0.05. Use 143.8 mm and 6.0 mm for y and s,
respectively, and let μo = 132.4. Do these data appear to
satisfy the distribution assumption made by the t test?
Explain.

7.4.19. MBAs R Us advertises that its program increases
a person’s score on the GMAT by an average of forty
points. As a way of checking the validity of that claim, a
consumer watchdog group hired fifteen students to take
both the review course and the GMAT. Prior to starting
the course, the fifteen students were given a diagnos-
tic test that predicted how well they would do on the
GMAT in the absence of any special training. The fol-
lowing table gives each student’s actual GMAT score
minus his or her predicted score. Set up and carry out
an appropriate hypothesis test. Use the 0.05 level of
significance.

Subject yi = act. GMAT − pre. GMAT y2
i

SA 35 1225
LG 37 1369
SH 33 1089
KN 34 1156
DF 38 1444
SH 40 1600
ML 35 1225
JG 36 1296
KH 38 1444
HS 33 1089
LL 28 784
CE 34 1156
KK 47 2209
CW 42 1764
DP 46 2116

7.4.20. In addition to the Shoshoni data of Case
Study 7.4.2, a set of rectangles that might tend to the
golden ratio are national flags. The table below gives the
width-to-length ratios for a random sample of the flags of
thirty-four countries. Let μ be the width-to-length ratio
for national flags. At the α = 0.01 level, test H0 : μ = 0.618
versus H1 :μ �= 0.618.

Ratio Ratio
Country Width to Height Country Width to Height

Afghanistan 0.500 Iceland 0.720
Albania 0.714 Iran 0.571
Algeria 0.667 Israel 0.727
Angola 0.667 Laos 0.667
Argentina 0.667 Lebanon 0.667
Bahamas 0.500 Liberia 0.526
Denmark 0.757 Macedonia 0.500
Djibouti 0.553 Mexico 0.571
Ecuador 0.500
Egypt 0.667 Monaco 0.800
El
Salvador

0.600 Namibia 0.667

Nepal 1.250
Estonia 0.667 Romania 0.667
Ethiopia 0.500 Rwanda 0.667
Gabon 0.750 South

Africa
0.667

Fiji 0.500 St.
Helena

0.500

France 0.667 Sweden 0.625
Honduras 0.500 United

Kingdom
0.500

Source: http://www.anyflag.com/country/costaric.php.

7.4.21. A manufacturer of pipe for laying underground
electrical cables is concerned about the pipe’s rate of
corrosion and whether a special coating may retard that
rate. As a way of measuring corrosion, the manufac-
turer examines a short length of pipe and records the
depth of the maximum pit. The manufacturer’s tests have
shown that in a year’s time in the particular kind of soil
the manufacturer must deal with, the average depth of
the maximum pit in a foot of pipe is 0.0042 inch. To
see whether that average can be reduced, ten pipes are

http://www.anyflag.com/country/costaric.php
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coated with a new plastic and buried in the same soil.
After one year, the following maximum pit depths are
recorded (in inches): 0.0039, 0.0041, 0.0038, 0.0044, 0.0040,
0.0036, 0.0034, 0.0036, 0.0046, and 0.0036. Given that the
sample standard deviation for these ten measurements is
0.00383 inch, can it be concluded at the α = 0.05 level of
significance that the plastic coating is beneficial?

7.4.22. The first analysis done in Example 7.4.2 (using all
n = 12 banks with y = 58.667) failed to reject H0:μ = 62
at the α = 0.05 level. Had μo been, say, 61.7 or 58.6, the
same conclusion would have been reached. What do we
call the entire set of μo’s for which H0:μ = μo would not
be rejected at the α = 0.05 level?

Testing H0: μ = μo When the Normality Assumption Is Not Met

Every t test makes the same explicit assumption—namely, that the set of n yi ’s is
normally distributed. But suppose the normality assumption is not true. What are
the consequences? Is the validity of the t test compromised?

Figure 7.4.5 addresses the first question. We know that if the normality assump-
tion is true, the pdf describing the variation of the t ratio, Y−μo

S/
√

n
, is fTn−1(t). The

latter, of course, provides the decision rule’s critical values. If H0 : μ = μo is to be
tested against H1 : μ �= μo, for example, the null hypothesis is rejected if t is either
(1)≤−tα/2,n−1 or (2)≥ tα/2,n−1 (which makes the Type I error probability equal to α).

Figure 7.4.5

0

f     (t) = pdf of t when data are
not normally distributed
T *

Area = α/2

Reject H0

α/2, n – 1

Reject H

Area = α/2

–t α/2, n – 1t

0

f        (t) = pdf of t whenTn –1
data are normally distributed

t

If the normality assumption is not true, the pdf of Y−μo
S/

√
n

will not be fTn−1(t) and

P

(
Y −μo

S/
√

n
≤−tα/2,n−1

)
+ P

(
Y −μo

S/
√

n
≥ tα/2,n−1

)
�=α

In effect, violating the normality assumption creates two α’s: The “nominal” α is the
Type I error probability we specify at the outset—typically, 0.05 or 0.01. The “true”
α is the actual probability that Y−μo

S/
√

n
falls in the rejection region (when H0 is true).

For the two-sided decision rule pictured in Figure 7.4.5,

trueα =
∫ −tα/2,n−1

−∞
fT ∗(t)dt +

∫ ∞

tα/2,n−1

fT ∗(t)dt

Whether or not the validity of the t test is “compromised” by the normality
assumption being violated depends on the numerical difference between the two
α’s. If fT ∗(t) is, in fact, quite similar in shape and location to fTn−1(t), then the true α

will be approximately equal to the nominal α. In that case, the fact that the yi ’s are
not normally distributed would be essentially irrelevant. On the other hand, if fT ∗(t)
and fTn−1(t) are dramatically different (as they appear to be in Figure 7.4.5), it would
follow that the normality assumption is critical, and establishing the “significance”
of a t ratio becomes problematic.
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Unfortunately, getting an exact expression for fT ∗(t) is essentially impossible,
because the distribution depends on the pdf being sampled, and there is seldom any
way of knowing precisely what that pdf might be. However, we can still meaningfully
explore the sensitivity of the t ratio to violations of the normality assumption by
simulating samples of size n from selected distributions and comparing the resulting
histogram of t ratios to fTn−1(t).

Figure 7.4.6 shows four such simulations, using Minitab; the first three consist
of one hundred random samples of size n = 6. In Figure 7.4.6(a), the samples come
from a uniform pdf defined over the interval [0, 1]; in Figure 7.4.6(b), the underlying
pdf is the exponential with λ = 1; and in Figure 7.4.6(c), the data are coming from a
Poisson pdf with λ = 5.

If the normality assumption were true, t ratios based on samples of size 6 would
vary in accordance with the Student t distribution with 5 df. On pp. 407–408, fT5(t)
has been superimposed over the histograms of the t ratios coming from the three
different pdfs. What we see there is really quite remarkable. The t ratios based on
yi ’s coming from a uniform pdf, for example, are behaving much the same way as
t ratios would vary if the yi ’s were normally distributed—that is, fT ∗(t) in this case
appears to be very similar to fT5(t). The same is true for samples coming from a
Poisson distribution (see Theorem 4.2.2). For both of those underlying pdfs, in other
words, the true α would not be much different from the nominal α.

Figure 7.4.6(b) tells a slightly different story. When samples of size 6 are drawn
from an exponential pdf, the t ratios are not in particularly close agreement with

Figure 7.4.6 (a)
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Figure 7.4.6 (Continued) (b)
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fT5(t). Specifically, very negative t ratios are occurring much more often than the
Student t curve would predict, while large positive t ratios are occurring less often
(see Question 7.4.23). But look at Figure 7.4.6(d). When the sample size is increased
to n = 15, the skewness so prominent in Figure 7.4.6(b) is mostly gone.

Figure 7.4.6 (Continued)

Sample
distribution

0

0.4

0.2f   (t)T14

2–2–4

t ratio (n = 15)

(d)

f  (y) = eY
–y

1.00

0 4

0.50

2 6

P
ro

ba
bi

lit
y 

de
ns

it
y

MTB > random 100 cl-c15;
SUBC> exponential 1.
MTB > rmean cl-c15 c16
MTB > rstdev cl-c15 c17
MTB > let c18 = sqrt(15)*(((c16 - 1.0)/(c17))
MTB > histogram c18

y

Reflected in these specific simulations are some general properties of the t
ratio:

1. The distribution of Y−μ

S/
√

n
is relatively unaffected by the pdf of the yi ’s [provided

fY (y) is not too skewed and n is not too small].
2. As n increases, the pdf of Y−μ

S/
√

n
becomes increasingly similar to fTn−1(t).

In mathematical statistics, the term robust is used to describe a procedure that is not
heavily dependent on whatever assumptions it makes. Figure 7.4.6 shows that the t
test is robust with respect to departures from normality.

From a practical standpoint, it would be difficult to overstate the importance
of the t test being robust. If the pdf of Y−μ

S/
√

n
varied dramatically depending on the

origin of the yi ’s, we would never know if the true α associated with, say, a 0.05
decision rule was anywhere near 0.05. That degree of uncertainty would make the t
test virtually worthless.
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Questions

7.4.23. Explain why the distribution of t ratios calcu-
lated from small samples drawn from the exponential
pdf, fY (y) = e−y, y ≥ 0, will be skewed to the left [recall
Figure 7.4.6(b)]. [Hint: What does the shape of fY (y) imply
about the possibility of each yi being close to 0? If the
entire sample did consist of yi ’s close to 0, what value
would the t ratio have?]

7.4.24. Suppose one hundred samples of size n = 3 are
taken from each of the pdfs

(1) fY (y)= 2y, 0 ≤ y ≤ 1

and

(2) fY (y)= 4y3, 0 ≤ y ≤ 1

and for each set of three observations, the ratio

y −μ

s/
√

3

is calculated, where μ is the expected value of the par-
ticular pdf being sampled. How would you expect the

distributions of the two sets of ratios to be different? How
would they be similar? Be as specific as possible.

7.4.25. Suppose that random samples of size n are drawn
from the uniform pdf, fY (y) = 1,0 ≤ y ≤ 1. For each sam-
ple, the ratio t = y−0.5

s/
√

n
is calculated. Parts (b) and (d) of

Figure 7.4.6 suggest that the pdf of t will become increas-
ingly similar to fTn−1(t) as n increases. To which pdf is
fTn−1(t), itself, converging as n increases?

7.4.26. On which of the following sets of data would you
be reluctant to do a t test? Explain.

y(a)

y(b)

y(c)

7.5 Drawing Inferences About σ 2

When random samples are drawn from a normal distribution, it is usually the case
that the parameter μ is the target of the investigation. More often than not, the mean
mirrors the “effect” of a treatment or condition, in which case it makes sense to
apply what we learned in Section 7.4—that is, either construct a confidence interval
for μ or test the hypothesis that μ=μo.

But exceptions are not that uncommon. Situations occur where the “precision”
associated with a measurement is, itself, important—perhaps even more important
than the measurement’s “location.” If so, we need to shift our focus to the scale
parameter, σ 2. Two key facts that we learned earlier about the population variance
will now come into play. First, an unbiased estimator for σ 2 based on its maximum
likelihood estimator is the sample variance, S2, where

S2 = 1

n − 1

n∑
i=1

(Yi − Y )2

And, second, the ratio
(n − 1)S

σ 2

2

= 1

σ 2

n∑
i=1

(Yi − Y )2

has a chi square distribution with n − 1 degrees of freedom. Putting these two pieces
of information together allows us to draw inferences about σ 2—in particular, we can
construct confidence intervals for σ 2 and test the hypothesis that σ 2 = σ 2

o .

Chi Square Tables

Just as we need a t table to carry out inferences about μ (when σ 2 is unknown), we
need a chi square table to provide the cutoffs for making inferences involving σ 2. The
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layout of chi square tables is dictated by the fact that all chi square pdfs (unlike Z
and t distributions) are skewed (see, for example, Figure 7.5.1, showing a chi square
curve having 5 degrees of freedom). Because of that asymmetry, chi square tables
need to provide cutoffs for both the left-hand tail and the right-hand tail of each chi
square distribution.

Figure 7.5.1
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Figure 7.5.2 shows the top portion of the chi square table that appears in
Appendix A.3. Successive rows refer to different chi square distributions (each hav-
ing a different number of degrees of freedom). The column headings denote the
areas to the left of the numbers listed in the body of the table.

Figure 7.5.2
p

df .01 .025 .05 .10 .90 .95 .975 .99

1 0.000157 0.000982 0.00393 0.0158 2.706 3.841 5.024 6.635
2 0.0201 0.0506 0.103 0.211 4.605 5.991 7.378 9.210
3 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.345
4 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277
5 0.554 0.831 1.145 1.610 9.236 11.070 12.832 15.086
6 0.872 1.237 1.635 2.204 10.645 12.592 14.449 16.812
7 1.239 1.690 2.167 2.833 12.017 14.067 16.013 18.475
8 1.646 2.180 2.733 3.490 13.362 15.507 17.535 20.090
9 2.088 2.700 3.325 4.168 14.684 16.919 19.023 21.666

10 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209
11 3.053 3.816 4.575 5.578 17.275 19.675 21.920 24.725
12 3.571 4.404 5.226 6.304 18.549 21.026 23.336 26.217

We will use the symbol χ2
p,n to denote the number along the horizontal axis that

cuts off, to its left, an area of p under the chi square distribution with n degrees of
freedom. For example, from the fifth row of the chi square table, we see the num-
bers 1.145 and 15.086 under the column headings .05 and .99, respectively. It follows
that

P
(
χ2

5 ≤ 1.145
)= 0.05

and

P
(
χ2

5 ≤ 15.086
)= 0.99

(see Figure 7.5.1). In terms of the χ2
p,n notation, 1.145 = χ2

.05,5 and 15.086 = χ2
.99,5.

(The area to the right of 15.086, of course, must be 0.01.)
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Constructing Confidence Intervals for σ 2

Since (n−1)S2

σ 2 has a chi square distribution with n − 1 degrees of freedom, we can
write

P

[
χ2

α/2,n−1 ≤ (n − 1)S2

σ 2
≤χ2

1−α/2,n−1

]
= 1 −α (7.5.1)

If Equation 7.5.1 is then inverted to isolate σ 2 in the center of the inequalities,
the two endpoints will necessarily define a 100(1 − α)% confidence interval for the
population variance. The algebraic details will be left as an exercise.

Theorem
7.5.1

Let s2 denote the sample variance calculated from a random sample of n observations
drawn from a normal distribution with mean μ and variance σ 2. Then

a. a 100(1 −α)% confidence interval for σ 2 is the set of values[
(n − 1)s2

χ2
1−α/2,n−1

,
(n − 1)s2

χ2
α/2,n−1

]

b. a 100(1 −α)% confidence interval for σ is the set of values[√
(n − 1)s2

χ2
1−α/2,n−1

,

√
(n − 1)s2

χ2
α/2,n−1

]
�

Case Study 7.5.1

The chain of events that define the geological evolution of the Earth began
hundreds of millions of years ago. Fossils play a key role in documenting the
relative times those events occurred, but to establish an absolute chronology,
scientists rely primarily on radioactive decay.

One of the newest dating techniques uses a rock’s potassium-argon ratio.
Almost all minerals contain potassium (K) as well as certain of its isotopes,
including 40K. The latter, though, is unstable and decays into isotopes of argon
and calcium, 40Ar and 40Ca. By knowing the rates at which the various daughter
products are formed and by measuring the amounts of 40Ar and 40K present in
a specimen, geologists can estimate the object’s age.

Critical to the interpretation of any such dates, of course, is the precision
of the underlying procedure. One obvious way to estimate that precision is to
use the technique on a sample of rocks known to have the same age. Whatever
variation occurs, then, from rock to rock is reflecting the inherent precision (or
lack of precision) of the procedure.

Table 7.5.1 lists the potassium-argon estimated ages of nineteen mineral
samples, all taken from the Black Forest in southeastern Germany (111).
Assume that the procedure’s estimated ages are normally distributed with
(unknown) mean μ and (unknown) variance σ 2. Construct a 95% confidence
interval for σ .

(Continued on next page)
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Table 7.5.1

Specimen Estimated Age (millions of years)

1 249
2 254
3 243
4 268
5 253
6 269
7 287
8 241
9 273

10 306
11 303
12 280
13 260
14 256
15 278
16 344
17 304
18 283
19 310

Here

19∑
i=1

yi = 5261

19∑
i=1

y2
i = 1,469,945

so the sample variance is 733.4:

s2 = 19(1,469,945)− (5261)2

19(18)
= 733.4

Since n = 19, the critical values appearing in the left-hand and right-hand limits
of the σ confidence interval come from the chi square pdf with 18 df. According
to Appendix Table A.3,

P
(
8.23 <χ2

18 < 31.53
)= 0.95

so the 95% confidence interval for the potassium-argon method’s precision is
the set of values[√

(19 − 1)(733.4)

31.53
,

√
(19 − 1)(733.4)

8.23

]
= (20.5 million years, 40.0 million years)
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Example
7.5.1

The width of a confidence interval for σ 2 is a function of both n and S2:

Width = upper limit − lower limit

= (n − 1)S2

χ2
α/2,n−1

− (n − 1)S2

χ2
1−α/2,n−1

= (n − 1)S2

(
1

χ2
α/2,n−1

− 1

χ2
1−α/2,n−1

)
(7.5.2)

As n gets larger, the interval will tend to get narrower because the unknown σ 2 is
being estimated more precisely. What is the smallest number of observations that
will guarantee that the average width of a 95% confidence interval for σ 2 is no
greater than σ 2?

Since S2 is an unbiased estimator for σ 2, Equation 7.5.2 implies that the
expected width of a 95% confidence interval for the variance is the expression

E(width)= (n − 1)σ 2

(
1

χ2
.025,n−1

− 1

χ2
.975,n−1

)

Clearly, then, for the expected width to be less than or equal to σ 2, n must be chosen
so that

(n − 1)

(
1

χ2
.025,n−1

− 1

χ2
.975,n−1

)
≤ 1

Trial and error can be used to identify the desired n. The first three columns in
Table 7.5.2 come from the chi square distribution in Appendix Table A.3. As the
computation in the last column indicates, n = 39 is the smallest sample size that will
yield 95% confidence intervals for σ 2 whose average width is less than σ 2.

Table 7.5.2

n χ 2
.025,n−1 χ 2

.975,n−1 (n − 1)
(

1
χ2

.025,n−1
− 1

χ2
.975,n−1

)
15 5.629 26.119 1.95
20 8.907 32.852 1.55
30 16.047 45.722 1.17
38 22.106 55.668 1.01
39 22.878 56.895 0.99

Testing H0: σ 2 = σ 2

o

The generalized likelihood ratio criterion introduced in Section 6.5 can be used to
set up hypothesis tests for σ 2. The complete derivation appears in Appendix 7.A.4.
Theorem 7.5.2 states the resulting decision rule. Playing a key role—just as it did
in the construction of confidence intervals for σ 2—is the chi square ratio from
Theorem 7.3.2.
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Theorem
7.5.2

Let s2 denote the sample variance calculated from a random sample of n observa-
tions drawn from a normal distribution with mean μ and variance σ 2. Let χ2 =
(n − 1)s2/σ 2

o .

a. To test H0 : σ 2 = σ 2
o versus H1 : σ 2 > σ 2

o at the α level of significance, reject H0 if
χ2 ≥ χ2

1−α,n−1.
b. To test H0 : σ 2 = σ 2

o versus H1 : σ 2 < σ 2
o at the α level of significance, reject H0 if

χ2 ≤ χ2
α,n−1.

c. To test H0 :σ 2 =σ 2
o versus H1 :σ 2 �=σ 2

o at the α level of significance, reject H0 if χ2

is either (1)≤ χ2
α/2,n−1 or (2)≥χ2

1−α/2,n−1. �

Case Study 7.5.2

Mutual funds are investment vehicles consisting of a portfolio of various types
of investments. If such an investment is to meet annual spending needs, the
owner of shares in the fund is interested in the average of the annual returns of
the fund. Investors are also concerned with the volatility of the annual returns,
measured by the variance or standard deviation. One common method of evalu-
ating a mutual fund is to compare it to a benchmark, the Lipper Average being
one of these. This index number is the average of returns from a universe of
mutual funds.

The Global Rock Fund is a typical mutual fund, with heavy investments in
international funds. It claimed to best the Lipper Average in terms of volatility
over the period from 1989 through 2007. Its returns are given in the table below.

Investment Investment
Year Return % Year Return %

1989 15.32 1999 27.43
1990 1.62 2000 8.57
1991 28.43 2001 1.88
1992 11.91 2002 −7.96
1993 20.71 2003 35.98
1994 −2.15 2004 14.27
1995 23.29 2005 10.33
1996 15.96 2006 15.94
1997 11.12 2007 16.71
1998 0.37

The standard deviation for these returns is 11.28%, while the correspond-
ing figure for the Lipper Average is 11.67%. Now, clearly, the Global Rock Fund
has a smaller standard deviation than the Lipper Average, but is this small dif-
ference due just to random variation? The hypothesis test is meant to answer
such questions.

Let σ 2 denote the variance of the population represented by the return
percentages shown in the table above. To judge whether the observed standard
deviation less than 11.67 is significant requires that we test

(Continued on next page)
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(Case Study 7.5.2 continued)

H0 : σ 2 = (11.67)2

versus

H1 : σ 2 <(11.67)2

Let α = 0.05. With n = 19, the critical value for the chi square ratio [from
part (b) of Theorem 7.5.2] is χ2

1−α,n−1 =χ2
.05,18 = 9.390 (see Figure 7.5.3). But

χ2 = (n − 1)s2

σ 2
0

= (19 − 1)(11.28)2

(11.67)2
= 16.82

so our decision is clear: Do not reject H0.
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Figure 7.5.3

Questions

7.5.1. Use Appendix Table A.3 to find the following
cutoffs and indicate their location on the graph of the
appropriate chi square distribution.

(a) χ 2
.95,14

(b) χ 2
.90,2

(c) χ 2
.025,9

7.5.2. Evaluate the following probabilities:

(a) P
(
χ 2

17 ≥ 8.672
)

(b) P
(
χ 2

6 < 10.645
)

(c) P
(
9.591 ≤ χ 2

20 ≤ 34.170
)

(d) P
(
χ 2

2 < 9.210
)

7.5.3. Find the value y that satisfies each of the following
equations:

(a) P
(
χ 2

9 ≥ y
)= 0.99

(b) P
(
χ 2

15 ≤ y
)= 0.05

(c) P
(
9.542 ≤χ 2

22 ≤ y
)= 0.09

(d) P
(
y ≤ χ 2

31 ≤ 48.232
)= 0.95

7.5.4. For what value of n is each of the following state-
ments true?

(a) P
(
χ 2

n ≥ 5.009
)= 0.975

(b) P
(
27.204 ≤χ 2

n ≤ 30.144
)= 0.05

(c) P
(
χ 2

n ≤ 19.281
)= 0.05

(d) P
(
10.085 ≤χ 2

n ≤ 24.769
)= 0.80
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7.5.5. For df values beyond the range of Appendix
Table A.3, chi square cutoffs can be approximated by
using a formula based on cutoffs from the standard nor-
mal pdf, fZ (z). Define χ 2

p,n and z∗
p so that P

(
χ 2

n ≤χ 2
p,n

)= p
and P(Z ≤ z∗

p)= p, respectively. Then

χ 2
p,n

.= n

(
1 − 2

9n
+ z∗

p

√
2

9n

)3

Approximate the 95th percentile of the chi square dis-
tribution with 200 df. That is, find the value of y for
which

P
(
χ 2

200 ≤ y
) .= 0.95

7.5.6. Let Y1,Y2, . . . ,Yn be a random sample of size n from
a normal distribution having mean μ and variance σ 2.
What is the smallest value of n for which the following is
true?

P

(
S2

σ 2
< 2

)
≥ 0.95

(Hint: Use a trial-and-error method.)

7.5.7. Start with the fact that (n − 1)S2/σ 2 has a chi
square distribution with n − 1 df (if the Yi ’s are normally
distributed) and derive the confidence interval formulas
given in Theorem 7.5.1.

7.5.8. A random sample of size n =19 is drawn from a nor-
mal distribution for which σ 2 = 12.0. In what range are we
likely to find the sample variance, s2? Answer the question
by finding two numbers a and b such that

P(a ≤ S2 ≤ b)= 0.95

7.5.9. How long sporting events last is quite variable.
This variability can cause problems for TV broadcast-
ers, since the amount of commercials and commentator
blather varies with the length of the event. As an exam-
ple of this variability, the table below gives the lengths
for a random sample of middle-round contests at the 2008
Wimbledon Championships in women’s tennis.

Match Length (minutes)

Cirstea-Kuznetsova 73
Srebotnik-Meusburger 76
De Los Rios-V. Williams 59
Kanepi-Mauresmo 104
Garbin-Szavay 114
Bondarenko-Lisicki 106
Vaidisova-Bremond 79
Groenefeld-Moore 74
Govortsova-Sugiyama 142
Zheng-Jankovic 129

Perebiynis-Bammer 95
Bondarenko-V. Williams 56
Coin-Mauresmo 84
Petrova-Pennetta 142
Wozniacki-Jankovic 106
Groenefeld-Safina 75

Source: 2008.usopen.org/en_US/scores/cmatch/index.html?promo=t.

(a) Assume that match lengths are normally distributed.
Use Theorem 7.5.1 to construct a 95% confi-
dence interval for the standard deviation of match
lengths.

(b) Use these same data to construct two one-sided 95%
confidence intervals for σ .

7.5.10. How much interest certificates of deposit (CDs)
pay varies by financial institution and also by length of
the investment. A large sample of national one-year CD
offerings in 2009 showed an average interest rate of 1.84
and a standard deviation σ = 0.262. A five-year CD ties
up an investor’s money, so it usually pays a higher rate
of interest. However, higher rates might cause more vari-
ability. The table lists the five-year CD rate offerings from
n = 10 banks in the northeast United States. Find a 95%
confidence interval for the standard deviation of 5-year
CD rates. Do these data suggest that interest rates for
five-year CDs are more variable than those for one-year
certificates?

Bank Interest Rate (%)

Domestic Bank 2.21
Stonebridge Bank 2.47
Waterfield Bank 2.81
NOVA Bank 2.81
American Bank 2.96
Metropolitan National Bank 3.00
AIG Bank 3.35
iGObanking.com 3.44
Discover Bank 3.44
Intervest National Bank 3.49

Source: Company reports.

7.5.11. In Case Study 7.5.1, the 95% confidence inter-
val was constructed for σ rather than for σ 2. In practice,
is an experimenter more likely to focus on the standard
deviation or on the variance, or do you think that both
formulas in Theorem 7.5.1 are likely to be used equally
often? Explain.

7.5.12. (a) Use the asymptotic normality of chi square
random variables (see Question 7.3.6) to derive
large-sample confidence interval formulas for σ

and σ 2.
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(b) Use your answer to part (a) to construct an approxi-
mate 95% confidence interval for the standard devi-
ation of estimated potassium-argon ages based on
the 19 yi ’s in Table 7.5.1. How does this confidence
interval compare with the one in Case Study 7.5.1?

7.5.13. If a 90% confidence interval for σ 2 is reported to
be (51.47, 261.90), what is the value of the sample standard
deviation?

7.5.14. Let Y1,Y2, . . . ,Yn be a random sample of size n
from the pdf

fY (y)=
(

1

θ

)
e−y/θ , y > 0; θ > 0

(a) Use moment-generating functions to show that the
ratio 2nY/θ has a chi square distribution with 2n df.

(b) Use the result in part (a) to derive a 100(1 − α)%
confidence interval for θ .

7.5.15. Another method for dating rocks was used before
the advent of the potassium-argon method described in
Case Study 7.5.1. Because of a mineral’s lead content,
it was capable of yielding estimates for this same time
period with a standard deviation of 30.4 million years. The
potassium-argon method in Case Study 7.5.1 had a smaller
sample standard deviation of

√
733.4 = 27.1 million years.

Is this “proof” that the potassium-argon method is more
precise? Using the data in Table 7.5.1, test at the
0.05 level whether the potassium-argon method has a
smaller standard deviation than the older procedure using
lead.

7.5.16. When working properly, the amounts of cement
that a filling machine puts into 25-kg bags have a stan-
dard deviation (σ ) of 1.0 kg. In the next column are the
weights recorded for thirty bags selected at random from
a day’s production. Test H0: σ 2 = 1 versus H1: σ 2 > 1 using

the α = 0.05 level of significance. Assume that the weights
are normally distributed.

26.18 24.22 24.22
25.30 26.48 24.49
25.18 23.97 25.68
24.54 25.83 26.01
25.14 25.05 25.50
25.44 26.24 25.84
24.49 25.46 26.09
25.01 25.01 25.21
25.12 24.71 26.04
25.67 25.27 25.23

Use the following sums:
30∑

i=1

yi = 758.62 and
30∑

i=1

y2
i = 19,195.7938

7.5.17. A stock analyst claims to have devised a mathe-
matical technique for selecting high-quality mutual funds
and promises that a client’s portfolio will have higher aver-
age ten-year annualized returns and lower volatility; that
is, a smaller standard deviation. After ten years, one of the
analyst’s twenty-four-stock portfolios showed an average
ten-year annualized return of 11.50% and a standard devi-
ation of 10.17%. The benchmarks for the type of funds
considered are a mean of 10.10% and a standard deviation
of 15.67%.

(a) Let μ be the mean for a twenty-four-stock portfo-
lio selected by the analyst’s method. Test at the 0.05
level that the portfolio beat the benchmark; that is,
test H0:μ= 10.1 versus H1:μ> 10.1.

(b) Let σ be the standard deviation for a twenty-four-
stock portfolio selected by the analyst’s method.
Test at the 0.05 level that the portfolio beat the
benchmark; that is, test H0:σ = 15.67 versus H1:σ <

15.67.

7.6 Taking a Second Look at Statistics (Type II Error)
For data that are normal, and when the variance σ 2 is known, both Type I errors and
Type II errors can be determined, staying within the family of normal distributions.
(See Example 6.4.1, for instance.) As the material in this chapter shows, the situation
changes radically when σ 2 is not known. With the development of the Student t
distribution, tests of a given level of significance α can be constructed. But what is
the Type II error of such a test?

To answer this question, let us first recall the form of the test statistic and critical
region testing, for example,

H0 :μ=μ0 versus H1 :μ>μ0
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The null hypothesis is rejected if

Y −μ0

S/
√

n
≥ tα,n−1

The probability of the Type II error, β, of the test at some value μ1 >μ0 is

P

(
Y −μ0

S/
√

n
< tα,n−1

)

However, since μ0 is not the mean of Y under H1, the distribution of Y−μ0
S/

√
n

is not
Student t . Indeed, a new distribution is called for.

The following algebraic manipulations help to place the needed density into a
recognizable form.

Y −μ0

S/
√

n
= Y −μ1 + (μ1 −μ0)

S/
√

n
=

Y−μ1
σ

+ (μ1−μ0)

σ

S/
√

n
σ

=
Y−μ1
σ/

√
n

+ (μ1−μ0)

σ/
√

n

S/σ

=
Y−μ1
σ/

√
n

+ (μ1−μ0)

σ/
√

n√
(n−1)S2/σ 2

n−1

=
Y−μ1
σ/

√
n

+ δ√
(n−1)S2/σ 2

n−1

= Z + δ√
U

n−1

where Z = Y−μ1
σ/

√
n

is normal, U = (n−1)S2

σ 2 is a chi square variable with n − 1 degrees of

freedom, and δ = (μ1−μ0)

σ/
√

n
is an (unknown) constant. Note that the random variable

Z+δ√
U

n−1

differs from the Student t with n − 1 degrees of freedom Z√
U

n−1

only because of

the additive term δ in the numerator. But adding δ changes the nature of the pdf
significantly.

An expression of the form Z+δ√
U

n−1

is said to have a noncentral t distribution with

n − 1 degrees of freedom and noncentrality parameter δ.
The probability density function for a noncentral t variable is now well known

(97). Even though there are computer approximations to the distribution, not know-
ing σ 2 means that δ is also unknown. One approach often taken is to specify the
difference between the true mean and the hypothesized mean as a given proportion
of σ . That is, the Type II error is given as a function of μ1−μ0

σ
rather than μ1. In some

cases, this quantity can be approximated by μ1−μ0
s .

The following numerical example will help to clarify these ideas.

Example
7.6.1

Suppose we wish to test H0 : μ = μ0 versus H1 : μ > μ0 at the α = 0.05 level of sig-
nificance. Let n = 20. In this case the test is to reject H0 if the test statistic y−μ0

s/
√

n
is

greater than t.05,19 = 1.7291. What will be the Type II error if the mean has shifted
by 0.5 standard deviation to the right of μ0?

Saying that the mean has shifted by 0.5 standard deviation to the right of μ0

is equivalent to setting μ1−μ0
σ

= 0.5. In that case, the noncentrality parameter is
δ = μ1−μ0

σ/
√

n
= (0.5) ·√20 = 2.236.

The probability of a Type II error is

P(T19,2.236 ≤ 1.7291)

where T19,2.236 is a noncentral t variable with 19 degrees of freedom and noncentral-
ity parameter 2.236.
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To calculate this quantity, we need the cdf of T19,2.236. Fortunately, many statis-
tical software programs have this function. The Minitab commands for calculating
the desired probability are

MTB > CDF 1.7291;
SUBC > T 19 2.236

with output

Cumulative Distribution Function

Student’s t distribution with 19 DF and noncentrality parameter 2.236

x P(X <= x)
1.7291 0.304828

The sought-after Type II error to three decimal places is 0.305.

Simulations

As we have seen, with enough distribution theory, the tools for finding Type II errors
for the Student t test exist. Also, there are noncentral chi square and F distributions.

However, the assumption that the underlying data are normally distributed is
necessary for such results. In the case of Type I errors, we have seen that the t test is
somewhat robust with regard to the data deviating from normality. (See Section 7.4.)
In the case of the noncentral t , dealing with departures from normality presents
significant analytical challenges. But the empirical approach of using simulations
can bypass such difficulties and still give meaningful results.

To start, consider a simulation of the problem presented in Example 7.6.1. Sup-
pose the data have a normal distribution with μ0 = 5 and σ = 3. The sample size is
n = 20. Suppose we want to find the Type I error when the true δ = 2.236. For the
given σ = 3, this is equivalent to

2.236 = μ1 −μ0

σ/
√

n
= μ1 − 5

3/
√

20

or μ1 = 6.5.
A Type II error occurs if the test statistic is less than 1.7291. In this case, H0

would be accepted when rejection is the proper decision.
Using Minitab, two hundred samples of size 20 from the normal distribution

with μ = 6.5 and σ 2 = 9 are generated: Minitab produces a 200 × 20 array. For each
row of the array, the test statistic y−5

s/
√

20
is calculated and placed in Column 21. If this

value is less than 1.7291, a 1 is placed in that row of Column 22; otherwise a 0 goes
there. The sum of the entries in Column 22 gives the observed number of Type II
errors. Based on the computed value of the Type II error, 0.305, for the assumed
value of δ, this observed number should be approximately 200(0.305)= 61.

The Minitab simulation gave sixty-four observed Type II errors—a very close
figure to what was expected.

The robustness for Type II errors can lead to analytical thickets. However, sim-
ulation can again shed some light on Type II errors in some cases. As an example,
suppose the data are not normal, but gamma with r = 4.694 and λ = 0.722. Even
though the distribution is skewed, these values make the mean μ= 6.5 and the vari-
ance σ 2 = 9, as in the normal case above. Again relying on Minitab to give two
hundred random samples of size 20, the observed number of Type II errors is sixty,
so the test has some robustness for Type II errors in that case. Even though the data
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are not normal, the key statistic in the analysis, y, will be approximately normal by
the central limit theorem.

If the distribution of the underlying data is unknown or extremely skewed,
nonparametric tests, like the ones covered in Chapter 14 and in (28) are advised.

Appendix 7.A.1 Minitab Applications

Many statistical procedures, including several featured in this chapter, require
that the sample mean and sample standard deviation be calculated. Minitab’s
DESCRIBE command gives y and s, along with several other useful numerical char-
acteristics of a sample. Figure 7.A.1.1 shows the DESCRIBE input and output for
the twenty observations cited in Example 7.4.1.

Figure 7.A.1.1 MTB > set c1
DATA > 2.5 3.2 0.5 0.4 0.3 0.1 0.1 0.2 7.4 8.6 0.2 0.1
DATA > 0.4 1.8 0.3 1.3 1.4 11.2 2.1 10.1
DATA > end
MTB > describe c1

Descriptive Statistics: C1

Variable N N* Mean SE Mean StDev Minimum Q1 Median Q3 Maximum

C1 20 0 2.610 0.809 3.617 0.100 0.225 0.900 3.025 11.200

Here,

N = sample size
N* = number of observations missing from c1 (that is, the
number of “interior” blanks)

Mean = sample mean = y
SE Mean = standard error of the mean = s√

n
StDev = sample standard deviation = s
Minimum = smallest observation
Q1 = first quartile = 25th percentile
Median = middle observation (in terms of magnitude), or
average of the middle two if n is even

Q3 = third quartile = 75th percentile
Maximum = largest observation

Describing Samples Using Minitab Windows

1. Enter data under C1 in the WORKSHEET. Click on STAT, then on BASIC
STATISTICS, then on DISPLAY DESCRIPTIVE STATISTICS.

2. Type C1 in VARIABLES box; click on OK.

Percentiles of chi square, t , and F distributions can be obtained using the
INVCDF command introduced in Appendix 3.A.1. Figure 7.A.1.2 shows the syntax
for printing out χ2

.95,6(= 12.5916) and F.01,4,7(= 0.0667746).
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Figure 7.A.1.2 MTB > invcdf 0.95;
SUBC > chisq 6.

Inverse Cumulative Distribution Function

Chi-Square with 6 DF

P(X <= x) x
0.95 12.5916

MTB > invcdf 0.01;
SUBC> f 4 7.

Inverse Cumulative Distribution Function

F distribution with 4 DF in numerator and 7 DF in denominator

P(X <= x) x
0.01 0.0667746

To find Student t cutoffs, the tα,n−1 notation needs to be expressed as a
percentile. We have defined t.10,13, for example, to be the value for which

P(T13 ≥ t.10,13)= 0.10

In the terminology of the INVCDF command, though, t.10,13(= 1.35017) is the
ninetieth percentile of the fT13(t) pdf (see Figure 7.A.1.3).

Figure 7.A.1.3 MTB > invcdf 0.90;
SUBC> t 13.

Inverse Cumulative Distribution Function

Student’s t distribution with 13 DF

P(X <= x) x
0.9 1.35017

The Minitab command for constructing a confidence interval for μ (Theo-
rem 7.4.1) is “TINTERVAL X Y,” where X denotes the desired value for the
confidence coefficient 1 − α and Y is the column where the data are stored.
Figure 7.A.1.4 shows the TINTERVAL command applied to the bat data from Case
Study 7.4.1; 1 −α is taken to be 0.95.

Figure 7.A.1.4 MTB > set c1
DATA > 62 52 68 23 34 45 27 42 83 56 40
DATA > end
MTB > tinterval 0.95 c1

One-Sample T: C1

Variable N Mean StDev SE Mean 95% CI
C1 11 48.36 18.08 5.45 (36.21, 60.51)

Constructing Confidence Intervals Using Minitab Windows

1. Enter data under C1 in the WORKSHEET.
2. Click on STAT, then on BASIC STATISTICS, then on 1-SAMPLE T.
3. Enter C1 in the SAMPLES IN COLUMNS box, click on OPTIONS, and enter

the value of 100(1 −α) in the CONFIDENCE LEVEL box.
4. Click on OK. Click on OK.

Figure 7.A.1.5 shows the input and output for doing a t test on the approval data
given in Table 7.4.3. The basic command is “TTEST X Y,” where X is the value of
μo and Y is the column where the data are stored. If no other punctuation is used,
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Figure 7.A.1.5 MTB > set c1
DATA > 59 65 69 53 60 53 58 64 46 67 51 59
DATA > end
MTB > ttest 62 c1

One-Sample T: C1

Test of mu = 62 vs not = 62

Variable N Mean StDev SE Mean 95% CI T P

C1 12 58.66 6.95 2.01 (54.25,63.08) -1.66 0.125

the program automatically takes H1 to be two-sided. If a one-sided test to the right
is desired, we write

MTB > ttest X Y;
SUBC > alternative +1.

For a one-sided test to the left, the subcommand becomes “alternative −1”.
Notice that no value for α is entered, and that the conclusion is not phrased as

either “Accept H0” or “Reject H0.” Rather, the analysis ends with the calculation of
the data’s P-value.

Here,

P-value = P(T11 ≤−1.66)+ P(T11 ≥ 1.66)

= 0.0626 + 0.0626

= 0.125

(recall Definition 6.2.4). Since the P-value exceeds the intended α(= 0.05), the
conclusion is “Fail to reject H0.”

Testing H0 :μ=μo Using Minitab Windows

1. Enter data under C1 in the WORKSHEET.
2. Click on STAT, then on BASIC STATISTICS, then on 1-SAMPLE T.
3. Type C1 in SAMPLES IN COLUMNS box; click on PERFORM HYPOTH-

ESIS TEST and enter the value of μo. Click on OPTIONS, then choose NOT
EQUAL.

4. Click on OK; then click on OK.

Appendix 7.A.2 Some Distribution Results for Y and S2

Theorem
7.A.2.1

Let Y1,Y2, . . . ,Yn be a random sample of size n from a normal distribution with mean
μ and variance σ 2. Define

Y = 1

n

n∑
i=1

Yi and S2 = 1

n − 1

n∑
i=1

(Yi − Y )2

Then

a. Y and S2 are independent.
b. (n−1)S2

σ 2 has a chi square distribution with n − 1 degrees of freedom.

Proof The proof of this theorem relies on certain linear algebra techniques as well
as a change-of-variables formula for multiple integrals. Definition 7.A.2.1 and the
Lemma that follows review the necessary background results. For further details,
see (44) or (213). �
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Definition 7.A.2.1.

a. A matrix A is said to be orthogonal if AAT = I .
b. Let β be any n-dimensional vector over the real numbers. That is, β =

(c1, c2, . . . , cn), where each c j is a real number. The length of β will be
defined as

‖β ‖= (c2
1 + · · ·+ c2

n

)1/2

(Note that ‖β ‖2=ββT .)

Lemma a. A matrix A is orthogonal if and only if

‖ Aβ ‖=‖β ‖ for each β

b. If a matrix A is orthogonal, then det A = 1.
c. Let g be a one-to-one continuous mapping on a subset, D, of n-space. Then∫

g(D)

f (x1, . . . , xn)dx1 · · ·dxn =
∫

D
f [g(y1, . . . , yn)] det J (g)dy1 · · ·dyn

where J (g) is the Jacobian of the transformation.

Set Xi = (Yi − μ)/σ for i = 1,2, . . . ,n. Then all the Xi ’s are N (0,1). Let A be an

n × n orthogonal matrix whose last row is
(

1√
n
, 1√

n
, . . . , 1√

n

)
. Let

⇀

X = (X1, . . . , Xn)
T

and define
⇀

Z = (Z1, Z2, . . . , Zn)
T by the transformation

⇀

Z = A
⇀

X . [Note that Zn =(
1√
n

)
X1 + · · · + ( 1√

n

)
Xn =√

n X .]
For any set D,

P(
⇀

Z ∈ D) = P(A
⇀

X ∈ D)= P(
⇀

X ∈ A−1 D)

=
∫

A−1 D
fX1,...,Xn (x1, . . . , xn)dx1 · · ·dxn

=
∫

D
fX1,...,Xn [g(

⇀
z)] det J (g)dz1 · · ·dzn

=
∫

D
fX1,...,Xn (A−1⇀

z) · 1 · dz1 · · ·dzn

where g(
⇀
z) = A−1⇀

z . But A−1 is orthogonal, so setting (x1, . . . , xn)
T = A−1z, we have

that

x2
1 + · · ·+ x2

n = z2
1 + · · ·+ z2

n

Thus

fX1,...,Xn (
⇀
x)= (2π)−n/2e−(1/2)

(
x2

1 +···+x2
n

)
= (2π)−n/2e−(1/2)

(
z2

1+···+z2
n

)
From this we conclude that

P(
⇀

Z ∈ D)=
∫

D
(2π)−n/2e−(n/2)

(
z2

1+···+z2
n

)
dz1 · · ·dzn

implying that the Z j ’s are independent standard normals.
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Finally,
n∑

j=1

Z2
j =

n−1∑
j=1

Z2
j + nX

2 =
n∑

j=1

X2
j =

n∑
j=1

(X j − X)2 + nX
2

Therefore,
n−1∑
j=1

Z2
j =

n∑
j=1

(X j − X)2

and X
2

(and thus X) is independent of
n∑

j=1
(Xi − X)2, so the conclusion fol-

lows for standard normal variables. Also, since Y = σ X + μ and
n∑

i=1
(Yi − Y )2 =

σ 2
n∑

i=1
(Xi − X)2, the conclusion follows for N (μ,σ 2) variables.

Comment As part of the proof just presented, we established a version of Fisher’s
lemma:

Let X1, X2, . . . , Xn be independent standard normal random variables and let A
be an orthogonal matrix. Define (Z1, . . . , Zn)

T = A(X1, . . . , Xn)
T . Then the Zi ’s are

independent standard normal random variables.

Appendix 7.A.3 A Proof that the One-Sample t Test is a GLRT

Theorem
7.A.3.1

The one-sample t test, as outlined in Theorem 7.4.2, is a GLRT.

Proof Consider the test of H0:μ = μo versus H1:μ �= μo. The two parameter spaces
restricted to H0 and H0 ∪ H1—that is, ω and �, respectively—are given by

ω ={(μ,σ 2):μ=μ0; 0 ≤ σ 2 <∞}
and

�={(μ,σ 2): −∞<μ<∞; 0 ≤ σ 2 <∞}
Without elaborating the details (see Example 5.2.4 for a very similar problem), it
can be readily shown that, under ω,

μe =μ0 and σ 2
e = 1

n

n∑
i=1

(yi −μ0)
2

Under �,

μe = y and σ 2
e = 1

n

n∑
i=1

(yi − y)2

Therefore, since

L(μ,σ 2)=
(

1√
2πσ

)n

exp

[
−1

2

n∑
i=1

(
yi −μ

σ

)2
]

direct substitution gives

L(ωe)=

⎡⎢⎢⎢⎢⎣
√

n

√
2π

√
n∑

i=1
(yi −μ0)2

⎤⎥⎥⎥⎥⎦
n

e−n/2
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=

⎡⎢⎢⎣ ne−1

2π
n∑

i=1
(yi −μ0)2

⎤⎥⎥⎦
n/2

and

L(�e)=

⎡⎢⎢⎣ ne−1

2π
n∑

i=1
(yi − y)2

⎤⎥⎥⎦
n/2

From L(ωe) and L(�e) we get the likelihood ratio:

λ = L(ωe)

L(�e)
=

⎡⎢⎢⎣
n∑

i=1
(yi − y)2

n∑
i=1

(yi −μ0)2

⎤⎥⎥⎦
n/2

, 0 <λ ≤ 1

As is often the case, it will prove to be more convenient to base a test on a monotonic
function of λ, rather than on λ itself. We begin by rewriting the ratio’s denominator:

n∑
i=1

(yi −μ0)
2 =

n∑
i=1

[(yi − y)+ (y −μ0)]2

=
n∑

i=1

(yi − y)2 + n(y −μ0)
2

Therefore,

λ =

⎡⎢⎢⎣1 + n(y −μ0)
2

n∑
i=1

(yi − y)2

⎤⎥⎥⎦
−n/2

=
(

1 + t2

n − 1

)−n/2

where

t = y −μ0

s/
√

n

Observe that as t2 increases, λ decreases. This implies that the original GLRT—
which, by definition, would have rejected H0 for any λ that was too small, say, less
than λ∗—is equivalent to a test that rejects H0 whenever t2 is too large. But t is an
observation of the random variable

T = Y −μ0

S/
√

n
(= Tn−1 by Theorem 7.3.5)

Thus “too large” translates numerically into tα/2,n−1:

0 <λ ≤ λ∗ ⇔ t2 ≥ (tα/2,n−1)
2

But

t2 ≥ (tα/2,n−1)
2 ⇔ t ≤−tα/2,n−1 or t ≥ tα/2,n−1

and the theorem is proved. �
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Appendix 7.A.4 A Proof of Theorem 7.5.2

We begin by considering the test of H0:σ 2 =σ 2
o against a two-sided H1. The relevant

parameter spaces are

ω = {(μ,σ 2): −∞<μ<∞, σ 2 = σ 2
0

}
and

�={(μ,σ 2): −∞<μ<∞, 0 ≤ σ 2}
In both, the maximum likelihood estimate for μ is y. In ω, the maximum likeli-

hood estimate for σ 2 is simply σ 2
0 ; in �, σ 2

e = (1/n)
n∑

i=1
(yi − y)2 (see Example 5.4.4).

Therefore, the two likelihood functions, maximized over ω and over �, are

L(ωe)=
(

1

2πσ 2
0

)n/2

exp

[
−1

2

n∑
i=1

(
yi − y

σ0

)2
]

and

L(�e)=

⎡⎢⎢⎣ n

2π
n∑

i=1
(yi − y)2

⎤⎥⎥⎦
n/2

exp

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩−n

2

n∑
i=1

⎡⎢⎢⎢⎢⎣ yi − y√
n∑

i=1
(yi − y)2

⎤⎥⎥⎥⎥⎦
2⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

=

⎡⎢⎢⎣ n

2π
n∑

i=1
(yi − y)2

⎤⎥⎥⎦
n/2

e−n/2

It follows that the generalized likelihood ratio is given by

λ = L(ωe)

L(�e)

=

⎡⎢⎢⎣
n∑

i=1
(yi − y)2

nσ 2
0

⎤⎥⎥⎦
n/2

· exp

[
−1

2

n∑
i=1

(
yi − y

σ0

)2

+ n

2

]

=
(

σ 2
e

σ 2
0

)n/2

· e−(n/2)

(
σ 2

e/σ
2
0

)
+n/2

We need to know the behavior of λ, considered as a function of (σ 2
e/σ

2
0). For

simplicity, let x = (σ 2
e/σ

2
0). Then λ= xn/2e−(n/2)x+n/2 and the inequality λ≤λ∗ is equiv-

alent to xe−x ≤ e−1(λ∗)2/n . The right-hand side is again an arbitrary constant, say,
k∗. Figure 7.A.4.1 is a graph of y = xe−x . Notice that the values of x = (σ 2

e/σ
2
0) for

which xe−x ≤ k∗, and equivalently λ ≤ λ∗, fall into two regions, one for values of
σ 2

e/σ
2
0 close to 0 and the other for values of σ 2

e /σ 2
0 much larger than 1. Accord-

ing to the likelihood ratio principle, we should reject H0 for any λ ≤ λ∗, where
P(�≤λ∗|H0)=α. But λ∗ determines (via k∗) numbers a and b, so the critical region
is C ={(σ 2

e /σ 2
0) : (σ 2

e /σ 2
0)≤ a or (σ 2

e /σ 2
0)≥ b}.
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Figure 7.A.4.1

Reject H0Reject H0

y = xe

k*

– x

0 a b
x

Comment At this point it is necessary to make a slight approximation. Just because
P(�≤ λ∗|H0)=α, it does not follow that

P

⎡⎢⎢⎣
(

1
n

) n∑
i=1

(Yi − Y )2

σ 2
0

≤ a

⎤⎥⎥⎦= α

2
= P

⎡⎢⎢⎣
(

1
n

) n∑
i=1

(Yi − Y )2

σ 2
0

≥ b

⎤⎥⎥⎦
and, in fact, the two tails of the critical regions will not have exactly the same
probability. Nevertheless, the two are numerically close enough that we will not
substantially compromise the likelihood ratio criterion by setting each one equal
to α/2.

Note that

P

⎡⎢⎢⎣
(

1
n

) n∑
i=1

(Yi − Y )2

σ 2
0

≤ a

⎤⎥⎥⎦= P

⎡⎢⎢⎣
n∑

i=1
(Yi − Y )2

σ 2
0

≤ na

⎤⎥⎥⎦

= P

[
(n − 1)S2

σ 2
0

≤ na

]
= P
(
χ2

n−1 ≤ na
)

and, similarly,

P

⎡⎢⎢⎣
(

1
n

) n∑
i=1

(Yi − Y )2

σ 2
0

≥ b

⎤⎥⎥⎦= P
(
χ2

n−1 ≥ nb
)

Thus we will choose as critical values χ2
α/2,n−1 and χ2

1−α/2,n−1 and reject H0 if either

(n − 1)s2

σ 2
0

≤ χ2
α/2,n−1

or

(n − 1)s2

σ 2
0

≥χ2
1−α/2,n−1

(see Figure 7.A.4.2).
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Figure 7.A.4.2
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Comment One-sided tests for dispersion are set up in a similar fashion. In the
case of

H0:σ 2 = σ 2
0

versus

H1:σ 2 <σ 2
0

H0 is rejected if

(n − 1)s2

σ 2
0

≤ χ2
α,n−1

For

H0:σ 2 = σ 2
0

versus

H1:σ 2 >σ 2
0

H0 is rejected if

(n − 1)s2

σ 2
0

≥χ2
1−α,n−1



Chapter

Types of Data: A Brief
Overview 8

8.1 Introduction
8.2 Classifying Data

8.3 Taking a Second Look at Statistics
(Samples Are Not “Valid”!)

The practice of statistics is typically conducted on two distinct levels. Analyzing data
requires first and foremost an understanding of random variables. Which pdfs are
modeling the observations? What parameters are involved, and how should they be
estimated? Broader issues, though, need to be addressed as well. How is the entire set
of measurements configured? Which factors are being investigated; in what ways are
they related? Altogether, seven different types of data are profiled in Chapter 8.
Collectively, they represent a sizeable fraction of the “experimental designs” that
many researchers are likely to encounter.

8.1 Introduction
Chapters 6 and 7 have introduced the basic principles of statistical inference. The
typical objective in that material was either to construct a confidence interval or
to test the credibility of a null hypothesis. A variety of formulas and decision
rules were derived to accommodate distinctions in the nature of the data and the
parameter being investigated. It should not go unnoticed, though, that every set of
data in those two chapters, despite their superficial differences, shares a critically
important common denominator—each represents the exact same experimental
design.

A working knowledge of statistics requires that the subject be pursued at two
different levels. On one level, attention needs to be paid to the mathematical prop-
erties inherent in the individual measurements. These are what might be thought of
as the “micro” structure of statistics. What is the pdf of the Yi ’s? Do we know E(Yi )

or Var(Yi )? Are the Yi ’s independent?
Viewed collectively, though, every set of measurements also has a certain overall

structure, or design. It will be those “macro” features that we focus on in this chapter.
A number of issues need to be addressed. How is one design different from another?
Under what circumstances is a given design desirable? Or undesirable? How does
the design of an experiment influence the analysis of that experiment?

The answers to some of these questions will need to be deferred until each
design is taken up individually and in detail later in the text. For now our objective

430
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is much more limited—Chapter 8 is meant to be a brief introduction to some of the
important ideas involved in the classification of data. What we learn here will serve
as a backdrop and a frame of reference for the multiplicity of statistical procedures
derived in Chapters 9 through 14.

Definitions

To describe an experimental design, and to distinguish one design from another,
requires that we understand several key definitions.

Factors and Factor Levels The word factor is used to denote any treatment or
therapy “applied to” the subjects being measured or any relevant feature (age,
sex, ethnicity, etc.) “characteristic” of those subjects. Different versions, extents, or
aspects of a factor are referred to as levels.

Case Study 8.1.1

Generations of athletes have been cautioned that cigarette smoking impedes
performance. One measure of the truth of that warning is the effect of smoking
on heart rate. In one study (73), six nonsmokers, six light smokers, six moderate
smokers, and six heavy smokers each engaged in sustained physical exercise.
Table 8.1.1 lists their heart rates after they had rested for three minutes.

Table 8.1.1 Heart Rates

Light Moderate Heavy
Nonsmokers Smokers Smokers Smokers

69 55 66 91
52 60 81 72
71 78 70 81
58 58 77 67
59 62 57 95
65 66 79 84

Averages: 62.3 63.2 71.7 81.7

The single factor in this experiment is smoking, and its levels are the four
different column headings in Table 8.1.1. A more elaborate study addressing
this same concern about smoking could easily be designed to incorporate
three factors. Common sense tells us that the harmful effects of smoking may
not be the same for men as they are for women, and they may be more (or
less) pronounced in senior citizens than they are in young adults. As a factor,
gender would have two levels, male and female, and age could easily have

(Continued on next page)
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(Case Study 8.1.1 continued)

at least three—for example, 18–34, 35–64, and 65+. If all three factors were
included, the format of the data table would look like Figure 8.1.1.

Nonsmokers Light Smokers Moderate Smokers Heavy Smokers

M F M F M F M F

18–34

Age 35–64

65+

Figure 8.1.1

Blocks Sometimes subjects or environments share certain characteristics that affect
the way that levels of a factor respond, yet those characteristics are of no intrin-
sic interest to the experimenter. Any such set of conditions or subjects is called a
block.

Case Study 8.1.2

Table 8.1.2 summarizes the results of a rodent-control experiment that was car-
ried out in Milwaukee, Wisconsin, over a period of ten weeks. The study’s single
factor was rat poison flavor, and it had four levels—plain, butter-vanilla, roast
beef, and bread.

Table 8.1.2 Bait-Acceptance Percentages

Survey Number Plain Butter-Vanilla Roast Beef Bread

1 13.8 11.7 14.0 12.6
2 12.9 16.7 15.5 13.8
3 25.9 29.8 27.8 25.0
4 18.0 23.1 23.0 16.9
5 15.2 20.2 19.0 13.7

Eight hundred baits of each flavor were placed around garbage-storage
areas. After two weeks, the percentages of baits taken were recorded. For the
next two weeks, another set of 3200 baits were placed at a different set of loca-
tions, and the same protocol was followed. Altogether, five two-week “surveys”
were completed (85).

Clearly, each survey created a unique experimental environment. Baits
were placed at different locations, weather conditions would not be the same,
and the availability of other sources of food might change. For those reasons

(Continued on next page)
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and maybe others, Survey 3, for example, yielded percentages noticeably higher
than those of Surveys 1 and 2. The experimenters’ sole objective, though, was
to compare the four flavors—which did the rodents prefer? The fact that the
survey “environments” were not identical was both anticipated and irrelevant.
The five different surveys, then, qualify as blocks.

About the Data To an applied statistician, the data in Table 8.1.2 would be clas-
sified as a complete block experiment, because the entire set of factor levels was
compared within each block. Sometimes physical limitations prevent that from
being possible, and only subsets of factor levels can appear in a given block. Experi-
ments of that sort are referred to as incomplete block designs. Not surprisingly, they
are much more difficult to analyze.

Independent and Dependent Observations Whatever the context, measure-
ments collected for the purpose of comparing two or more factor levels are nec-
essarily either dependent or independent. Two or more observations are dependent
if they share a particular commonality relevant to what is being measured. If there
is no such linkage, the observations are independent.

An example of dependent data is the acceptance percentages recorded in
Table 8.1.2. The 13.8, for example, shown in the upper-left-hand corner is mea-
suring both the rodents’ preference for plain baits and also the environmen-
tal conditions that prevailed in Survey 1; similarly, the observation immediately
to its right, 11.7, measures the rodents’ preference for the butter-vanilla fla-
vor and the same survey environmental conditions. By definition, then, 13.8 and
11.7 are dependent measurements because their values have the commonality
of sharing the same conditions of Survey 1. Taken together, then, the data in
Table 8.1.2 are five sets of dependent observations, each set being a sample of
size 4.

By way of contrast, the observations in Table 8.1.1 are independent. The 69 and
55 in the first row, for example, have nothing exceptional in common—they are
simply measuring the effects of two different factor levels applied to two differ-
ent people. Would the first two entries in the first column, 69 and 52, be considered
dependent? No. Simply sharing the same factor level does not make observations
dependent.

For reasons that will be examined in detail in later chapters, factor levels can
often be compared much more efficiently with dependent observations than with
independent observations. Fortunately, dependent observations come about quite
naturally in a number of different ways. Measurements made on twins, siblings,
or littermates are automatically dependent because of the subjects’ shared genetic
structure (and, of course, repeated measurements taken on the same individual are
dependent). In agricultural experiments, crops grown in the same general location
are dependent because they share similar soil quality, drainage, and weather con-
ditions. Industrial measurements taken with the same piece of equipment or by
the same operator are likewise dependent. And, of course, time and place (like
the surveys in Table 8.1.2) are often used to induce shared conditions. Those are
some of the “standard” ways to make observations dependent. Over the years,
experimenters have become very adept at finding clever, “nonstandard” ways
as well.
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Similar and Dissimilar Units Units also play a role in a data set’s macrostructure.
Two measurements are said to be similar if their units are the same and dissimilar
otherwise. Comparing the effects of different factor levels is the typical objective
when the units in a set of data are all the same. This was the situation in both Case
Studies 8.1.1 and 8.1.2. Dissimilar measurements are analyzed by quantifying their
relationship.

Quantitative Measurements and Qualitative Measurements Measurements are
considered quantitative if their possible values are numerical. The heart rates in
Table 8.1.1 and the bait-acceptance percentages in Table 8.1.2 are two examples.
Qualitative measurements have “values” that are either categories, characteristics,
or conditions.

Case Study 8.1.3

Certain viral infections contracted during pregnancy—particularly early in the
first trimester—can cause birth defects. By far the most dangerous of these are
Rubella infections, also known as German measles. Table 8.1.3 (45) summarizes
the history of 578 pregnancies, each complicated by a Rubella infection either
“early” (first trimester) or “late” (second and third trimesters).

Table 8.1.3

When Infection Occurred

Early Late

Abnormal birth 59 27
Outcome

Normal birth 143 349

% of abnormal births 29.2 7.2

Despite all the numbers displayed in Table 8.1.3, these are not quantitative
measurements. What we are seeing is a summary of qualitative measure-
ments. When the data were originally recorded, they would have looked like
Figure 8.1.2. The qualitative time variable had two values (early or late), as did
the qualitative outcome variable (normal or abnormal).

Patient no. Name Time of Infection Birth outcome

1 ML Early Abnormal
2 JG Late Normal
3 DF Early Normal
. . . .
. . . .
. . . .

578 CW Early Abnormal

Figure 8.1.2
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Possible Designs

The definitions just cited can give rise to a sizeable number of different experimental
designs, far more than can be covered in this text. Still, the number of designs that
are widely used is fairly small. Much of the data likely to be encountered fall into
one of the following seven formats:

One-sample data
Two-sample data
k-sample data
Paired data
Randomized block data
Regression data
Categorical data

The heart rates listed in Table 8.1.1, for example, qualify as k-sample data;
the rodent bait acceptances in Table 8.1.2 are randomized block data; and the
Rubella/pregnancy outcomes in Table 8.1.3 are categorical data.

In Section 8.2, each design will be profiled, illustrated, and reduced to a math-
ematical model. Special attention will be given to each design’s objectives—that is,
for what type of inference is it likely to be used?

8.2 Classifying Data
The answers to no more than four questions are needed to classify a set of data as
one of the seven basic models listed in the preceding section:

1. Are the observations quantitative or qualitative?
2. Are the units similar or dissimilar?
3. How many factor levels are involved?
4. Are the observations dependent or independent?

In Section 8.2, we use these four questions as the starting point in distinguishing one
experimental design from another.

One-Sample Data

The simplest of all experimental designs, the one-sample data design, consists of
a single random sample of size n. Necessarily, the n observations reflect one par-
ticular set of conditions or one specific factor. During presidential election years,
a familiar example (probably too familiar . . .) is the political poll. A random sam-
ple of n voters, all representing the same demographic group, are asked whether
they intend to vote for Candidate X—1 for yes, 0 for no. Recorded, then, are the
outcomes of n Bernoulli trials, where the unknown parameter p is the true propor-
tion of voters in that particular demographic constituency who intend to support
Candidate X.

Other discrete random variables can also appear as one-sample data. Recall
Case Study 4.2.3, describing the outbreaks of war from 1500 to 1931. Those 432
observations were shown to follow a Poisson distribution. In practice, though, one-
sample data will more typically consist of measurements on a continuous random
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variable. In Case Study 4.2.4, the sample of thirty-six intervals between consecutive
eruptions of Mauna Loa had a distribution entirely consistent with an exponential
random variable.

All these examples notwithstanding, by far the most frequently encountered
set of assumptions associated with one-sample data is that the Yi ’s are a random
sample of size n from a normal distribution with unknown mean μ and unknown
standard deviation σ . Possible inference procedures would be either hypothesis
tests or confidence intervals for μ and/or σ , whichever would be appropriate for
the experimenter’s objectives.

In describing experimental designs, the assumptions given for a set of mea-
surements are often written in the form of a model equation, which, by definition,
expresses the value of an aribitrary Yi as the sum of fixed and variable components.
For one-sample data, the usual model equation is

Yi =μ+ εi , i = 1,2, . . . ,n

where εi is a normally distributed random variable with mean 0 and standard
deviation σ .

Case Study 8.2.1

Inventions, whether simple or complex, can take a long time to become mar-
ketable. Minute Rice, for example, was developed in 1931 but appeared for
the first time on grocery shelves in 1949, some eighteen years later. Listed in
Table 8.2.1 are the conception dates and realization dates for seventeen familiar
products (197). Computed for each and shown in the last column is the product’s
development time, y. In the case of Minute Rice, y = 18 (= 1949 − 1931).

Table 8.2.1

Conception Realization Development
Invention Date Date Time (years)

Automatic transmission 1930 1946 16
Ballpoint pen 1938 1945 7
Filter cigarettes 1953 1955 2
Frozen foods 1908 1923 15
Helicopter 1904 1941 37
Instant coffee 1934 1956 22
Minute Rice 1931 1949 18
Nylon 1927 1939 12
Photography 1782 1838 56
Radar 1904 1939 35
Roll-on deodorant 1948 1955 7
Telegraph 1820 1838 18
Television 1884 1947 63
Transistor 1940 1956 16
VCR 1950 1956 6
Xerox copying 1935 1950 15
Zipper 1883 1913 30

Average 22.2
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About the Data In addition to exhibiting one-sample data, Table 8.2.1 is typical of
the “fun list” format that appears so often in the print media. These are entertain-
ment data more so than serious scientific research. Here, for example, the average
development time is 22.2 years. Would it make sense to use that average as part of
a formal inference procedure? Not really. If it could be assumed that these seven-
teen inventions were in some sense a random sample of all possible inventions, then
using 22.2 years to draw an inference about the “true” average development time
would be legitimate. But the arbitrariness of the inventions included in Table 8.2.1
makes that assumption highly questionable at best. Data like these are meant to be
enjoyed and to inform, not to be analyzed.

Two-Sample Data

Two-sample data consist of two independent random samples of sizes m and n, each
having quantitative, similar unit measurements. Each sample is associated with a
different factor level. Sometimes the two samples are sequences of Bernoulli tri-
als, in which case the measurements are 0’s and 1’s. Given that scenario, the data’s
two parameters are the unknown “success” probabilities pX and pY , and the usual
inference procedure would be to test H0 : pX = pY .

Much more often, the two samples are normally distributed with possibly differ-
ent means and possibly different standard deviations. If X1, X2, . . . , Xn denotes the
first sample and Y1,Y2, . . . ,Ym the second, the usual model equation assumptions
would be written

Xi =μX + εi , i = 1,2, . . . ,n

Y j =μY + ε′
j , j = 1,2, . . . ,m

where εi is normally distributed with mean 0 and standard deviation σX , and ε1
j is

normally distributed with mean 0 and standard deviation σY .
With two-sample data, inference procedures are more likely to be hypothesis

tests than confidence intervals. A two-sample t test is used to assess the credibility of
H0 : μX = μY ; an F test is used when the objective is to choose between H0: σX = σY

and, say, H1: σX �= σY . Both procedures will be described in Chapter 9.
To experimenters, two-sample data address what is sometimes a serious flaw

with one-sample data. The usual one-sample hypothesis test, H0: μ = μ0, makes the
tacit assumption that the Yi ’s (whose true mean is μ) were collected under the same
conditions that gave rise to the “standard” value μ0, against which μ is being tested.
There may be no way to know whether that assumption is true, or even remotely
true. The two-sample format, on the other hand, lets the experimenter control the
conditions (and subjects) under which both sets of measurements are taken. Doing
so heightens the chances that the true means are being compared in a fair and
equitable way.

Case Study 8.2.2

Forensic scientists sometimes have difficulty identifying the sex of a murder
victim whose body is discovered badly decomposed. Often, dental structure can
provide useful clues because female teeth and male teeth have different physical

(Continued on next page)
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(Case Study 8.2.2 continued)

and chemical characteristics. The extent to which X-rays can penetrate tooth
enamel, for instance, is not the same for the two sexes.

Table 8.2.2 lists the enamel spectropenetration gradients for eight male
teeth and eight female teeth (57). These measurements have all the characteris-
tics of the two-sample format: the data are quantitative, the units are similar,
two factor levels (male and female) are involved, and the observations are
independent.

Table 8.2.2 Enamel Spectropenetration Gradients

Male Female

4.9 4.8
5.4 5.3
5.0 3.7
5.5 4.1
5.4 5.6
6.6 4.0
6.3 3.6
4.3 5.0

Averages: 5.4 4.5

The sample averages are 5.4 for the male teeth and 4.5 for the female
teeth. According to the two-sample t test introduced in Chapter 9, the difference
between those two sample means is, indeed, statistically significant.

About the Data In analyzing these data, the assumption would be made that the
male gradients (Xi ’s) and the female gradients (Y j ’s) are normally distributed. How
do we know if that assumption is correct? We don’t. For large data sets—sample
sizes of 30 or more—the assumption that observations are normally distributed can
be investigated using a goodness-of-fit test, the details of which are presented in
Chapter 10. For small samples like those in Table 8.2.2, the best that we can do is
to plot the data along a horizontal line and see if the spacing is consistent with the
shape of a normal curve. That is, does the pattern show signs of symmetry and is the
bulk of the data near the center of the range?

Figure 8.2.1 Male gradients

3.0

3.0

4.0 5.0 6.0 7.0

4.0 5.0 6.0 7.0

Female gradients
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Figure 8.2.1 shows two such graphs for the gradients listed in Table 8.2.2.
By the criteria just mentioned, there is nothing about either sample that would
be inconsistent with the assumption that both the Xi ’s and the Y j ’s are normally
distributed.

k-Sample Data

When more than two factor levels are being compared, and when the observations
are quantitative, have similar units, and are independent, the measurements are said
to be k-sample data. Although their assumptions are comparable, two-sample data
and k-sample data are treated as distinct experimental designs because the ways they
are analyzed are totally different. The t test format that figures so prominently in the
interpretation of one-sample and two-sample data cannot be extended to accommo-
date k-sample data. A more powerful technique, the analysis of variance, is needed
and will be the sole topic of Chapters 12 and 13.

Their multiplicity of factor levels also requires that k-sample data be identified
using double-subscript notation. The ith observation appearing in the jth factor
level will be denoted Yi j , so the model equations take the form

Yi j =μ j + εi j , i = 1,2, . . .n j , j = 1,2, . . . , k

where n j denotes the sample size associated with the jth factor level (n1 + n2 +· · ·+
nk = n), and εi j is a normally distributed random variable with mean 0 and the same
standard deviation σ for all i and j .

The first step in analyzing k-sample data is to test H0: μ1 = μ2 = · · · = μk . Pro-
cedures are also available for testing subhypotheses involving certain factor levels
irrespective of all the others—in effect, fine-tuning the focus of the inferences.

Case Study 8.2.3

Many studies have been undertaken to document the directional changes over
time in the Earth’s magnetic field. One approach compared the 1669, 1780, and
1865 eruptions of Mount Etna. For each seismic event, the magnetic field in the
resulting molten lava aligned itself with the Earth’s magnetic field as it prevailed
at that time. When the lava cooled and hardened, the magnetic field was “cap-
tured” and its direction remained fixed. Table 8.2.3 lists the declinations of the
magnetic field measured in three blocks of lava, randomly sampled from each
of those three eruptions (170).

Table 8.2.3 Declination of Magnetic Field

In 1669 In 1780 In 1865

57.8 57.9 52.7
60.2 55.2 53.0
60.3 54.8 49.4

Averages: 59.4 56.0 51.7
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About the Data Every factor in every experiment is said to be either a fixed effect
or a random effect—a fixed effect if the factor’s levels have been preselected by
the experimenter, a random effect otherwise. Here “time” would be considered a
random effect because its three levels—1669, 1780, and 1865—were not preselected.
They were simply the times when the volcano erupted. Whether a factor is fixed or
random does not affect the analysis of the experimental designs considered in this
text. For more complicated, multifactor designs, though, the distinction is critical
and often dictates the way an analysis proceeds.

Paired Data

In the two-sample and k-sample designs, factor levels are compared using indepen-
dent samples. An alternative is to use dependent samples by grouping the subjects
into n blocks. If only two factor levels are involved, the blocks are referred to as
pairs, which gives the design its name.

The responses to factor levels X and Y in the ith pair are recorded as Xi and
Yi , respectively. Whatever contributions to those values are due to the conditions
prevailing in Pair i will be denoted Pi . The model equations, then, can be written

Xi =μX + Pi + εi , i = 1,2, . . . ,n

and

Yi =μY + Pi + ε′
i , i = 1,2, . . . ,n

where εi and ε′
i are independent normally distributed random variables with mean

0 and the same standard deviation σ . The fact that Pi is the same for both Xi and Yi

is what makes the samples dependent.
The statistical objective of two-sample data and paired data is often the same.

Both use t tests to focus on the null hypothesis that the true means (μX and μY )
associated with the two factor levels are equal. A paired-data analysis, though, tests
H0: μX = μY by defining μD = μX − μY and testing H0: μ0 = 0. In effect, a paired
t test is a one-sample t test done on the set of within-pair differences, di = xi − yi ,
i = 1,2, . . . ,n.

Some of the more common ways to form paired data have already been men-
tioned on p. 433. A not-so-common application of one of those ways—time and
place—is described in Case Study 8.2.4.

Case Study 8.2.4

There are many factors that predispose bees to sting (other than sheer orner-
iness . . .). A person wearing dark clothing, for instance, is more likely to get
stung than someone wearing white. And someone whose movements are quick
and jerky runs a higher risk than does a person who moves more slowly. Still
another factor—one particularly important to apiarists—is whether or not the
person has just been stung by other bees.

The influence of prior stings was simulated in an experiment by dangling
eight cotton balls wrapped in muslin up and down in front of the entrance to

(Continued on next page)
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a hive (53). Four of the balls had just been exposed to a swarm of angry bees
and were filled with stings; the other four were “fresh.” After a specified length
of time, the number of new stings in each of the balls was counted. The entire
procedure was repeated eight more times (see Table 8.2.4).

Table 8.2.4

Trial Cotton Balls Previously Stung Fresh Cotton Balls Difference

1 27 33 −6
2 9 9 0
3 33 21 12
4 33 15 18
5 4 6 −2
6 21 16 5
7 20 19 1
8 33 15 18
9 70 10 60

Average: 11.8

The last column in Table 8.2.4 gives the nine within-pair differences. The
average of those differences is 11.8. The issue to be resolved—and what we
need the paired t test to tell us—is whether the difference between 11.8 and 0 is
statistically significant.

About the Data When two factor levels are to be compared, experimenters often
have the choice of using either the two-sample format or the paired-data format.
That would be the case here. If the experimenter dangled previously stung cotton
balls in front of the hive on, say, nine occasions and did the same with fresh cotton
balls on nine other occasions, the two samples would be independent, and the data
set would qualify as a two-sample design.

Neither design is always better than the other, for a number of reasons detailed
in Chapter 13. Sometimes, which is likely to be more effective is not obvious. The
situation described in Case Study 8.2.4, though, is not one of those times! In general,
the paired-data format is superior when excessive heterogeneity in the experimen-
tal environment or among the subjects is present. Is that the case here? Definitely.
Bees have a well-deserved reputation for erratic, Jekyll-and-Hyde-type behavior.
All sorts of transient factors might conceivably influence their responses to balls
dangling in front of their hive. The two-sample format would allow all of that
trial-to-trial variability within the factor levels to obscure the difference between
the factor levels. That would be a very serious drawback to using a two-sample
design in this particular context. In contrast, by targeting the within-pair differences,
the paired-data design effectively eliminates the component Pi that appears in the
model equations:

Xi − Yi =μX + Pi + εi − (μY + Pi + ε′
i )=μX −μY + εi − ε′

i
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In short, the choice of an experimental design here is a no-brainer. The
researchers who conducted this study did exactly what they should have
done.

Randomized Block Data

Randomized block data have the same basic structure as paired data—quantitative
measurements, similar units, and dependent samples; the only difference is that
more than two factor levels are involved in randomized block data. Those additional
factor levels, though, add a degree of complexity that the paired t test is unable to
handle. Like k-sample data, randomized block data require the analysis of variance
for their interpretation.

Suppose the data set consists of k factor levels, all of which are applied in each
of b blocks. The model equation for Yi j , the observation appearing in the ith block
and receiving the jth factor level, then becomes

Yi j =μ j + Bi + εi j , i = 1,2, . . . ,b; j = 1,2, . . . , k

where μ j is the true average response associated with the jth factor level, Bi is the
portion of the value of Yi j that can be attributed to the net effect of all the conditions
that characterize Block i , and εi j is a normally distributed random variable with
mean 0 and the same standard deviation σ for all i and j .

Case Study 8.2.5

Table 8.2.5 summarizes the results of a randomized block experiment set up
to investigate the possible effects of “blood doping,” a controversial proce-
dure whereby athletes are injected with additional red blood cells for the
purpose of enhancing their performance (15). Six runners were the subjects.
Each was timed in three ten thousand-meter races: once after receiving extra
red blood cells, once after being injected with a placebo, and once after receiv-
ing no treatment whatsoever. Listed are their times (in minutes) to complete
the race.

Table 8.2.5

Subject No Injection Placebo Blood Doping

1 34.03 34.53 33.03
2 32.85 32.70 31.55
3 33.50 33.62 32.33
4 32.52 31.23 31.20
5 34.15 32.85 32.80
6 33.77 33.05 33.07

Clearly, the times in a given row are dependent—all three reflect to some
extent the inherent speed of the subject, regardless of which factor level might
also be operative. Documenting differences from subject to subject, though,

(Continued on next page)
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would not be the objective for doing this sort of study. If μ1, μ2, and μ3 denote
the true average times characteristic of the no injection, placebo, and blood dop-
ing factor levels, respectively, the experimenter’s first priority would be to test
H0: μ1 =μ2 =μ3.

About the Data The name randomized block derives from one of the properties
that such data supposedly have—namely, that the factor levels within each block
have been applied in a random order. To do otherwise—that is, to take the mea-
surements in any sort of systematic fashion (however well intentioned)—is to create
the opportunity for the observations to become biased. If that worst-case scenario
should happen, the data are worthless because there is no way to separate the “fac-
tor effect” from the “bias effect” (and, of course, there is no way to know for certain
whether the data were biased in the first place).

For the same reasons, two-sample data and k-sample data should be completely
randomized, which means that the entire set of measurements should be taken in
a random order. Figure 8.2.2 shows an acceptable measurement sequence for the
performance times in Table 8.2.5 and the magnetic field declinations in Table 8.2.3.

Figure 8.2.2
Subject No Injection Placebo Blood Doping

1 2 3 1
2 1 2 3
3 2 1 3
4 2 1 3
5 3 2 1
6 3 1 2

In 1669 In 1780 In 1865

3 8 5
4 1 9
7 6 2

Regression Data

All the experimental designs introduced up to this point share the property that
their measurements have the same units. Moreover, each has had the same basic
objective: to quantify or to compare the effects of one or more factor levels. In
contrast, regression data typically consist of measurements with dissimilar units, and
the objective with them is to study the functional relationship between the variables.

Regression data often have the form (xi , Yi ), i = 1,2, . . . ,n, where xi is the
value of an independent variable (typically preselected by the experimenter) and
Yi is a dependent random variable (usually having units different from those of xi ).
A particularly important special case is the simple linear model,

Yi =β0 +β1xi + εi , i = 1,2, . . . ,n
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where εi is assumed to be normally distributed with mean 0 and standard devi-
ation σ . Here E(Yi ) = β0 + β1xi , but more generally, E(Yi ) can be any function
g(xi )—for example,

E(Yi )=β0xβ1
i or E(Yi )=β0eβ1xi

The details will not be presented in this text, but the simple linear model can be
extended to include k independent variables. The result is a multiple linear regression
model,

Yi =β0 +β1x1i +β2x2i + · · ·+βk xki + εi , i = 1,2, . . . ,n

An important special case of the regression model occurs when the xi ’s are
not preselected by the experimenter. Suppose, for example, that the relationship
between height and weight is to be studied in adult males. One way to collect a
set of relevant data would be to choose a random sample of n adult males and
record each subject’s height and weight. Neither variable in that case would be
preselected or controlled by the experimenter: the height, Xi , and the weight,
Yi , of the ith subject are both random variables, and the measurements in that
case—(X1, Y1), (X2, Y2), . . . , (Xn, Yn)—are said to be correlation data. The usual
assumption invoked for correlation data is that the (X , Y )’s are jointly distributed
according to a bivariate normal distribution (see Figure 8.2.3).

Figure 8.2.3

Y

X

The implications of the independent variable being either preselected (xi ) or
random (Xi ) will be explored at length in Chapter 11. Suffice it to say that if the
objective is to summarize the relationship between the two variables with a straight
line, as it is in Figure 8.2.4, it makes absolutely no difference whether the data have
the form (xi , Yi ) or (Xi , Yi )—the resulting equation will be the same.

Case Study 8.2.6

One of the most startling and profound scientific revelations of the twentieth
century was the evidence, discovered in 1929 by the American astronomer
Edwin Hubble, that the universe is expanding. Hubble’s research shattered
forever the ancient belief that the heavens are basically in a state of cosmic
equilibrium: quite the contrary, galaxies are receding from each other at mind-
bending velocities (the cluster Hydra, for example, is moving away from other
clusters at the rate of 38.0 thousand miles/sec).

(Continued on next page)
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If y is a galaxy’s recession velocity (relative to that of any other galaxy) and
x is its distance (from that other galaxy), Hubble’s law states that

y = H x

where H is known as Hubble’s constant. Table 8.2.6 summarizes his findings—
listed are distance and velocity determinations made for eleven galactic clus-
ters (23).

Table 8.2.6

Cluster
Distance, x

(millions of light-years)
Velocity, y

(thousands of miles/sec)

Virgo 22 0.75
Pegasus 68 2.4
Perseus 108 3.2
Coma Berenices 137 4.7
Ursa Major No. 1 255 9.3
Leo 315 12.0
Corona Borealis 390 13.4
Gemini 405 14.4
Bootes 685 24.5
Ursa Major No. 2 700 26.0
Hydra 1100 38.0

For these data, the value H is estimated to be 0.03544 (using a technique
covered in Chapter 11). Figure 8.2.4 shows that

y = 0.03544x

fits the data exceptionally well.

y = 0.03544 x
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Figure 8.2.4

About the Data Techniques for measuring interstellar distances have been greatly
refined since the 1920s when Hubble reported the data in Table 8.2.6. The most
recent estimates yield a value for Hubble’s constant about a third as large as the
slope shown in Figure 8.2.4. That particular adjustment is critical because the recip-
rocal of Hubble’s constant can be used to calculate the age of the universe, or, at
the very least, the time elapsed since the Big Bang [see (96)]. Based on the revised
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data, the Big Bang occurred some fifteen billion years ago, a number that agrees
with estimates found using other methods.

Comment Look again at the graph of Hubble’s data in Figure 8.2.4. Which is the
appropriate description of the eleven (distance, velocity) measurements—are they
(xi , Yi )’s or (Xi , Yi )’s? The answer is not obvious. At first glance, these would appear
to be correlation data—distance (X) and velocity (Y ) measurements having been
made jointly on a random sample of eleven galactic clusters. Arguing against that
conclusion is the spacing of the points. With correlation data, the bulk of the X mea-
surements lie near the center of their range, which is not the case here. Perhaps
the reason for the unusual spacing is a set of constraints imposed by the other-
worldly nature of the data, or maybe it suggests that Hubble, for whatever reasons,
preselected the clusters because of their distances.

Categorical Data

Suppose two qualitative, dissimilar variables are observed on each of n subjects,
where the first variable has R possible values and the second variable, C possible
values. We call such measurements categorical data.

The number of times each value of one variable occurs with each value of the
other variable is typically displayed in a contingency table, which necessarily has R
rows and C columns. Whether the two variables are independent is the question that
an experimenter can use categorical data to answer.

Case Study 8.2.7

Is there a relationship between a physician’s malpractice history (X) and his or
her specialty (Y )? Three “values” of X were looked at, as well as three “values”
of Y (29):

X =
⎧⎨⎩

no malpractice claims
one or more claims ending in damages awarded
one or more claims filed but none requiring compensation

Y =
⎧⎨⎩

orthopedic surgery
obstetrics-gynecology
internal medicine

A total of 1942 physicians comprised the sample. The resulting (X , Y ) values
are summarized in the contingency table shown in Figure 8.2.5.

Orth. Surg. Ob-Gyn Int. Med. Totals

No claims 147 349 709 1205
At least one claim lost 106 149 62 317
No claims lost 156 149 115 420

Totals: 409 647 886 1942

Figure 8.2.5

(Continued on next page)
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The hypotheses to be tested in any categorical-data problem always have
the same form:

H0 : X and Y are independent

versus

H1 : X and Y are dependent

The formal procedure for choosing between H0 and H1 is a chi square test, which
will be covered in Chapter 10. A quick look at these data leaves no doubt
that H0 would be overwhelmingly rejected. If X and Y are independent, the
probability that a physician receives, say, no claims, should be the same for all
three specialties. The sample proportions of no claims, though, are dramatically
different from specialty to specialty:

for Orthopedic surgery—147/409 = 35.9%

for Ob-Gyn—349/647 = 53.9%

for Internal medicine—706/886 = 80.0%

Clearly, the variables X and Y are dependent.

About the Data The categorical-data format “overlaps” the two-sample data
format for one particular type of measurement. Consider the simplest version of
categorical data, where both X and Y have only two values. Call the two values of X
“success” and “failure,” and the two values of Y “Level 1” and “Level 2.” Given a
sample of n such observations, the corresponding contingency table would look like
Figure 8.2.6.

Figure 8.2.6 Y

Level 1 Level 2 Totals

Success a b a + b

X Failure c d c + d

Totals: a + c b + d n = a + b + c + d

Notice that the “a” and “c” in Column 1 are another way of expressing the num-
bers of 1’s and 0’s, respectively, in a sequence of a + c Bernoulli trials. Similarly, the
“b” and “d” in Column 2 tally up the 1’s and 0’s, respectively, in a second set of
b + d Bernoulli trials. To say that X and Y are dependent (in the categorical-data
sense) is to say that the difference between a/(a + c) and b/(b + d) is statisti-
cally significant (in the two-sample data sense). The two data models answer their
respective questions with different statistical tests, but the two procedures (a chi
square test and a Z test) are equivalent—one will reject H0 if and only if the other
rejects H0.
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A Flowchart for Classifying Data

Differentiating the seven data formats just discussed are the answers to the
four questions cited at the beginning of this section: Are the data qualitative
or quantitative? Are the units similar or dissimilar? How many factor levels are
involved? Are the samples dependent or independent? The flowchart pictured
in Figure 8.2.7 shows the sequence of responses that leads to each of the seven
models.

Figure 8.2.7
Start

Are the data
qualitative or
quantitative?

Qualitative

Quantitative

Similar

Are the units
similar or

dissimilar?

Two

How many
factor levels

are involved?

IndependentIndependent

Are the samples
dependent or
independent?

Categorical
data

Dissimilar

More than two

Regression
data

One-sample
data

Two-sample
data

k-sample
data

Are the samples
dependent or
independent?

Randomized
block data

Paired
data

One

Dependent Dependent

Example
8.2.1

The federal Community Reinvestment Act of 1977 was enacted out of concern that
banks were reluctant to make loans in low- and moderate-income areas, even when
applicants seemed otherwise acceptable. The figures in Table 8.2.7 show one partic-
ular bank’s credit penetration in ten low-income census tracts (A through J) and ten
high-income census tracts (K through T). To which of the seven models do these
data belong?

Note, first, that the measurements (1) are quantitative and (2) have similar units.
Low-income and High-income correspond to two treatment levels, and the two sam-
ples are clearly independent (the 4.6 recorded in tract A, for example, has nothing
specific in common with the 11.6 recorded in tract K). From the flowchart, then,
the answers quantitative/similar/two/independent imply that these are two-sample
data.
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Table 8.2.7

pt depth

Low-Income Percent of Households High-Income Percent of Households
Census Tract with Credit Census Tract with Credit

A 4.6 K 11.6
B 6.6 L 8.5
C 3.3 M 8.2
D 9.8 N 15.1
E 6.9 O 12.6
F 11.0 P 11.3
G 6.0 Q 9.1
H 4.6 R 4.2
I 4.2 S 6.4
J 5.1 T 5.9

Example
8.2.2

Individuals looking at the vertical lines in Figure 8.2.8 will tend to perceive the right
one as shorter, even though the two are equal. Moreover, the perceived difference
in those lengths—what psychologists call the “strength” of the illusion—has been
shown to be a function of age.

Figure 8.2.8

A study was done to see whether individuals who are hypnotized and regressed
to different ages also perceive the illusion differently. Table 8.2.8 shows the illusion
strengths measured for eight subjects while they were (1) awake, (2) regressed to age
nine, and (3) regressed to age five (137). Which of the seven experimental designs
do these data represent?

Look again at the sequence of questions posed by the flowchart in Figure 8.2.7:

1. Are the data qualitative or quantitative? Quantitative
2. Are the units similar or dissimilar? Similar
3. How many factor levels are involved? More than two
4. Are the observations dependent or independent? Dependent
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Table 8.2.8

(1) (2) (3)
Regressed Regressed

Subject Awake to Age 9 to Age 5

1 0.81 0.69 0.56
2 0.44 0.31 0.44
3 0.44 0.44 0.44
4 0.56 0.44 0.44
5 0.19 0.19 0.31
6 0.94 0.44 0.69
7 0.44 0.44 0.44
8 0.06 0.19 0.19

According to the flowchart, then, these measurements qualify as randomized block
data.

Questions

For Questions 8.2.1–8.2.12 use the flowchart in Figure 8.2.7
to identify the experimental designs represented. In each
case, answer whichever of the questions on p. 435 are
necessary to make the determination.

8.2.1. Kepler’s Third Law states that “the squares of the
periods of the planets are proportional to the cubes of
their mean distance from the Sun.” Listed below are the
periods of revolution (x), the mean distances from the sun
(y), and the values x2/y3 for the eight planets in the solar
system (3).

Planet xi (years) yi (astronomical units) x2
i /y3

i

Mercury 0.241 0.387 1.002
Venus 0.615 0.723 1.001
Earth 1.000 1.000 1.000
Mars 1.881 1.524 1.000
Jupiter 11.86 5.203 0.999
Saturn 29.46 9.54 1.000
Uranus 84.01 19.18 1.000
Neptune 164.8 30.06 1.000

8.2.2. Mandatory helmet laws for motorcycle riders
remain a controversial issue. Some states have a “limited”
ordinance that applies only to younger riders; others have
a “comprehensive” statute requiring all riders to wear hel-
mets. Listed in the next column are the deaths per ten
thousand registered motorcycles reported by states having
each type of legislation (184).

Limited Helmet Law Comprehensive Helmet Law

6.8 7.0 9.1 7.1 4.8 7.0
10.6 4.1 0.5 11.2 5.0 6.8

9.6 5.7 6.7 17.9 8.1 7.3
9.1 7.6 6.4 11.3 5.5 12.9
5.2 3.0 4.7 8.5 11.7 3.7

13.2 6.7 15.0 9.3 4.0 5.2
6.9 7.3 4.7 5.4 7.0 6.9
8.1 4.2 4.8 10.5 9.3 8.6

8.2.3. Aedes aegypti is the scientific name of the mosquito
that transmits yellow fever. Although no longer a major
health problem in the Western world, yellow fever was
perhaps the most devastating communicable disease in
the United States for almost two hundred years. To see
how long it takes the Aedes mosquito to complete a feed-
ing, five young females were allowed to bite an exposed
human forearm without the threat of being swatted. The
resulting blood-sucking times (in seconds) are summa-
rized below (89).

Mosquito Bite Duration (sec)

1 176.0
2 202.9
3 315.0
4 374.6
5 352.5

8.2.4. Male cockroaches can be very antagonistic toward
other male cockroaches. Encounters may be fleeting or
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quite spirited, the latter often resulting in missing anten-
nae and broken wings. A study was done to see whether
cockroach density has any effect on the frequency of seri-
ous altercations. Ten groups of four male cockroaches
(Byrsotria fumigata) were each subjected to three levels
of density: high, intermediate, and low. The following are
the numbers of “serious” encounters per minute that were
observed (14).

Group High Intermediate Low

1 0.30 0.11 0.12
2 0.20 0.24 0.28
3 0.17 0.13 0.20
4 0.25 0.36 0.15
5 0.27 0.20 0.31
6 0.19 0.12 0.16
7 0.27 0.19 0.20
8 0.23 0.08 0.17
9 0.37 0.18 0.18

10 0.29 0.20 0.20

Averages: 0.25 0.18 0.20

8.2.5. Luxury suites, many costing more than $100,000 to
rent, have become big-budget status symbols in new sports
arenas. Below are the numbers of suites (x) and their
projected revenues (y) for nine of the country’s newest
facilities (196).

Number of Projected Revenues
Arena Suites, x (in millions), y

Palace (Detroit) 180 $11.0
Orlando Arena 26 1.4
Bradley Center

(Milwaukee)
68 3.0

America West
(Phoenix)

88 6.0

Charlotte Coliseum 12 0.9
Target Center

(Minneapolis)
67 4.0

Salt Lake City Arena 56 3.5
Miami Arena 18 1.4
ARCO Arena

(Sacramento)
30 2.7

8.2.6. Depth perception is a life-or-death ability for lambs
inhabiting rugged mountain terrain. How quickly a lamb
develops that faculty may depend on the amount of time
it spends with its ewe. Thirteen sets of lamb littermates
were the subjects of an experiment that addressed that
question (99). One member of each litter was left with its
mother; the other was removed immediately after birth.
Once every hour, the lambs were placed on a simulated

cliff, part of which included a platform of glass. If a lamb
placed its feet on the glass, it “failed” the test, since that
would have been equivalent to walking off the cliff. Below
are the trial numbers when the lambs first learned not to
walk on the glass—that is, when they first developed depth
perception.

Number of Trials to Learn
Depth Perception

Group Mothered, xi Unmothered, yi

1 2 3
2 3 11
3 5 10
4 3 5
5 2 5
6 1 4
7 1 2
8 5 7
9 3 5

10 1 4
11 7 8
12 3 12
13 5 7

8.2.7. To see whether teachers’ expectations for students
can become self-fulfilling prophecies, fifteen first graders
were given a standard IQ test. The childrens’ teachers,
though, were told it was a special test for predicting
whether a child would show sudden spurts of intellectual
growth in the near future (see 147). Researchers divided
the children into three groups of sizes 6, 5, and 4 at ran-
dom, but they informed the teachers that, according to the
test, the children in group I would not demonstrate any
pronounced intellectual growth for the next year, those in
group II would develop at a moderate rate, and those in
group III could be expected to make exceptional progress.
A year later, the same fifteen children were again given
a standard IQ test. Below are the differences in the two
scores for each child (second test – first test).

Changes in IQ (second test − first test)

Group I Group II Group III

3 10 20
2 4 9
6 11 18

10 14 19
10 3

5

8.2.8. Among young drivers, roughly a third of all fatal
automobile accidents are speed-related; by age 60 that
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proportion drops to about one-tenth. Listed below are
a recent year’s percentages of speed-related fatalities for
ages ranging from 16 to 72 (189).

Age Percent Speed-Related Fatalities

16 37
17 32
18 33
19 34
20 33
22 31
24 28
27 26
32 23
42 16
52 13
57 10
62 9
72 7

8.2.9. Gorillas are not the solitary creatures that they are
often made out to be: they live in groups whose average
size is about 16, which usually includes three adult males,
six adult females, and seven “youngsters.” Listed below
are the sizes of ten groups of mountain gorillas observed
in the volcanic highlands of the Albert National Park in
the Congo (157).

Group No. of Gorillas

1 8
2 19
3 5
4 24
5 11
6 20
7 18
8 21
9 27

10 16

8.2.10. Roughly 360,000 bankruptcies were filed in U.S.
Federal Court during 1981; by 1990 the annual num-
ber was more than twice that figure. The following are
the numbers of business failures reported year by year
through the 1980s (175).

Year Bankruptcies Filed

1981 360,329
1982 367,866
1983 374,734
1984 344,275

1985 364,536
1986 477,856
1987 561,274
1988 594,567
1989 642,993
1990 726,484

8.2.11. The diversity of bird species in a given area is
related to plant diversity, as measured by variation in
foliage heights as well as the variety of flora. Below are
indices measured on those two traits for thirteen desert-
type habitats (109).

Plant Cover Bird Species
Area Diversity, xi Diversity, yi

1 0.90 1.80
2 0.76 1.36
3 1.67 2.92
4 1.44 2.61
5 0.20 0.42
6 0.16 0.49
7 1.12 1.90
8 1.04 2.38
9 0.48 1.24

10 1.33 2.80
11 1.10 2.41
12 1.56 2.80
13 1.15 2.16

8.2.12. Male toads often have trouble distinguishing
between other male toads and female toads, a state of
affairs that can lead to awkward moments during mating
season. When male toad A inadvertently makes inappro-
priate romantic overtures to male toad B, the latter emits
a short call known as a release chirp. Below are the lengths
of the release chirps measured for fifteen male toads
innocently caught up in misadventures of the heart (17).

Toad Length of Release Chirp (sec)

1 0.11
2 0.06
3 0.06
4 0.06
5 0.11
6 0.08
7 0.08
8 0.10
9 0.06

10 0.06
11 0.15
12 0.16
13 0.11
14 0.10
15 0.07



8.2 Classifying Data 453

For Questions 8.2.13–8.2.32 identify the experimental
design (one-sample, two-sample, etc.) that each set of data
represents.

8.2.13. A pharmaceutical company is testing two new
drugs designed to improve the blood-clotting ability of
hemophiliacs. Six subjects volunteering for the study are
randomly divided into two groups of size 3. The first group
is given drug A; the second group, drug B. The response
variable in each case is the subject’s prothrombin time, a
number that reflects the time it takes for a clot to form.
The results (in seconds) for group A are 32.6, 46.7, and
81.2; for group B, 25.9, 33.6, and 35.1.

8.2.14. Investment firms financing the construction of
new shopping centers pay close attention to the amount
of retail floor space already available. Listed below are
population and floor space figures for five southern cities.

Retail Floor Space
City Population, x (in million square meters), y

1 400,000 3,450
2 150,000 1,825
3 1,250,000 7,480
4 2,975,000 14,260
5 760,000 5,290

8.2.15. Nine political writers were asked to assess the
United States’ culpability in murders committed by rev-
olutionary groups financed by the CIA. Scores were
assigned using a scale of 0 to 100. Three of the writers were
native Americans living in the United States, three were
native Americans living abroad, and three were foreign
nationals.

Americans in U.S. Americans Abroad Foreign
Nationals

45 65 75
45 50 90
40 55 85

8.2.16. To see whether low-priced homes are easier to sell
than moderately priced homes, a national realty company
collected the following information on the lengths of times
homes were on the market before being sold.

Number of Days on Market

City Low-Priced Moderately Priced

Buffalo 55 70
Charlotte 40 30
Newark 70 110

8.2.17. The following is a breakdown of what 120 college
freshmen intend to do next summer.

Work School Play

Male 22 14 19
Female 14 31 20

8.2.18. An efficiency study was done on the delivery of
first-class mail originating from the four cities listed in the
following table. Recorded for each city was the average
length of time (in days) that it took a letter to reach a
destination in that same city. Samples were taken on two
occasions, Sept. 1, 2001 and Sept. 1, 2004.

City Sept. 1, 2001 Sept. 1, 2004

Wooster 1.8 1.7
Midland 2.0 2.0
Beaumont 2.2 2.5
Manchester 1.9 1.7

8.2.19. Two methods (A and B) are available for remov-
ing dangerous heavy metals from public water supplies.
Eight water samples collected from various parts of the
United States were used to compare the two methods.
Four were treated with Method A and four were treated
with Method B. After the processes were completed, each
sample was rated for purity on a scale of 1 to 100.

Method A Method B

88.6 81.4
92.1 84.6
90.7 91.4
93.6 78.6

8.2.20. Out of 120 senior citizens polled, 65 favored a
complete overhaul of the health care system while 55 pre-
ferred more modest changes. When the same choice was
put to 85 first-time voters, 40 said they were in favor of
major reform while 45 opted for minor revisions.

8.2.21. To illustrate the complexity and arbitrariness of
IRS regulations, a tax-reform lobbying group has sent the
same five clients to each of two professional tax preparers.
The following are the estimated tax liabilities quoted by
each of the preparers.
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Client Preparer A Preparer B

GS $31,281 $26,850
MB 14,256 13,958
AA 26,197 25,520
DP 8,283 9,107
SB 47,825 43,192

8.2.22. The production of a certain organic chemi-
cal requires ammonium chloride. The manufacturer can
obtain the ammonium chloride in one of three forms:
powdered, moderately ground, and coarse. To see if the
consistency of the NH4Cl is itself a factor that needs to be
considered, the manufacturer decides to run the reaction
seven times with each form of ammonium chloride. The
following are the resulting yields (in pounds).

Moderately
Powdered NH4Cl Ground NH4Cl Coarse NH4Cl

146 150 141
152 144 138
149 148 142
161 155 146
158 154 139
154 148 137
149 150 145

8.2.23. An investigation was conducted of 107 fatal poi-
sonings of children. Each death was caused by one of
three drugs. In each instance it was determined how the
child received the fatal overdose. Responsibility for the
107 accidents was assessed according to the following
breakdown.

Drug A Drug B Drug C

Child Responsible 10 10 18
Parent Responsible 10 14 10
Another Person Responsible 4 18 13

8.2.24. As part of an affirmative-action litigation, records
were produced showing the average salaries earned by
white, black, and Hispanic workers in a large manufac-
turing plant. Three different departments were selected
at random for the comparison. The entries shown are
average annual salaries, in thousands of dollars.

White Black Hispanic

Department 1 40.2 39.8 39.9
Department 2 40.6 39.0 39.2
Department 3 39.7 40.0 38.4

8.2.25. In Eastern Europe a study was done on fifty peo-
ple bitten by rabid animals. Twenty victims were given the
standard Pasteur treatment, while the other thirty were
given the Pasteur treatment in addition to one or more
doses of antirabies gamma globulin. Nine of those given
the standard treatment survived; twenty survived in the
gamma globulin group.

8.2.26. To see if any geographical pricing differences
exist, the cost of a basic-cable TV package was determined
for a random sample of six cities, three in the southeast
and three in the northwest. Monthly charges for the south-
eastern cities were $13.20, $11.55, and $16.75; residents
in the three northwestern cities paid $14.80, $17.65, and
$19.20.

8.2.27. A public relations firm hired by a would-be presi-
dential candidate has conducted a poll to see whether their
client faces a gender gap. Out of 800 men interviewed,
325 strongly supported the candidate, 151 were strongly
opposed, and 324 were undecided. Among the 750 women
included in the sample, 258 were strong supporters, 241
were strong opponents, and 251 were undecided.

8.2.28. As part of a review of its rate structure, an auto-
mobile insurance company has compiled the following
data on claims filed by five male policyholders and five
female policyholders.

Client Claims Filed Client Claims Filed
(male) in 2004 (female) in 2004

MK $2750 SB 0
JM 0 ML 0
AK 0 MS 0
KT $1500 BM $2150
JT 0 LL 0

8.2.29. A company claims to have produced a blended
gasoline that can improve a car’s fuel consumption. They
decide to compare their product with the leading gas cur-
rently on the market. Three different cars were used for
the test: a Porsche, a Buick, and a VW. The Porsche got
13.6 mpg with the new gas and 12.2 mpg with the “stan-
dard” gas; the Buick got 18.7 mpg with the new gas and
18.5 with the standard; the figures for the VW were 34.5
and 32.6, respectively.

8.2.30. In a survey conducted by State University’s
Learning Center, a sample of three freshmen said they
studied 6, 4, and 10 hours, respectively, over the weekend.
The same question was posed to three sophomores, who
reported study times of 4, 5, and 7 hours. For three juniors,
the responses were 2, 8, and 6 hours.

8.2.31. A consumer advocacy group, investigating the
prices of steel-belted radial tires produced by three major
manufacturers, collects the following data.
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Year Company A Company B Company C

1995 $62.00 $68.00 $65.00
2000 $70.00 $72.00 $69.00
2005 $78.00 $75.00 $75.00

8.2.32. A small fourth-grade class is randomly split into
two groups. Each group is taught fractions using a dif-
ferent method. After three weeks, both groups are given
the same 100-point test. The scores of students in the first
group are 82, 86, 91, 72, and 68; the scores reported for the
second group are 76, 63, 80, 72, and 67.

8.3 Taking a Second Look at Statistics
(Samples Are Not “Valid”!)
Designing an experiment invariably requires that two fundamental issues be
resolved. First and foremost is the choice of the design itself. Based on the type
of data available and the objectives to be addressed, what overall “structure”
should the experiment have? Seven of the most frequently occurring answers to
that question are the seven models profiled in this chapter, ranging from the
simplicity of the one-sample design to the complexity of the randomized block
design.

As soon as a design has been chosen, a second question immediately follows:
How large should the sample size (or sample sizes) be? It is precisely that question,
though, that leads to a very common sampling misconception. There is a widely
held belief (even by many experienced experimenters, who should know better)
that some samples are “valid” (presumably because of their size), while others are
not. Every consulting statistician could probably retire to Hawaii at an early age if
he or she got a dollar for every time an experimenter posed the following sort of
question: “I intend to compare Treatment X and Treatment Y using the two-sample
format. My plan is to take twenty measurements on each of the two treatments. Will
those be valid samples?”

The sentiment behind such a question is entirely understandable: the researcher
is asking whether two samples of size 20 will be “adequate” (in some sense) for
addressing the objectives of the experiment. Unfortunately, the word “valid” is
meaningless in this context. There is no such thing as a valid sample because the
word “valid” has no statistical definition.

To be sure, we have already learned how to calculate the smallest values of n
that will achieve certain objectives, typically expressed in terms of the precision of an
estimator or the power of a hypothesis test. Recall Theorem 5.3.2. To guarantee that
the estimator X/n for the binomial parameter p has at least a 100(1 − α)% chance
of lying within a distance d of p requires that n be as least as large as z2

α/2/4d2.
Suppose, for example, that we want a sample size capable of guaranteeing that

X/n will have an 80%[= 100(1 − α)%] chance of being within 0.05 (= d) of p. By
Theorem 5.3.2,

n ≥ (1.28)2

4(0.05)2
= 164

On the other hand, that sample of n = 164 would not be large enough to guarantee
that X/n has, say, a 95% chance of being within 0.03 of p. To meet these latter
requirements, n would have to be as least as large as 1068 [= (1.96)2/4(0.03)2].

Therein lies the problem. Sample sizes that can satisfy one set of specifica-
tions will not necessarily be capable of satisfying another. There is no “one size
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fits all” value for n that qualifies a sample as being “adequate” or “sufficient” or
“valid.”

In a broader sense, the phrase “valid sample” is much like the expression
“statistical tie” discussed in Section 5.3. Both are widely used, and each is a well-
intentioned attempt to simplify an important statistical concept. Unfortunately, both
also share the dubious distinction of being mathematical nonsense.



Chapter

Two-Sample Inferences 9
9.1 Introduction
9.2 Testing H0: μX =μY

9.3 Testing H0: σ 2
X = σ 2

Y —The F Test
9.4 Binomial Data: Testing H0: pX = pY

9.5 Confidence Intervals for the Two-Sample
Problem

9.6 Taking a Second Look at Statistics (Choosing
Samples)

Appendix 9.A.1 A Derivation of the Two-Sample
t Test (A Proof of Theorem 9.2.2)

Appendix 9.A.2 Minitab Applications

After earning an Oxford degree in mathematics and chemistry, Gosset began
working in 1899 for Messrs. Guinness, a Dublin brewery. Fluctuations in materials
and temperature and the necessarily small-scale experiments inherent in brewing
convinced him of the necessity for a new, small-sample theory of statistics. Writing
under the pseudonym “Student,” he published work with the t ratio that was destined
to become a cornerstone of modern statistical methodology.

—William Sealy Gosset (“Student”) (1876–1937)

9.1 Introduction
The simplicity of the one-sample model makes it the logical starting point for
any discussion of statistical inference, but it also limits its applicability to the real
world. Very few experiments involve just a single treatment or a single set of condi-
tions. On the contrary, researchers almost invariably design experiments to compare
responses to several treatment levels—or, at the very least, to compare a single
treatment with a control.

In this chapter we examine the simplest of these multilevel designs, two-sample
inferences. Structurally, two-sample inferences always fall into one of two different
formats: Either two (presumably) different treatment levels are applied to two inde-
pendent sets of similar subjects or the same treatment is applied to two (presumably)
different kinds of subjects. Comparing the effectiveness of germicide A relative to
that of germicide B by measuring the zones of inhibition each one produces in two
sets of similarly cultured Petri dishes would be an example of the first type. On the
other hand, examining the bones of sixty-year-old men and sixty-year-old women, all
lifelong residents of the same city, to see whether both sexes absorb environmental
strontium-90 at the same rate would be an example of the second type.

Inference in two-sample problems usually reduces to a comparison of location
parameters. We might assume, for example, that the population of responses asso-
ciated with, say, treatment X is normally distributed with mean μX and standard

457
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deviation σX while the Y distribution is normal with mean μY and standard devi-
ation σY . Comparing location parameters, then, reduces to testing H0: μX =μY . As
always, the alternative may be either one-sided, H1: μX <μY or H1: μX >μY , or two-
sided, H1: μX �= μY . (If the data are binomial, the location parameters are pX and
pY , the true “success” probabilities for treatments X and Y, and the null hypothesis
takes the form H0: pX = pY .)

Sometimes, although much less frequently, it becomes more relevant to com-
pare the variabilities of two treatments, rather than their locations. A food company,
for example, trying to decide which of two types of machines to buy for filling cereal
boxes would naturally be concerned about the average weights of the boxes filled
by each type, but they would also want to know something about the variabilities
of the weights. Obviously, a machine that produces high proportions of “underfills”
and “overfills” would be a distinct liability. In a situation of this sort, the appropriate
null hypothesis is H0: σ 2

X = σ 2
Y .

For comparing the means of two normal populations when σX =σY , the standard
procedure is the two-sample t test. As described in Section 9.2, this is a relatively
straightforward extension of Chapter 7’s one-sample t test. If σX �= σY , an approxi-
mate t test is used. For comparing variances, though, it will be necessary to introduce
a completely new test—this one based on the F distribution of Section 7.3. The
binomial version of the two-sample problem, testing H0: pX = pY , is taken up in
Section 9.4.

It was mentioned in connection with one-sample problems that certain infer-
ences, for various reasons, are more aptly phrased in terms of confidence intervals
rather than hypothesis tests. The same is true of two-sample problems. In Section 9.5,
confidence intervals are constructed for the location difference of two populations,
μX −μY (or pX − pY ), and the variability quotient, σ 2

X/σ 2
Y .

9.2 Testing H0: μX =μY
We will suppose that the data for a given experiment consist of two independent
random samples, X1, X2, . . . , Xn and Y1,Y2, . . . ,Ym , representing either of the models
referred to in Section 9.1. Furthermore, the two populations from which the X ’s and
Y ’s are drawn will be presumed normal. Let μX and μY denote their means. Our
objective is to derive a procedure for testing H0: μX =μY .

As it turns out, the precise form of the test we are looking for depends on the
variances of the X and Y populations. If it can be assumed that σ 2

X and σ 2
Y are equal,

it is a relatively straightforward task to produce the GLRT for H0: μX =μY . (This is,
in fact, what we will do in Theorem 9.2.2.) But if the variances of the two populations
are not equal, the problem becomes much more complex. This second case, known
as the Behrens-Fisher problem, is more than seventy-five years old and remains one
of the more famous “unsolved” problems in statistics. What headway investigators
have made has been confined to approximate solutions. These will be discussed later
in this section. For what follows next, it can be assumed that σ 2

X = σ 2
Y .

For the one-sample test μ=μ0, the GLRT was shown to be a function of a spe-
cial case of the t ratio introduced in Definition 7.3.3 (recall Theorem 7.3.5). We begin
this section with a theorem that gives still another special case of Definition 7.3.3.

Theorem
9.2.1

Let X1, X2, . . . , Xn be a random sample of size n from a normal distribution with
mean μX and standard deviation σ and let Y1,Y2, . . . ,Ym be an independent random
sample of size m from a normal distribution with mean μY and standard deviation σ .
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Let S2
X and S2

Y be the two corresponding sample variances, and S2
p the pooled variance,

where

S2
p = (n − 1)S2

X + (m − 1)S2
Y

n + m − 2
=

n∑
i=1

(Xi − X)2 +
m∑

i=1
(Yi − Y )2

n + m − 2

Then

Tn+m−2 = X − Y − (μX −μY )

Sp

√
1
n + 1

m

has a Student t distribution with n + m − 2 degrees of freedom.

Proof The method of proof here is very similar to what was used for Theorem 7.3.5.
Note that an equivalent formulation of Tn+m−2 is

Tn+m−2 =
X−Y−(μX −μY )

σ
√

1
n + 1

m√
S2

p/σ
2

=
X−Y−(μX −μY )

σ
√

1
n + 1

m√
1

n+m−2

[
n∑

i=1

(
Xi −X

σ

)2 +
m∑

i=1

(
Yi −Y

σ

)2
]

But E(X − Y ) = μX − μY and Var(X − Y ) = σ 2/n + σ 2/m, so the numerator of the
ratio has a standard normal distribution, fZ (z).

In the denominator,

n∑
i=1

(
Xi − X

σ

)2

= (n − 1)S2
X

σ 2

and

m∑
i=1

(
Yi − Y

σ

)2

= (m − 1)S2
Y

σ 2

are independent χ2 random variables with n − 1 and m − 1 df, respectively, so

n∑
i=1

(
Xi − X

σ

)2

+
m∑

i=1

(
Yi − Y

σ

)2

has a χ2 distribution with n + m − 2 df (recall Theorem 7.3.1 and Theorem 4.6.4).
Also, by Appendix 7.A.2, the numerator and denominator are independent.
It follows from Definition 7.3.3, then, that

X − Y − (μX −μY )

Sp

√
1
n + 1

m

has a Student t distribution with n + m − 2 df. �
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Theorem
9.2.2

Let x1, x2, . . . , xn and y1, y2, . . . , ym be independent random samples from normal
distributions with means μX and μY , respectively, and with the same standard
deviation σ . Let

t = x − y

sp

√
1
n + 1

m

a. To test H0: μX = μY versus H1: μX > μY at the α level of significance, reject H0 if
t ≥ tα,n+m−2.

b. To test H0: μX = μY versus H1: μX < μY at the α level of significance, reject H0 if
t ≤ −tα,n+m−2.

c. To test H0: μX = μY versus H1: μX �= μY at the α level of significance, reject H0 if
t is either (1) ≤ −tα/2,n+m−2 or (2) ≥ tα/2,n+m−2.

Proof See Appendix 9.A.1. �

Case Study 9.2.1

The mystery surrounding the nature of Mark Twain’s participation in the Civil
War was discussed (but not resolved) in Case Study 1.2.2. Recall that historians
are still unclear as to whether the creator of Huckleberry Finn and Tom Sawyer
was a civilian or a combatant in the early 1860s and whether his sympathies lay
with the North or with the South.

A tantalizing clue that might shed some light on the matter is a set of ten
war-related essays written by one Quintus Curtius Snodgrass, who claimed to
be in the Louisiana militia, although no records documenting his service have
ever been found. If Snodgrass was just a pen name Twain used, as some suspect,
then these essays are basically a diary of Twain’s activities during the war, and
the mystery is solved. If Quintus Curtius Snodgrass was not a pen name, these
essays are just a red herring, and all questions about Twain’s military activities
remain unanswered.

Assessing the likelihood that Twain and Snodgrass were one and the
same would be the job of a “forensic statistician.” Authors have character-
istic word-length profiles that effectively serve as verbal fingerprints (much
like incriminating evidence left at a crime scene). If Authors A and B tend to
use, say, three-letter words with significantly different frequencies, a reasonable
inference would be that A and B are different people.

Table 9.2.1 shows the proportions of three-letter words in each of the ten
Snodgrass essays and in eight essays known to have been written by Mark
Twain. If xi denotes the ith Twain proportion, i = 1,2, . . . ,8, and yi denotes
the ith Snodgrass proportion, i = 1,2, . . . ,10, then

8∑
i=1

xi = 1.855 so x = 1.855/8 = 0.2319

(Continued on next page)
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Table 9.2.1 Proportion of Three-Letter Words

Twain Proportion QCS Proportion

Sergeant Fathom letter 0.225 Letter I 0.209
Madame Caprell letter 0.262 Letter II 0.205
Mark Twain letters in Letter III 0.196

Territorial Enterprise Letter IV 0.210
First letter 0.217 Letter V 0.202
Second letter 0.240 Letter VI 0.207
Third letter 0.230 Letter VII 0.224
Fourth letter 0.229 Letter VIII 0.223

First Innocents Abroad letter Letter IX 0.220
First half 0.235 Letter X 0.201
Second half 0.217

and

10∑
i=1

yi = 2.097 so y = 2.097/10 = 0.2097

The question to be answered is whether the difference between 0.2319 and
0.2097 is statistically significant.

Let μX and μY denote the true average proportions of three-letter words
that Twain and Snodgrass, respectively, tended to use. Our objective is to test

H0 : μX =μY

versus

H1 : μX �=μY

Since

8∑
i=1

x2
i = 0.4316 and

10∑
i=1

y2
i = 0.4406

the two sample variances are

s2
X = 8(0.4316)− (1.855)2

8(7)

= 0.0002103

and

s2
Y = 10(0.4406)− (2.097)2

10(9)

= 0.0000955

(Continued on next page)



462 Chapter 9 Two-Sample Inferences

(Case Study 9.2.1 continued)

Combined, they give a pooled standard deviation of 0.0121:

sp =

√√√√√ 8∑
i=1

(xi − 0.2319)2 +
10∑

i=1
(yi − 0.2097)2

n + m − 2

=
√

(n − 1)s2
X + (m − 1)s2

Y

n + m − 2

=
√

7(0.0002103)+ 9(0.0000955)

8 + 10 − 2

=√
0.0001457

= 0.0121

According to Theorem 9.2.1, if H0: μX = μY is true, the sampling distribu-
tion of

T = X − Y

Sp

√
1
8 + 1

10

is described by a Student t curve with 16 (= 8 + 10 − 2) degrees of freedom.
Suppose we let α =0.01. By part (c) of Theorem 9.2.2, H0 should be rejected

in favor of a two-sided H1 if either (1) t ≤ −tα/2,n+m−2 = −t.005,16 = −2.9208 or
(2) t ≥ tα/2,n+m−2 = t.005,16 = 2.9208 (see Figure 9.2.1). But

t = 0.2319 − 0.2097

0.0121
√

1
8 + 1

10

= 3.88

0

Reject H0

– 2.9208

Reject H

Area = 0.005

Student t
distribution
with 16 df

2.9208

0

Figure 9.2.1

a value falling considerably to the right of t.005,16. Therefore, we should reject
H0—it appears that Twain and Snodgrass were not the same person. So, unfor-
tunately, nothing that Twain did can be inferred from anything that Snodgrass
wrote.

About the Data The Xi ’s and Yi ’s in Table 9.2.1, being proportions, are necessar-
ily not normally distributed random variables with the same variance, so the basic
conditions of Theorem 9.2.2 are not met. Fortunately, the consequences of violated
assumptions on the probabilistic behavior of Tn+m−2 are frequently minimal. The
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robustness property of the one-sample t ratio that we investigated in Chapter 7 also
holds true for the two-sample t ratio.

Case Study 9.2.2

Dislike your statistics instructor? Retaliation time will come at the end of the
semester, when you pepper the student course evaluation form with 1’s. Were
you pleased? Then send a signal with a load of 5’s. Either way, students’ evalu-
ations of their instructors do matter. These instruments are commonly used for
promotion, tenure, and merit raise decisions.

Studies of student course evaluations show that they do have value. They
tend to show reliability and consistency. Yet questions remain as to the ability
of these questionnaires to identify good teachers and courses.

A veteran instructor of developmental psychology decided to do a study
(201) on how a single changed factor might affect his students’ course evalua-
tions. He had attended a workshop extolling the virtue of an enthusiastic style
in the classroom—more hand gestures, increased voice pitch variability, and the
like. The vehicle for the study was the large-lecture undergraduate develop-
mental psychology course he had taught in the fall semester. He set about to
teach the spring-semester offering in the same way, with the exception of a more
enthusiastic style.

The professor fully understood the difficulty of controlling for the many
variables. He selected the spring class to have the same demographics as the
one in the fall. He used the same textbook, syllabus, and tests. He listened
to audiotapes of the fall lectures and reproduced them as closely as possible,
covering the same topics in the same order.

The first step in examining the effect of enthusiasm on course evaluations
is to establish that students have, in fact, perceived an increase in enthusiasm.
Table 9.2.2 summarizes the ratings the instructor received on the “enthusiasm”
question for the two semesters. Unless the increase in sample means (2.14 to
4.21) is statistically significant, there is no point in trying to compare fall and
spring responses to other questions.

Table 9.2.2

Fall, xi Spring, yi

n = 229 m = 243
x = 2.14 y = 4.21

sX = 0.94 sY = 0.83

Let μX and μY denote the true means associated with the two different
teaching styles. There is no reason to think that increased enthusiasm on the
part of the instructor would decrease the students’ perception of enthusiasm, so
it can be argued here that H1 should be one-sided. That is, we want to test

H0: μX =μY

versus

H1: μX <μY

(Continued on next page)



464 Chapter 9 Two-Sample Inferences

(Case Study 9.2.2 continued)

Let α = 0.05.
Since n = 229 and m = 243, the t statistic has 229 + 243 − 2 = 470 degrees of

freedom. Thus, the decision rule calls for the rejection of H0 if

t = x − y

sP

√
1

229 + 1
243

≤−tα,n+m−2 =−t.05,470

A glance at Table A.2 in the Appendix shows that for any value n > 100, zα is a
good approximation of tα,n . That is, −t.05,470

.= −z.05 =−1.64.
The pooled standard deviation for these data is 0.885:

sP =
√

228(0.94)2 + 242(0.83)2

229 + 243 − 2
= 0.885

Therefore,

t = 2.14 − 4.21

0.885
√

1
229 + 1

243

=−25.42

and our conclusion is a resounding rejection of H0—the increased enthusiasm
was, indeed, noticed.

The real question of interest is whether the change in enthusiasm produced
a perceived change in some other aspect of teaching that we know did not
change. For example, the instructor did not become more knowledgeable about
the material over the course of the two semesters. The student ratings, though,
disagree.

Table 9.2.3 shows the instructor’s fall and spring ratings on the “knowledge-
able” question. Is the increase from x = 3.61 to y = 4.05 statistically significant?
Yes. For these data, sP = 0.898 and

t = 3.61 − 4.05

0.898
√

1
229 + 1

243

=−5.33

which falls far to the left of the 0.05 critical value (=−1.64).
What we can glean from these data is both reassuring yet a bit disturb-

ing. Table 9.2.2 appears to confirm the widely held belief that enthusiasm
is an important factor in effective teaching. Table 9.2.3, on the other hand,
strikes a more cautionary note. It speaks to another widely held belief—that
student evaluations can sometimes be difficult to interpret. Questions that pur-
port to be measuring one trait may, in fact, be reflecting something entirely
different.

Table 9.2.3

Fall, xi Spring, yi

n = 229 m = 243
x = 3.61 y = 4.05

sX = 0.84 sY = 0.95
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About the Data The five-choice responses in student evaluation forms are very
common in survey questionnaires. Such questions are known as Likert items,
named after the psychologist Rensis Likert. The item typically asks the respon-
dent to choose his or her level of agreement with a statement, for example,
“The instructor shows concern for students.” The choices start with “strongly dis-
agree,” which is scored with a “1,” and go up to a “5” for “strongly agree.”
The statistic for a given question in a survey is the average value taken over all
responses.

Is a t test an appropriate way to analyze data of this sort? Maybe, but the nature
of the responses raises some serious concerns. First of all, the fact that students talk
with each other about their instructors suggests that not all the sample values will
be independent. More importantly, the five-point Likert scale hardly resembles the
normality assumption implicit in a Student t analysis. For many practitioners—but
not all—the robustness of the t test would be enough to justify the analysis described
in Case Study 9.2.2.

The Behrens-Fisher Problem

Finding a statistic with known density for testing the equality of two means from
normally distributed random samples when the standard deviations of the samples
are not equal is known as the Behrens-Fisher problem. No exact solution is known,
but a widely used approximation is based on the test statistic

W = X − Y − (μX −μY )√
S2

X
n + S2

Y
m

where, as usual, X and Y are the sample means, and S2
X and S2

Y are the unbiased
estimators of the variance. B. L. Welch, a faculty member at University College,
London, in a 1938 Biometrika article showed that W is approximately distributed
as a Student t random variable with degrees of freedom given by the nonintuitive
expression (

σ 2
1

n1
+ σ 2

2
n2

)2

σ 4
1

n2
1(n1−1)

+ σ 4
2

n2
2(n2−1)

To understand Welch’s approximation, it helps to rewrite the random variable
W as

W = X − Y − (μX −μY )√
S2

X
n + S2

Y
m

= X − Y − (μX −μY )√
σ 2

X
n + σ 2

Y
m

÷
√

S2
X

n + S2
Y

m√
σ 2

X
n + σ 2

Y
m

In this form, the numerator is a standard normal variable. Suppose there is a chi
square random variable V with ν degrees of freedom such that the square of the
denominator is equal to V/ν. Then the expression would indeed be a Student t
variable with ν degrees of freedom. However, in general, the denominator will
not have exactly that distribution. The strategy, then, is to find an approximate
equality for

S2
X

n + S2
Y

m

σ 2
X

n + σ 2
Y

m

= V

ν
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or, equivalently,

S2
X

n
+ S2

Y

m
=
(

σ 2
X

n
+ σ 2

Y

m

)
V

ν

At issue is the value of ν. The method of moments (recall Section 5.2) suggests a
solution. If the means and variances of both sides are equated, it can be shown that

ν =
(

σ 2
X

n + σ 2
Y

m

)2

σ 4
X

n2(n−1)
+ σ 4

Y
m2(m−1)

Moreover, the expression for ν depends only on the ratio of the variances, θ = σ 2
X

σ 2
Y

.

To see why, divide the numerator and denominator by σ 4
Y . Then(

1
n

σ 2
X

σ 2
Y

+ 1
m

)2

1
n2(n−1)

(
σ 2

X

σ 2
Y

)2 + 1
m2(m−1)

=
(

1
n θ + 1

m

)2
1

n2(n−1)
θ2 + 1

m2(m−1)

and multiplying numerator and denominator by n2 gives the somewhat more
appealing form

ν =
(
θ + n

m

)2
1

(n−1)
θ2 + 1

(m−1)

(
n
m

)2
Of course, the main application of this theory occurs when σ 2

X and σ 2
Y are

unknown and θ must thus be estimated, the obvious choice being θ = s2
X

s2
Y

.

This leads us to the following theorem for testing the equality of means when
the variances cannot be assumed equal.

Theorem
9.2.3

Let X1, X2, . . . , Xn and Y1,Y2, . . . ,Ym be independent random samples from normal
distributions with means μX and μY , and standard deviations σX and σY , respectively.
Let

W = X − Y − (μX −μY )√
S2

X
n + S2

Y
m

Using θ̂ = s2
X

s2
Y

, take ν to be the expression

(
θ̂+ n

m

)2

1
(n−1)

θ̂2+ 1
(m−1) (

n
m )

2 , rounded to the nearest

integer. Then W has approximately a Student t distribution with ν degrees of freedom.

Case Study 9.2.3

Does size matter? While a successful company’s large number of sales should
mean bigger profits, does it yield greater profitability? Forbes magazine period-
ically rates the top two hundred small companies (52), and for each gives the
profitability as measured by the five-year percentage return on equity. Using
data from the Forbes article, Table 9.2.4 gives the return on equity for the twelve
companies with the largest number of sales (ranging from $679 million to $738

(Continued on next page)
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million) and for the twelve companies with the smallest number of sales (rang-
ing from $25 million to $66 million). Based on these data, can we say that the
return on equity differs between the two types of companies?

Table 9.2.4

Large-Sales Companies
Return on
Equity (%) Small-Sales Companies

Return on
Equity (%)

Deckers Outdoor 21 NVE 21
Jos. A. Bank Clothiers 23 Hi-Shear Technology 21
National Instruments 13 Bovie Medical 14
Dolby Laboratories 22 Rocky Mountain Chocolate

Factory
31

Quest Software 7 Rochester Medical 19
Green Mountain Coffee

Roasters
17 Anika Therapeutics 19

Lufkin Industries 19 Nathan’s Famous 11
Red Hat 11 Somanetics 29
Matrix Service 2 Bolt Technology 20
DXP Enterprises 30 Energy Recovery 27
Franklin Electric 15 Transcend Services 27
LSB Industries 43 IEC Electronics 24

Let μX and μY be the respective average returns on equity. The indicated
test of hypotheses is

H0 :μX =μY

versus

H1 :μX �=μY

For the data in the table, x = 18.6, y = 21.9, s2
X = 115.9929, and s2

Y = 35.7604. The
test statistic is

w = x − y − (μX −μY )√
s2

X
n + s2

Y
m

= 18.6 − 21.9√
115.9929

12 + 35.7604
12

=−0.928

Also,

θ̂ = s2
X

s2
Y

= 115.9929

35.7604
= 3.244

so (
3.244 + 12

12

)2
1

11 (3.244)2 + 1
11

(
12
12

)2 = 17.2

which implies that ν = 17.
We should reject H0 at the α = 0.05 level of significance if w > t0.025,17 =

2.1098 or w < −t0.025,17 = −2.1098. Here, w = −0.928 falls in between the two
critical values, so the difference between x and y is not statistically significant.
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Comment It occasionally happens that an experimenter wants to test H0: μX = μY

and knows the values of σ 2
X and σ 2

Y . For those situations, the t test of Theorem 9.2.2
is inappropriate. If the n Xi ’s and m Yi ’s are normally distributed, it follows from the
corollary to Theorem 4.3.3 that

Z = X − Y − (μX −μY )√
σ 2

X
n + σ 2

Y
m

(9.2.1)

has a standard normal distribution. Any such test of H0: μX = μY , then, should be
based on an observed Z ratio rather than an observed t ratio.

If the degrees of freedom for a t test exceed 100, then the test statistic of Equa-
tion 9.2.1 is used, but it is treated as a Z ratio. In either the test of Theorem 9.2.2
or 9.2.3, if the degrees of freedom exceed 100, the statistic of Theorem 9.2.3 is used
with the z tables.

Questions

9.2.1. Some states that operate a lottery believe that
restricting the use of lottery profits to supporting edu-
cation makes the lottery more profitable. Other states
permit general use of the lottery income. The profitabil-
ity of the lottery for a group of states in each category is
given below.

State Lottery Profits

For Education For General Use

State % Profit State % Profit

New Mexico 24 Massachusetts 21
Idaho 25 Maine 22
Kentucky 28 Iowa 24
South Carolina 28 Colorado 27
Georgia 28 Indiana 27
Missouri 29 Dist. Columbia 28
Ohio 29 Connecticut 29
Tennessee 31 Pennsylvania 32
Florida 31 Maryland 32
California 35
North Carolina 35
New Jersey 35

Source: New York Times, National Section, October 7, 2007, p. 14.

Test at the α = 0.01 level whether the mean profit of states
using the lottery for education is higher than that of states
permitting general use. Assume that the variances of the
two random variables are equal.

9.2.2. As the United States has struggled with the grow-
ing obesity of its citizens, diets have become big business.
Among the many competing regimens for those seeking
weight reduction are the Atkins and Zone diets. In a com-
parison of these two diets for one-year weight loss, a study
(59) found that seventy-seven subjects on the Atkins diet
had an average weight loss of x = −4.7 kg and a sample
standard deviation of sX = 7.05 kg. Similar figures for the

seventy-nine people on the Zone diet were y = −1.6 kg
and sY = 5.36 kg. Is the greater reduction with the Atkins
diet statistically significant? Test for α = 0.05.

9.2.3. A medical researcher believes that women typi-
cally have lower serum cholesterol than men. To test this
hypothesis, he took a sample of 476 men between the ages
of nineteen and forty-four and found their mean serum
cholesterol to be 189.0 mg/dl with a sample standard devi-
ation of 34.2. A group of 592 women in the same age range
averaged 177.2 mg/dl and had a sample standard deviation
of 33.3. Is the lower average for the women statistically
significant? Set α = 0.05.

9.2.4. In the academic year 2004–05, 1126 high school
freshmen took the SAT Reasoning Test. On the Criti-
cal Reasoning portion, this group had a mean score of
491 with a standard deviation of 119. The following year,
5042 sophomores (none of them in the 2004–05 freshmen
group) scored an average of 498, with a standard deviation
of 129. Is the higher average score for the sophomores a
result of such factors as additional schooling and increased
maturity or simply a random effect? Test at the α = 0.05
level of significance.

Source: College Board SAT, Total Group Profile Report,
2008.

9.2.5. The University of Missouri–St. Louis gave a vali-
dation test to entering students who had taken calculus in
high school. The group of ninety-three students receiving
no college credit had a mean score of 4.17 on the vali-
dation test with a sample standard deviation of 3.70. For
the twenty-eight students who received credit from a high
school dual-enrollment class, the mean score was 4.61 with
a sample standard deviation of 4.28. Is there a significant
difference in these means at the α = 0.01 level?

Source: MAA Focus, December 2008, p. 19.

9.2.6. Ring Lardner was one of this country’s most pop-
ular writers during the 1920s and 1930s. He was also a
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chronic alcoholic who died prematurely at the age of forty-
eight. The following table lists the life spans of some of
Lardner’s contemporaries (36). Those in the sample on the
left were all problem drinkers; they died, on the average,
at age sixty-five. The twelve (sober) writers on the right
tended to live a full ten years longer. Can it be argued that
an increase of that magnitude is statistically significant?
Test an appropriate null hypothesis against a one-sided
H1. Use the 0.05 level of significance. (Note: The pooled
sample standard deviation for these two samples is 13.9.)

Authors Noted for
Alchohol Abuse

Authors Not Noted for
Alchohol Abuse

Name
Age at
Death Name

Age at
Death

Ring Lardner 48 Carl Van Doren 65
Sinclair Lewis 66 Ezra Pound 87
Raymond Chandler 71 Randolph Bourne 32
Eugene O’Neill 65 Van Wyck Brooks 77
Robert Benchley 56 Samuel Eliot Morrison 89
J.P. Marquand 67 John Crowe Ransom 86
Dashiell Hammett 67 T.S. Eliot 77
e.e. cummings 70 Conrad Aiken 84
Edmund Wilson 77 Ben Ames Williams 64

Average: 65.2 Henry Miller 88
Archibald MacLeish 90
James Thurber 67

Average: 75.5

9.2.7. Poverty Point is the name given to a num-
ber of widely scattered archaeological sites throughout
Louisiana, Mississippi, and Arkansas. These are the
remains of a society thought to have flourished during the
period from 1700 to 500 b.c. Among their characteristic
artifacts are ornaments that were fashioned out of clay and
then baked. The following table shows the dates (in years
b.c.) associated with four of these baked clay ornaments
found in two different Poverty Point sites, Terral Lewis
and Jaketown (86). The averages for the two samples are
1133.0 and 1013.5, respectively. Is it believable that these
two settlements developed the technology to manufacture
baked clay ornaments at the same time? Set up and test an
appropriate H0 against a two-sided H1 at the α =0.05 level
of significance. For these data sx = 266.9 and sy = 224.3.

Terral Lewis Estimates, xi Jaketown Estimates, yi

1492 1346
1169 942

883 908
988 858

9.2.8. A major source of “mercury poisoning” comes
from the ingestion of methylmercury (CH203

3 ), which is

found in contaminated fish (recall Question 5.3.3). Among
the questions pursued by medical investigators trying to
understand the nature of this particular health problem
is whether methylmercury is equally hazardous to men
and women. The following (114) are the half-lives of
methylmercury in the systems of six women and nine men
who volunteered for a study where each subject was given
an oral administration of CH203

3 . Is there evidence here
that women metabolize methylmercury at a different rate
than men do? Do an appropriate two-sample t test at the
α = 0.01 level of significance. The two sample standard
deviations for these data are sX = 15.1 and sY = 8.1.

Methylmercury
(
CH203

3

)
Half-Lives (in Days)

Females, xi Males, yi

52 72
69 88
73 87
88 74
87 78
56 70

78
93
74

9.2.9. Lipton, a company primarily known for tea, con-
sidered using coupons to stimulate sales of its packaged
dinner entrees. The company was particularly interested
whether there was a diffences in the effect of coupons on
singles versus married couples. A poll of consumers asked
them to respond to the question “Do you use coupons
regularly?” by a numerical scale, where 1 stands for agree
strongly, 2 for agree, 3 for neutral, 4 for disagree, and 5 for
disagree strongly. The results of the poll are given in the
following table (19).

Use Coupons Regularly

Single (X) Married (Y )

n = 31 n = 57
x = 3.10 y = 2.43

sX = 1.469 sY = 1.350

Is the observed difference significant at the α =0.05 level?

9.2.10. A company markets two brands of latex paint—
regular and a more expensive brand that claims to dry
an hour faster. A consumer magazine decides to test this
claim by painting ten panels with each product. The aver-
age drying time of the regular brand is 2.1 hours with a
sample standard deviation of 12 minutes. The fast-drying
version has an average of 1.6 hours with a sample stan-
dard deviation of 16 minutes. Test the null hypothesis that
the more expensive brand dries an hour quicker. Use a
one-sided H1. Let α = 0.05.
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9.2.11. (a) Suppose H0: μX = μY is to be tested against
H1: μX �= μY . The two sample sizes are 6 and 11. If sp =
15.3, what is the smallest value for |x − y| that will result
in H0 being rejected at the α = 0.01 level of significance?
(b) What is the smallest value for x − y that will lead to
the rejection of H0: μX = μY in favor of H1: μX > μY if
α = 0.05, sP = 214.9, n = 13, and m = 8?

9.2.12. Suppose that H0: μX = μY is being tested against
H1: μX �= μY , where σ 2

X and σ 2
Y are known to be 17.6 and

22.9, respectively. If n = 10, m = 20, x = 81.6, and y = 79.9,
what P-value would be associated with the observed Z
ratio?

9.2.13. An executive has two routes that she can take
to and from work each day. The first is by interstate; the
second requires driving through town. On the average it
takes her 33 minutes to get to work by the interstate and
35 minutes by going through town. The standard devia-
tions for the two routes are 6 and 5 minutes, respectively.
Assume the distributions of the times for the two routes
are approximately normally distributed.

(a) What is the probability that on a given day, driving
through town would be the quicker of her choices?

(b) What is the probability that driving through town
for an entire week (ten trips) would yield a lower
average time than taking the interstate for the entire
week?

9.2.14. Prove that the Z ratio given in Equation 9.2.1 has
a standard normal distribution.

9.2.15. If X1, X2, . . . , Xn and Y1, Y2, . . . ,Ym are indepen-
dent random samples from normal distributions with the
same σ 2, prove that their pooled sample variance, s2

p, is an
unbiased estimator for σ 2.

9.2.16. Let X1, X2, . . . , Xn and Y1,Y2, . . . , Ym be indepen-
dent random samples drawn from normal distributions
with means μX and μY , respectively, and with the same
known variance σ 2.Use the generalized likelihood ratio
criterion to derive a test procedure for choosing between
H0: μX =μY and H1: μX �=μY .

9.2.17. A person exposed to an infectious agent, either by
contact or by vaccination, normally develops antibodies
to that agent. Presumably, the severity of an infection
is related to the number of antibodies produced. The
degree of antibody response is indicated by saying that
the person’s blood serum has a certain titer, with higher
titers indicating greater concentrations of antibodies. The
following table gives the titers of twenty-two persons
involved in a tularemia epidemic in Vermont (18). Eleven
were quite ill; the other eleven were asymptomatic. Use an
approximate t ratio to test H0: μX =μY against a one-sided
H1 at the 0.05 level of significance.

The sample standard deviations for the “Severely Ill”
and “Asymptomatic” groups are 428 and 183, respectively.

Severely Ill Asymptomatic

Subject Titer Subject Titer

1 640 12 10
2 80 13 320
3 1280 14 320
4 160 15 320
5 640 16 320
6 640 17 80
7 1280 18 160
8 640 19 10
9 160 20 640

10 320 21 160
11 160 22 320

9.2.18. For the approximate two-sample t test described
in Question 9.2.17, it will be true that

v < n + m − 2

Why is that a disadvantage for the approximate test? That
is, why is it better to use the Theorem 9.2.1 version of the
t test if, in fact, σ 2

X = σ 2
Y ?

9.2.19. The two-sample data described in Question 8.2.2
would be analyzed by testing H0: μX = μY , where μX and
μY denote the true average motorcycle-related fatality
rates for states having “limited” and “comprehensive”
helmet laws, respectively.

(a) Should the t test for H0: μX = μY follow the for-
mat of Theorem 9.2.2 or the approximation given in
Theorem 9.2.3? Explain.

(b) Is there anything unusual about these data? Explain.

9.2.20. Some financial analysts believe that the election
of a Republican president is good for the stock market.
To test this claim, one study (155) recorded the ten-year
growth in Standard & Poor’s index following each elec-
tion of a new president. The results are given in the table
below.

Democrats Republicans

Winner S&P Growth Winner S&P Growth

Roosevelt ’36 22.4 Eisenhower ’52 45.7
Roosevelt ’40 24.0 Eisenhower ’56 28.6
Roosevelt ’44 38.0 Nixon ’68 14.2
Truman ’48 45.7 Nixon ’72 18.8
Kennedy ’60 21.2 Reagan ’80 50.3
Johnson ’64 17.9 Reagan ’84 40.1
Carter ’76 38.2 Bush ’88 52.4
Clinton ’92 33.7
Clinton ’96 23.8

Is the higher average for the Republicans statistically
significant? Test at the 0.01 level. Do not assume the
variances are equal.
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9.3 Testing H0: σ 2
X = σ 2

Y—The F Test
Although by far the majority of two-sample problems are set up to detect pos-
sible shifts in location parameters, situations sometimes arise where it is equally
important—perhaps even more important—to compare variability parameters. Two
machines on an assembly line, for example, may be producing items whose average
dimensions (μX and μY ) of some sort—say, thickness—are not significantly different
but whose variabilities (as measured by σ 2

X and σ 2
Y ) are. This becomes a critical piece

of information if the increased variability results in an unacceptable proportion of
items from one of the machines falling outside the engineering specifications (see
Figure 9.3.1).

Figure 9.3.1 Variability of
machine outputs.

μ

Engineering
specifications

X

μY

(Acceptable) proportion
too thin (Acceptable) proportion

too thick
σX

Output from machine X

(Unacceptable) proportion
too thick

(Unacceptable) proportion
too thin σX σY

Output from machine Y

In this section we will examine the generalized likelihood ratio test of H0: σ 2
X =

σ 2
Y versus H1: σ 2

X �= σ 2
Y . The data will consist of two independent random sam-

ples of sizes n and m: The first—x1, x2, . . . , xn—is assumed to have come from a
normal distribution having mean μX and variance σ 2

X ; the second—y1, y2, . . . , ym—
from a normal distribution having mean μY and variance σ 2

Y . (All four param-
eters are assumed to be unknown.) Theorem 9.3.1 gives the test procedure that
will be used. The proof will not be given, but it follows the same basic pat-
tern we have seen in other GLRTs; the important step is showing that the
likelihood ratio is a monotonic function of the F random variable described in
Definition 7.3.2.

Comment Tests of H0: σ 2
X = σ 2

Y arise in another, more routine context. Recall that
the procedure for testing the equality of μX and μY depends on whether or not the
two population variances are equal. This implies that a test of H0: σ 2

X = σ 2
Y should

precede every test of H0: μX =μY . If the former is accepted, the t test on μX and μY is
done according to Theorem 9.2.2; but if H0: σ 2

X =σ 2
Y is rejected, Theorem 9.2.2 is not

entirely appropriate. A frequently used alternative in that case is the approximate t
test described in Theorem 9.2.3.

Theorem
9.3.1

Let x1, x2, . . . , xn and y1, y2, . . . , ym be independent random samples from normal
distributions with means μX and μY and standard deviations σX and σY , respectively.

a. To test H0: σ 2
X = σ 2

Y versus H1: σ 2
X > σ 2

Y at the α level of significance, reject H0 if
s2

Y /s2
X ≤ Fα,m−1,n−1.
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b. To test H0: σ 2
X = σ 2

Y versus H1: σ 2
X < σ 2

Y at the α level of significance, reject H0 if
s2

Y /s2
X ≥ F1−α,m−1,n−1.

c. To test H0: σ 2
X = σ 2

Y versus H1: σ 2
X �= σ 2

Y at the α level of significance, reject H0 if
s2

Y /s2
X is either (1) ≤ Fα/2,m−1,n−1 or (2) ≥ F1−α/2,m−1,n−1.

Comment The GLRT described in Theorem 9.3.1 is approximate for the same sort
of reason the GLRT for H0: σ 2 = σ 2

0 is approximate (see Theorem 7.5.2). The distri-
bution of the test statistic, S2

Y /S2
X , is not symmetric, and the two ranges of variance

ratios yielding λ’s less than or equal to λ∗ (i.e., the left tail and right tail of the
critical region) have slightly different areas. For the sake of convenience, though,
it is customary to choose the two critical values so that each cuts off the same
area, α/2.

Case Study 9.3.1

Electroencephalograms are records showing fluctuations of electrical activity
in the brain. Among the several different kinds of brain waves produced, the
dominant ones are usually alpha waves. These have a characteristic frequency
of anywhere from eight to thirteen cycles per second.

The objective of the experiment described in this example was to see
whether sensory deprivation over an extended period of time has any effect on
the alpha-wave pattern. The subjects were twenty inmates in a Canadian prison
who were randomly split into two equal-sized groups. Members of one group
were placed in solitary confinement; those in the other group were allowed
to remain in their own cells. Seven days later, alpha-wave frequencies were
measured for all twenty subjects (60), as shown in Table 9.3.1.

Table 9.3.1 Alpha-Wave Frequencies (CPS)

Nonconfined, xi Solitary Confinement, yi

10.7 9.6
10.7 10.4
10.4 9.7
10.9 10.3
10.5 9.2
10.3 9.3

9.6 9.9
11.1 9.5
11.2 9.0
10.4 10.9

Judging from Figure 9.3.2, there was an apparent decrease in alpha-wave
frequency for persons in solitary confinement. There also appears to have been
an increase in the variability for that group. We will use the F test to determine
whether the observed difference in variability (s2

X = 0.21 versus s2
Y = 0.36) is

statistically significant.
(Continued on next page)
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Figure 9.3.2 Alpha-wave frequencies (cps).

Let σ 2
X and σ 2

Y denote the true variances of alpha-wave frequencies for
nonconfined and solitary-confined prisoners, respectively. The hypotheses to be
tested are

H0: σ 2
X = σ 2

Y

versus

H1: σ 2
X �= σ 2

Y

Let α = 0.05 be the level of significance. Given that

10∑
i=1

xi = 105.8
10∑

i=1
x2

i = 1121.26

10∑
i=1

yi = 97.8
10∑

i=1
y2

i = 959.70

the sample variances become

s2
X = 10(1121.26)− (105.8)2

10(9)
= 0.21

and

s2
Y = 10(959.70)− (97.8)2

10(9)
= 0.36

Dividing the sample variances gives an observed F ratio of 1.71:

F = s2
Y

s2
X

= 0.36

0.21
= 1.71

Both n and m are ten, so we would expect S2
Y /S2

X to behave like an F ran-
dom variable with nine and nine degrees of freedom (assuming H0: σ 2

X = σ 2
Y is

true). From Table A.4 in the Appendix, we see that the values cutting off areas
of 0.025 in either tail of that distribution are 0.248 and 4.03 (see Figure 9.3.3).

Since the observed F ratio falls between the two critical values, our decision
is to fail to reject H0—a ratio of sample variances equal to 1.71 does not rule out

(Continued on next page)
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(Case Study 9.3.1 continued)

the possibility that the two true variances are equal. (In light of the Comment
preceding Theorem 9.3.1, it would now be appropriate to test H0: μX =μY using
the two-sample t test described in Section 9.2.)

Reject H

Area = 0.025

0

0.248

Reject H

Area = 0.025

F distribution with
9 and 9 degrees

 of freedom

4.03

0

Density

Figure 9.3.3 Distribution of S2
Y /S2

X when H0 is true.

Questions

9.3.1. Case Study 9.2.3 was offered as an example of test-
ing means when the variances are not assumed equal. Was
this a correct assumption about the variances? Test at the
0.05 level of significance.

9.3.2. Two popular forms of mortgage are the thirty-year
fixed-rate mortgage, where the borrower has thirty years
to repay the loan at a constant rate, and the adjustable-
rate mortgage (ARM), one version of which is for five
years with the possibility of yearly changes in the inter-
est rate. Since the ARM offers less certainty, its rates are
usually lower than those of fixed-rate mortgages. How-
ever, such vehicles should show more variability in rates.
Test this hypothesis at the 0.10 level of significance using
the following samples of mortgage offerings for a loan
of $160,000 (the borrower needs $200,000, but must pay
$40,000 up front).

$160,000 Mortgage Rates

30-Year Fixed ARM

5.500 3.875
5.500 5.125
5.250 5.000
5.125 4.750
5.875 4.375
5.625
5.250
4.875

9.3.3. Among the standard personality inventories used
by psychologists is the thematic apperception test (TAT)

in which a subject is shown a series of pictures and is asked
to make up a story about each one. Interpreted properly,
the content of the stories can provide valuable insights
into the subject’s mental well-being. The following data
show the TAT results for 40 women, 20 of whom were
the mothers of normal children and 20 the mothers of
schizophrenic children. In each case the subject was shown
the same set of 10 pictures. The figures recorded were
the numbers of stories (out of 10) that revealed a posi-
tive parent–child relationship, one where the mother was
clearly capable of interacting with her child in a flexible,
open-minded way (199).

TAT Scores

Mothers of Normal Mothers of Schizophrenic
Children Children

8 4 6 3 1 2 1 1 3 2
4 4 6 4 2 7 2 1 3 1
2 1 1 4 3 0 2 4 2 3
3 2 6 3 4 3 0 1 2 2

(a) Test H0 : σ 2
X = σ 2

Y versus H1 : σ 2
X �= σ 2

Y , where σ 2
X and

σ 2
Y are the variances of the scores of mothers of nor-

mal children and scores of mothers of schizophrenic
children, respectively. Let α = 0.05.

(b) If H0 :σ 2
X =σ 2

Y is accepted in part (a), test H0 :μX =μY

versus H1 :μX �=μY . Set α equal to 0.05.

9.3.4. In a study designed to investigate the effects of a
strong magnetic field on the early development of mice
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(7), 10 cages, each containing three 30-day-old albino
female mice, were subjected for a period of 12 days to
a magnetic field having an average strength of 80 Oe/cm.
Thirty other mice, housed in 10 similar cages, were not put
in the magnetic field and served as controls. Listed in the
table are the weight gains, in grams, for each of the 20 sets
of mice.

In Magnetic Field Not in Magnetic Field

Cage Weight Gain (g) Cage Weight Gain (g)

1 22.8 11 23.5
2 10.2 12 31.0
3 20.8 13 19.5
4 27.0 14 26.2
5 19.2 15 26.5
6 9.0 16 25.2
7 14.2 17 24.5
8 19.8 18 23.8
9 14.5 19 27.8

10 14.8 20 22.0

Test whether the variances of the two sets of weight gains
are significantly different. Let α =0.05. For the mice in the
magnetic field, sX = 5.67; for the other mice, sY = 3.18.

9.3.5. Raynaud’s syndrome is characterized by the sud-
den impairment of blood circulation in the fingers, a
condition that results in discoloration and heat loss. The
magnitude of the problem is evidenced in the following
data, where twenty subjects (ten “normals” and ten with
Raynaud’s syndrome) immersed their right forefingers in
water kept at 19◦C. The heat output (in cal/cm2/minute) of
the forefinger was then measured with a calorimeter (105).

Normal Subjects
Subjects with

Raynaud’s Syndrome

Heat Output Heat Output
Patient (cal/cm2/min) Patient (cal/cm2/min)

W.K. 2.43 R.A. 0.81
M.N. 1.83 R.M. 0.70
S.A. 2.43 F.M. 0.74
Z.K. 2.70 K.A. 0.36
J.H. 1.88 H.M. 0.75
J.G. 1.96 S.M. 0.56
G.K. 1.53 R.M. 0.65
A.S. 2.08 G.E. 0.87
T.E. 1.85 B.W. 0.40
L.F. 2.44 N.E. 0.31

x = 2.11 y = 0.62
sX = 0.37 sY = 0.20

Test that the heat-output variances for normal sub-
jects and those with Raynaud’s syndrome are the
same. Use a two-sided alternative and the 0.05 level of
significance.

9.3.6. The bitter, eight-month baseball strike that ended
the 1994 season so abruptly was expected to have sub-
stantial repercussions at the box office when the 1995
season finally got under way. It did. By the end of the
first week of play, American League teams were play-
ing to 12.8% fewer fans than the year before; National
League teams fared even worse—their attendance was
down 15.1% (190). Based on the team-by-team atten-
dance figures given below, would it be appropriate to use
the pooled two-sample t test of Theorem 9.2.2 to assess
the statistical significance of the difference between those
two means?

American League National League

Team Change Team Change

Baltimore –2% Atlanta –49%
Boston +16 Chicago –4
California +7 Cincinnati –18
Chicago –27 Colorado –27
Cleveland No home games Florida –15
Detroit –22 Houston –16
Kansas City –20 Los Angeles –10
Milwaukee –30 Montreal –1
Minnesota –8 New York +34
New York –2 Philadelphia –9
Oakland No home games Pittsburgh –28
Seattle –3 San Diego –10
Texas –39 San Francisco –45
Toronto –24 St. Louis –14

Average: –12.8% Average: –15.1%

9.3.7. For the data in Question 9.2.8, the sample variances
for the methylmercury half-lives are 227.77 for the females
and 65.25 for the males. Does the magnitude of that differ-
ence invalidate using Theorem 9.2.2 to test H0: μX = μY ?
Explain.

9.3.8. Crosstown busing to compensate for de facto segre-
gation was begun on a fairly large scale in Nashville during
the 1960s. Progress was made, but critics argued that too
many racial imbalances were left unaddressed. Among
the data cited in the early 1970s are the following figures,
showing the percentages of African-American students
enrolled in a random sample of eighteen public schools
(165). Nine of the schools were located in predominantly
African-American neighborhoods; the other nine, in pre-
dominantly white neighborhoods. Which version of the
two-sample t test, Theorem 9.2.2 or the Behrens–Fisher
approximation given in Theorem 9.2.3, would be more
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appropriate for deciding whether the difference between
35.9% and 19.7% is statistically significant? Justify
your answer.

Schools in African-American Schools in White
Neighborhoods Neighborhoods

36% 21%
28 14
41 11
32 30
46 29
39 6
24 18
32 25
45 23

Average: 35.9% Average: 19.7%

9.3.9. Show that the generalized likelihood ratio for
testing H0: σ 2

X = σ 2
Y versus H1: σ 2

X �= σ 2
Y as described in

Theorem 9.3.1 is given by

λ = L(ωe)

L(�e)
= (m + n)(n+m)/2

nn/2mm/2

[
n∑

i=1
(xi − x̄)2

]n/2
[

m∑
j=1

(yj − ȳ)2

]m/2

[
n∑

i=1
(xi − x̄)2 +

m∑
j=1

(yj − ȳ)2

](m+n)/2

9.3.10. Let X1, X2, . . . , Xn and Y1,Y2, . . . , Ym be indepen-
dent random samples from normal distributions with
means μX and μY and standard deviations σX and σY ,
respectively, where μX and μY are known. Derive the
GLRT for H0: σ 2

X = σ 2
Y versus H1: σ 2

X >σ 2
Y .

9.4 Binomial Data: Testing H0: pX = pY
Up to this point, the data considered in this chapter have been independent random
samples of sizes n and m drawn from two continuous distributions—in fact, from two
normal distributions. Other scenarios, of course, are quite possible. The X ’s and Y ’s
might represent continuous random variables but have density functions other than
the normal. Or they might be discrete. In this section we consider the most common
example of this latter type: situations where the two sets of data are binomial.

Applying the Generalized Likelihood Ratio Criterion

Suppose that n Bernoulli trials related to treatment X have resulted in x successes,
and that m (independent) Bernoulli trials related to treatment Y have yielded y
successes. We wish to test whether pX and pY , the true probabilities of success for
treatment X and treatment Y, are equal:

H0: pX = pY (= p)

versus

H1: pX �= pY

Let α be the level of significance.
Following the notation used for GLRTs, the two parameter spaces here are

ω ={(pX , pY ): 0 ≤ pX = pY ≤ 1}
and

�={(pX , pY ): 0 ≤ pX ≤ 1,0 ≤ pY ≤ 1}
Furthermore, the likelihood function can be written

L = px
X (1 − pX )n−x · py

Y (1 − pY )m−y
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Setting the derivative of ln L with respect to p(= pX = pY ) equal to 0 and solving for
p gives a not-too-surprising result—namely,

pe = x + y

n + m

That is, the maximum likelihood estimate for p under H0 is the pooled success
proportion. Similarly, solving ∂lnL/∂pX = 0 and ∂lnL/∂pY = 0 gives the two origi-
nal sample proportions as the unrestricted maximum likelihood estimates, for pX

and pY :

pXe = x

n
, pYe = y

m

Putting pe, pXe , and pYe back into L gives the generalized likelihood ratio:

λ = L(ωe)

L(�e)
=
[
(x + y)/(n + m)

]x+y [
1 − (x + y)/(n + m)

]n+m−x−y

(x/n)x
[
1 − (x/n)

]n−x
(y/m)y

[
1 − (y/m)

]m−y (9.4.1)

Equation 9.4.1 is such a difficult function to work with that it is necessary to
find an approximation to the usual generalized likelihood ratio test. There are sev-
eral available. It can be shown, for example, that −2 ln λ for this problem has an
asymptotic χ2 distribution with 1 degree of freedom (200). Thus, an approximate
two-sided, α = 0.05 test is to reject H0 if −2 ln λ ≥ 3.84.

Another approach, and the one most often used, is to appeal to the central limit
theorem and make the observation that

X
n − Y

m − E
(

X
n − Y

m

)√
Var
(

X
n − Y

m

)
has an approximate standard normal distribution. Under H0, of course,

E

(
X

n
− Y

m

)
= 0

and

Var

(
X

n
− Y

m

)
= p(1 − p)

n
+ p(1 − p)

m

= (n + m)p(1 − p)

nm

If p is now replaced by x+y
n+m , its maximum likelihood estimate under ω, we get the

statement of Theorem 9.4.1.

Theorem
9.4.1

Let x and y denote the numbers of successes observed in two independent sets of n
and m Bernoulli trials, respectively, where pX and pY are the true success probabilities
associated with each set of trials. Let pe = x+y

n+m and define

z =
x
n − y

m√
pe(1−pe)

n + pe(1−pe)

m

a. To test H0: pX = pY versus H1: pX > pY at the α level of significance, reject H0 if
z ≥ zα .

b. To test H0: pX = pY versus H1: pX < pY at the α level of significance, reject H0 if
z ≤ −zα .
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c. To test H0: pX = pY versus H1: pX �= pY at the α level of significance, reject H0 if z
is either (1) ≤ −zα/2 or (2) ≥ zα/2.

Comment The utility of Theorem 9.4.1 actually extends beyond the scope we have
just described. Any continuous variable can always be dichotomized and “trans-
formed” into a Bernoulli variable. For example, blood pressure can be recorded in
terms of “mm Hg,” a continuous variable, or simply as “normal” or “abnormal,” a
Bernoulli variable. The next two case studies illustrate these two sources of binomial
data. In the first, the measurements begin and end as Bernoulli variables; in the sec-
ond, the initial measurement of “number of nightmares per month” is dichotomized
into “often” and “seldom.”

Case Study 9.4.1

Until almost the end of the nineteenth century, the mortality associated with
surgical operations—even minor ones—was extremely high. The major prob-
lem was infection. The germ theory as a model for disease transmission was still
unknown, so there was no concept of sterilization. As a result, many patients
died from postoperative complications.

The major breakthrough that was so desperately needed finally came when
Joseph Lister, a British physician, began reading about some of the work done
by Louis Pasteur. In a series of classic experiments, Pasteur had succeeded
in demonstrating the role that yeasts and bacteria play in fermentation. Lis-
ter conjectured that human infections might have a similar organic origin. To
test his theory he began using carbolic acid as an operating-room disinfectant.
He performed forty amputations with the aid of carbolic acid, and thirty-four
patients survived. He also did thirty-five amputations without carbolic acid, and
nineteen patients survived. While it seems clear that carbolic acid did improve
survival rates, a test of statistical significance helps to rule out a difference due
to chance (202).

Let pX be the true probability of survival with carbolic acid, and let pY

denote the true survival probability without the antiseptic. The hypotheses to
be tested are

H0 : pX = pY (= p)

versus

H1 : pX > pY

Take α = 0.01.
If H0 is true, the pooled estimate of p would be the overall survival rate.

That is,

pe = 34 + 19

40 + 35
= 53

75
= 0.707

The sample proportions for survival with and without carbolic acid are 34/40 =
0.850 and 19/35=0.543, respectively. According to Theorem 9.4.1, then, the test
statistic is

z = 0.850 − 0.543√
(0.707)(0.293)

40 + (0.707)(0.293)

35

= 2.92

Since z exceeds the α = 0.01 critical value (z.01 = 2.33), we should reject the null
hypothesis and conclude that the use of carbolic acid saves lives.
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About the Data In spite of this study and a growing body of similar evidence, the
theory of antiseptic surgery was not immediately accepted in Lister’s native Eng-
land. Continental European surgeons, though, understood the value of Lister’s work
and in 1875 presented him with a humanitarian award.

Case Study 9.4.2

Over the years, numerous studies have sought to characterize the nightmare
sufferer. Out of these has emerged the stereotype of someone with high anxi-
ety, low ego strength, feelings of inadequacy, and poorer-than-average physical
health. What is not so well known, though, is whether men fall into this pattern
with the same frequency as women. To this end, a clinical survey (77) looked at
nightmare frequencies for a sample of 160 men and 192 women. Each subject
was asked whether he (or she) experienced nightmares “often” (at least once
a month) or “seldom” (less than once a month). The percentages of men and
women saying “often” were 34.4% and 31.3%, respectively (see Table 9.4.1).
Is the difference between those two percentages statistically significant?

Table 9.4.1 Frequency of Nightmares

Men Women Total

Nightmares often 55 60 115
Nightmares seldom 105 132 237

Totals 160 192
% often: 34.4 31.3

Let pM and pW denote the true proportions of men having nightmares
often and women having nightmares often, respectively. The hypotheses to be
tested are

H0: pM = pW

versus

H1: pM �= pW

Let α=0.05. Then ± z.025 =±1.96 become the two critical values. Moreover,
pe = 55+60

160+192 = 0.327, so

z = 0.344 − 0.313√
(0.327)(0.673)

160 + (0.327)(0.673)

192

= 0.62

The conclusion, then, is clear: We fail to reject the null hypothesis—these data
provide no convincing evidence that the frequency of nightmares is different for
men than for women.

About the Data The results of every statistical study are intended to be
generalized—from the subjects measured to a broader population that the sample
might reasonably be expected to represent. Obviously, then, knowing something
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about the subjects is essential if a set of data is to be interpreted (and extrapolated)
properly. Table 9.4.1 is a cautionary case in point. The 352 individuals interviewed
were not the typical sort of subjects solicited for a university research project. They
were all institutionalized mental patients.

Questions

9.4.1. The phenomenon of handedness has been exten-
sively studied in human populations. The percentages of
adults who are right-handed, left-handed, and ambidex-
trous are well documented. What is not so well known is
that a similar phenomenon is present in lower animals.
Dogs, for example, can be either right-pawed or left-
pawed. Suppose that in a random sample of 200 beagles, it
is found that 55 are left-pawed and that in a random sam-
ple of 200 collies, 40 are left-pawed. Can we conclude that
the difference in the two sample proportions of left-pawed
dogs is statistically significant for α = 0.05?

9.4.2. In a study designed to see whether a controlled
diet could retard the process of arteriosclerosis, a total of
846 randomly chosen persons were followed over an eight-
year period. Half were instructed to eat only certain foods;
the other half could eat whatever they wanted. At the end
of eight years, 66 persons in the diet group were found
to have died of either myocardial infarction or cerebral
infarction, as compared to 93 deaths of a similar nature in
the control group (203). Do the appropriate analysis. Let
α = 0.05.

9.4.3. Water witching, the practice of using the move-
ments of a forked twig to locate underground water (or
minerals), dates back over 400 years. Its first detailed
description appears in Agricola’s De re Metallica, pub-
lished in 1556. That water witching works remains a belief
widely held among rural people in Europe and through-
out the Americas. [In 1960 the number of “active” water
witches in the United States was estimated to be more
than 20,000 (193).] Reliable evidence supporting or refut-
ing water witching is hard to find. Personal accounts of
isolated successes or failures tend to be strongly biased
by the attitude of the observer. Of all the wells dug in
Fence Lake, New Mexico, 29 “witched” wells and 32 “non-
witched” wells were sunk. Of the “witched” wells, 24
were successful. For the “nonwitched” wells, there were
27 successes. What would you conclude?

9.4.4. If flying saucers are a genuine phenomenon, it
would follow that the nature of sightings (that is, their
physical characteristics) would be similar in different parts
of the world. A prominent UFO investigator compiled a
listing of 91 sightings reported in Spain and 1117 reported
elsewhere. Among the information recorded was whether
the saucer was on the ground or hovering. His data are
summarized in the following table (87). Let pS and pN S

denote the true probabilities of “Saucer on ground” in

Spain and not in Spain, respectively. Test H0: pS = pN S

against a two-sided H1. Let α = 0.01.

In Spain Not in Spain

Saucer on ground 53 705
Saucer hovering 38 412

9.4.5. In some criminal cases, the judge and the defen-
dant’s lawyer will enter into a plea bargain, where the
accused pleads guilty to a lesser charge. The proportion of
time this happens is called the mitigation rate. A Florida
Corrections Department study showed that Escambia
County had the state’s fourth highest rate, 61.7% (1033
out of 1675 cases). Concerned that the guilty were not get-
ting appropriate sentences, the state attorney put in new
policies to limit the number of plea bargains. A follow-
up study (133) showed that the mitigation rate dropped
to 52.1% (344 out of 660 cases). Is it fair to conclude that
the drop was due to the new policies, or can the decline be
written off to chance? Test at the α = 0.01 level.

9.4.6. Suppose H0: pX = pY is being tested against
H1: pX �= pY on the basis of two independent sets of one
hundred Bernoulli trials. If x , the number of successes
in the first set, is sixty and y, the number of successes
in the second set, is forty-eight, what P-value would be
associated with the data?

9.4.7. A total of 8605 students are enrolled full-time at
State University this semester, 4134 of whom are women.
Of the 6001 students who live on campus, 2915 are women.
Can it be argued that the difference in the proportion of
men and women living on campus is statistically signifi-
cant? Carry out an appropriate analysis. Let α = 0.05.

9.4.8. The kittiwake is a seagull whose mating behavior
is basically monogamous. Normally, the birds separate for
several months after the completion of one breeding sea-
son and reunite at the beginning of the next. Whether or
not the birds actually do reunite, though, may be affected
by the success of their “relationship” the season before.
A total of 769 kittiwake pair-bonds were studied (30) over
the course of two breeding seasons; of those 769, some 609
successfully bred during the first season; the remaining 160
were unsuccessful. The following season, 175 of the previ-
ously successful pair-bonds “divorced,” as did 100 of the
160 whose prior relationship left something to be desired.



9.5 Confidence Intervals for the Two-Sample Problem 481

Can we conclude that the difference in the two divorce
rates (29% and 63%) is statistically significant?

Breeding in Previous Year

Successful Unsuccessful

Number divorced 175 100
Number not divorced 434 60

Total 609 160
Percent divorced 29 63

9.4.9. A utility infielder for a National League club batted
.260 last season in three hundred trips to the plate. This
year he hit .250 in two hundred at-bats. The owners are
trying to cut his pay for next year on the grounds that his
output has deteriorated. The player argues, though, that
his performances the last two seasons have not been sig-
nificantly different, so his salary should not be reduced.
Who is right?

9.4.10. Compute −2 ln λ (see Equation 9.4.1) for the
nightmare data of Case Study 9.4.2, and use it to test the
hypothesis that pX = pY . Let α = 0.01.

9.5 Confidence Intervals for the Two-Sample Problem
Two-sample data lend themselves nicely to the hypothesis testing format because
a meaningful H0 can always be defined (which is not the case for every set of one-
sample data). The same inferences, though, can just as easily be phrased in terms of
confidence intervals. Simple inversions similar to the derivation of Equation 7.4.1
will yield confidence intervals for μX −μY , σ 2

X/σ 2
Y , and pX − pY .

Theorem
9.5.1

Let x1, x2, . . . , xn and y1, y2, . . . , ym be independent random samples drawn from nor-
mal distributions with means μX and μY , respectively, and with the same standard
deviation, σ . Let sp denote the data’s pooled standard deviation. A 100(1 − α)%
confidence interval for μX −μY is given by(

x̄ − ȳ − tα/2,n+m−2 · sp

√
1

n
+ 1

m
, x̄ − ȳ + tα/2,n+m−2 · sp

√
1

n
+ 1

m

)

Proof We know from Theorem 9.2.1 that

X − Y − (μX −μY )

Sp

√
1
n + 1

m

has a Student t distribution with n + m − 2 df. Therefore,

P

⎡⎣−tα/2,n+m−2 ≤ X − Y − (μX −μY )

Sp

√
1
n + 1

m

≤ tα/2,n+m−2

⎤⎦= 1 −α (9.5.1)

Rewriting Equation 9.5.1 by isolating μX −μY in the center of the inequalities gives
the endpoints stated in the theorem. �

Case Study 9.5.1

Case Study 8.2.2 made the claim that X-rays penetrate the tooth enamel of men
and women differently, a fact that allows dental structure to help identify the
sex of badly decomposed bodies. In this case study, the statistical analysis for

(Continued on next page)
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(Case Study 9.5.1 continued)

that assertion is provided. Moreover, the resulting confidence interval gives an
estimate of the difference in the mean enamel spectropenetration gradients for
the two sexes.

Listed in Table 9.5.1 (and Table 8.2.2) are the gradients for eight female
teeth and eight male teeth (57). These numbers are measures of the rate of
change in the amount of X-ray penetration through a 500-micron section of
tooth enamel at a wavelength of 600 nm as opposed to 400 nm.

Table 9.5.1 Enamel Spectropenetration Gradients

Male, xi Female, yi

4.9 4.8
5.4 5.3
5.0 3.7
5.5 4.1
5.4 5.6
6.6 4.0
6.3 3.6
4.3 5.0

Let μX and μY be the population means of the spectropenetration gradients
associated with male teeth and with female teeth, respectively. Note that

8∑
i=1

xi = 43.4 and
8∑

i=1

x2
i = 239.32

from which

x̄ = 43.4

8
= 5.4

and

s2
X = 8(239.32)− (43.4)2

8(7)
= 0.55

Similarly,
8∑

i=1

yi = 36.1 and
8∑

i=1

y2
i = 166.95

so that

ȳ = 36.1

8
= 4.5

and

s2
Y = 8(166.95)− (36.1)2

8(7)
= 0.58

Therefore, the pooled standard deviation is equal to 0.75:

sP =
√

7(0.55)+ 7(0.58)

8 + 8 − 2
=√

0.565 = 0.75

(Continued on next page)
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We know that the ratio
X − Y − (μX −μY )

Sp

√
1
8 + 1

8

will be approximated by a Student t curve with 14 degrees of freedom. Since
t.025,14 = 2.1448, the 95% confidence interval for μX −μY is given by(

x̄ − ȳ − 2.1448 sp

√
1

8
+ 1

8
, x̄ − ȳ + 2.1448 sp

√
1

8
+ 1

8

)

=
[
5.4 − 4.5 − 2.1448(0.75)

√
0.25 , 5.4 − 4.5 + 2.1448(0.75)

√
0.25
]

= (0.1,1.7)

Comment Here the 95% confidence interval does not include the value 0. This
means that had we tested

H0: μX =μY

versus

H1: μX �=μY

at the α = 0.05 level of significance, H0 would have been rejected.

Comment For the scenario of Theorem of 9.5.1, if the variances are not equal, then
an approximate 100(1 −α)% confidence interval is given by⎛⎝x̄ − ȳ − tα/2,v

√
s2

X

n
+ s2

Y

m
, x̄ − ȳ + tα/2,ν

√
s2

X

n
+ s2

Y

m

⎞⎠
where ν =

(
θ̂+ n

m

)2

1
(n−1)

θ̂2+ 1
(m−1) (

n
m )

2 for θ̂ = s2
X

s2
Y

.

If the degrees or freedom exceed 100, then the form above is used, with zα/2

replacing tα/2,v .

Theorem
9.5.2

Let x1, x2, . . . , xn and y1, y2, . . . , ym be independent random samples drawn from nor-
mal distributions with standard deviations σX and σY , respectively. A 100(1 − α)%
confidence interval for the variance ratio, σ 2

X/σ 2
Y , is given by(

s2
X

s2
Y

Fα/2,m−1,n−1,
s2

X

s2
Y

F1−α/2,m−1,n−1

)

Proof Start with the fact that S2
Y /σ 2

Y

S2
X /σ 2

X
has an F distribution with m − 1 and n − 1 df,

and follow the strategy used in the proof of Theorem 9.5.1—that is, isolate σ 2
X/σ 2

Y in
the center of the analogous inequalities. �
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Case Study 9.5.2

The easiest way to measure the movement, or flow, of a glacier is with a cam-
era. First a set of reference points is marked off at various sites near the
glacier’s edge. Then these points, along with the glacier, are photographed
from an airplane. The problem is this: How long should the time interval
be between photographs? If too short a period has elapsed, the glacier will
not have moved very far and the errors associated with the photographic
technique will be relatively large. If too long a period has elapsed, parts
of the glacier might be deformed by the surrounding terrain, an eventual-
ity that could introduce substantial variability into the point-to-point velocity
estimates.

Two sets of flow rates for the Antarctic’s Hoseason Glacier have been cal-
culated (115), one based on photographs taken three years apart, the other, five
years apart (see Table 9.5.2). On the basis of other considerations, it can be
assumed that the “true” flow rate was constant for the eight years in question.

Table 9.5.2 Flow Rates Estimated for the Hoseason
Glacier (Meters per Day)

Three-Year Span, xi Five-Year Span, yi

0.73 0.72
0.76 0.74
0.75 0.74
0.77 0.72
0.73 0.72
0.75
0.74

The objective here is to assess the relative variabilities associated with the
three- and five-year time periods. One way to do this—assuming the data to be
normal—is to construct, say, a 95% confidence interval for the variance ratio.
If that interval does not contain the value 1, we infer that the two time periods
lead to flow rate estimates of significantly different precision.

From Table 9.5.2,
7∑

i=1

xi = 5.23 and
7∑

i=1

x2
i = 3.9089

so that

s2
X = 7(3.9089)− (5.23)2

7(6)
= 0.000224

Similarly,

5∑
i=1

yi = 3.64 and
5∑

i=1

y2
i = 2.6504

(Continued on next page)
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making

s2
Y = 5(2.6504)− (3.64)2

5(4)
= 0.000120

The two critical values come from Table A.4 in the Appendix:

F.025,4,6 = 0.109 and F.975,4,6 = 6.23

Substituting, then, into the statement of Theorem 9.5.2 gives (0.203, 11.629) as
a 95% confidence interval for σ 2

X/σ 2
Y :(

0.000224

0.000120
0.109,

0.000224

0.000120
6.23

)
= (0.203,11.629)

Thus, although the three-year data have a larger sample variance than the five-
year data, no conclusions can be drawn about the true variances being different,
because the ratio σ 2

X/σ 2
Y = 1 is contained in the confidence interval.

Theorem
9.5.3

Let x and y denote the numbers of successes observed in two independent sets of n
and m Bernoulli trials, respectively. If pX and pY denote the true success probabilities,
an approximate 100(1 −α)% confidence interval for pX − pY is given by⎡⎣ x

n
− y

m
− zα/2

√(
x
n

) (
1 − x

n

)
n

+
( y

m

) (
1 − y

m

)
m

,

x

n
− y

m
+ zα/2

√(
x
n

) (
1 − x

n

)
n

+
( y

m

) (
1 − y

m

)
m

⎤⎦
Proof See Question 9.5.11. �

Case Study 9.5.3

If a hospital patient’s heart stops, an emergency message, code blue, is called.
A team rushes to the bedside and attempts to revive the patient. A study (131)
suggests that patients are better off not suffering cardiac arrest after 11 p.m., the
so-called graveyard shift. The study lasted seven years and used non–emergency
room data from over five hundred hospitals. During the day and early evening
hours, 58,593 cardiac arrests occurred and 11,604 patients survived to leave the
hospital. For the 11 p.m. shift, of the 28,155 heart stoppages, 4139 patients lived
to be discharged.

Let pX (estimated by 11,604/58,593 = 0.198) be the true probability of sur-
vival during the earlier hours. Let pY denote the true survival probability for the
graveyard shift (estimated by 4139/28,155 = 0.147). To construct a 95% confi-
dence interval for pX − pY , take zα/2 =1.96. Then Theorem 9.5.3 gives the lower
limit of the confidence interval as

0.198 − 0.147 − 1.96

√
(0.198)(0.802)

58,593
+ (0.147)(0.853)

28,155
= 0.0458

(Continued on next page)
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(Case Study 9.5.3 continued)

and the upper limit as

0.198 − 0.147 + 1.96

√
(0.198)(0.802)

58,593
+ (0.147)(0.853)

28,155
= 0.0562

so the 95% confidence interval is (0.0458, 0.0562).
Since pX − pY = 0 is not included in the interval (which lies entirely to the

right of 0), we can conclude that survival rates are worse during the graveyard
shift.

Questions

9.5.1 In 1965 a silver shortage in the United States
prompted Congress to authorize the minting of silverless
dimes and quarters. They also recommended that the sil-
ver content of half-dollars be reduced from 90% to 40%.
Historically, fluctuations in the amount of rare metals
found in coins are not uncommon (76). The following data
may be a case in point. Listed are the silver percentages
found in samples of a Byzantine coin minted on two sep-
arate occasions during the reign of Manuel I (1143–1180).
Construct a 90% confidence interval for μX −μY , the true
average difference in the coin’s silver content (= “early” −
“late”). What does the interval imply about the outcome
of testing H0: μX = μY ? For these data sX = 0.54 and sY =
0.36.

Early Coinage, xi Late Coinage, yi

(% Ag) (% Ag)

5.9 5.3
6.8 5.6
6.4 5.5
7.0 5.1
6.6 6.2
7.7 5.8
7.2 5.8
6.9
6.2

Average: 6.7 Average: 5.6

9.5.2 Male fiddler crabs solicit attention from the oppo-
site sex by standing in front of their burrows and waving
their claws at the females who walk by. If a female likes
what she sees, she pays the male a brief visit in his bur-
row. If everything goes well and the crustacean chemistry
clicks, she will stay a little longer and mate. In what may
be a ploy to lessen the risk of spending the night alone,
some of the males build elaborate mud domes over their
burrows. Do the following data (215) suggest that a male’s
time spent waving to females is influenced by whether his

burrow has a dome? Answer the question by constructing
and interpreting a 95% confidence interval for μX − μY .
Use the value sp = 11.2.

% of Time Spent Waving to Females

Males with Domes, xi Males without Domes, yi

100.0 76.4
58.6 84.2
93.5 96.5
83.6 88.8
84.1 85.3

79.1
83.6

9.5.3 Construct two 99% confidence intervals for μX −μY

using the data of Case Study 9.2.3, first assuming the
variances are equal, and then assuming they are not.

9.5.4 Carry out the details to complete the proof of
Theorem 9.5.1.

9.5.5 Suppose that X1, X2, . . . , Xn and Y1, Y2, . . . , Ym are
independent random samples from normal distributions
with means μX and μY and known standard deviations
σX and σY , respectively. Derive a 100(1 − α)% confidence
interval for μX −μY .

9.5.6 Construct a 95% confidence interval for σ 2
X/σ 2

Y

based on the data in Case Study 9.2.1. The hypothesis test
referred to tacitly assumed that the variances were equal.
Does that agree with your confidence interval? Explain.

9.5.7 One of the parameters used in evaluating myocar-
dial function is the end diastolic volume (EDV). The fol-
lowing table shows EDVs recorded for eight persons con-
sidered to have normal cardiac function and for six with
constrictive pericarditis (192). Would it be correct to use
Theorem 9.2.2 to test H0: μX = μY ? Answer the question
by constructing a 95% confidence interval for σ 2

X/σ 2
Y .
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Normal, xi Constrictive Pericarditis, yi

62 24
60 56
78 42
62 74
49 44
67 28
80
48

9.5.8 Complete the proof of Theorem 9.5.2.

9.5.9 Flonase is a nasal spray for diminishing nasal allergic
symptoms. In clinical trials for side effects, 782 sufferers
from allergic rhinitis were given a daily dose of 200 mcg of
Flonase. Of this group, 126 reported headaches. A group
of 758 subjects were given a placebo, and 111 of them
reported headaches. Find a 95% confidence interval for
the difference in proportion of headaches for the two
groups. Does the confidence interval suggest a statistically
significant difference in the frequency of headaches for
Flonase users?
Source: http://www.drugs.com/sfx/flonase-side-effects.html.

9.5.10 Construct an 80% confidence interval for the
difference pM − pW in the nightmare frequency data
summarized in Case Study 9.4.2.

9.5.11 If pX and pY denote the true success probabilities
associated with two sets of n and m independent Bernoulli
trials, respectively, the ratio

X
n

− Y
m

− (pX − pY )√
(X/n)(1−X/n)

n
+ (Y/m)(1−Y/m)

m

has approximately a standard normal distribution. Use
that fact to prove Theorem 9.5.3.

9.5.12 Suicide rates in the United States tend to be much
higher for men than for women, at all ages. That pat-
tern may not extend to all professions, though. Death
certificates obtained for the 3637 members of the Ameri-
can Chemical Society who died over a twenty-year period
revealed that 106 of the 3522 male deaths were suicides, as
compared to 13 of the 115 female deaths (101). Construct
a 95% confidence interval for the difference in suicide
rates. What would you conclude?

9.6 Taking a Second Look at Statistics (Choosing
Samples)
Choosing sample sizes is a topic that invariably receives extensive coverage when-
ever applied statistics and experimental design are discussed. For good reason.
Whatever the context, the number of observations making up a data set figures
prominently in the ability of those data to address any and all of the questions raised
by the experimenter. As sample sizes get larger, we know that estimators become
more precise and hypothesis tests get better at distinguishing between H0 and H1.
Larger sample sizes, of course, are also more expensive. The trade-off between how
many observations researchers can afford to take and how many they would like to
take is a choice that has to be made early on in the design of any experiment. If the
sample sizes ultimately decided upon are too small, there is a risk that the objec-
tives of the study will not be fully achieved—parameters may be estimated with
insufficient precision and hypothesis tests may reach incorrect conclusions.

That said, choosing sample sizes is often not as critical to the success of an exper-
iment as choosing sample subjects. In a two-sample design, for example, how should
we decide which particular subjects to assign to treatment X and which to treatment
Y? If the subjects comprising a sample are somehow “biased” with respect to the
measurement being recorded, the integrity of the conclusions is irretrievably com-
promised. There are no statistical techniques for “correcting” inferences based on
measurements that were biased in some unknown way. It is also true that biases can
be very subtle, yet still have a pronounced effect on the final measurements. That
being the case, it is incumbent on researchers to take every possible precaution at
the outset to prevent inappropriate assignments of subjects to treatments.

For example, suppose for your Senior Project you plan to study whether a new
synthetic testosterone can affect the behavior of female rats. Your intention is to set
up a two-sample design where ten rats will be given weekly injections of the new

http://www.drugs.com/sfx/flonase-side-effects.html
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testosterone compound and another ten rats will serve as a control group, receiving
weekly injections of a placebo. At the end of eight weeks, all twenty rats will be put
in a large community cage, and the behavior of each one will be closely monitored
for signs of aggression.

Last week you placed an order for twenty female Rattus norvegicus from the
local Rats ’R Us franchise. They arrived today, all housed in one large cage. Your
plan is to remove ten of the twenty “at random,” and then put those ten in a similarly
large cage. The ten removed will be receiving the testosterone injections; the ten
remaining in the original cage will constitute the control group. The question is,
which ten should be removed?

The obvious answer—reach in and pull out ten—is very much the wrong answer!
Why? Because the samples formed in such a way might very well be biased if, for
example, you (understandably) tended to avoid grabbing the rats that looked like
they might bite. If that were the case, the ones you drew out would be biased, by
virtue of being more passive than the ones left behind. Since the measurements ulti-
mately to be taken deal with aggression, biasing the samples in that particular way
would be a fatal flaw. Whether the total sample size was twenty or twenty thousand,
the results would be worthless.

In general, relying on our intuitive sense of the word “random” to allocate sub-
jects to different treatments is risky, to say the least. The correct approach would
be to number the rats from 1 to 20 and then use a random number table or a com-
puter’s random number generator to identify the ten to be removed. Figure 9.6.1
shows the Minitab syntax for choosing a random sample of ten numbers from the
integers 1 through 20. According to this particular run of the SAMPLE routine, the
ten rats to be removed for the testosterone injections are (in order) numbers 1, 5, 8,
9, 10, 14, 15, 18, 19 and 20.

Figure 9.6.1 MTB > set c1
DATA > 1:20
DATA > end
MTB > sample 10 c1 c2
MTB > print c2

Data Display

C2 18 1 20 19 9 10 8 15 14 5

There is a moral here. Designing, carrying out, and analyzing an experiment is
an exercise that draws on a variety of scientific, computational, and statistical skills,
some of which may be quite sophisticated. No matter how well those complex issues
are attended to, though, the enterprise will fail if the simplest and most basic aspects
of the experiment—such as assigning subjects to treatments—are not carefully
scrutinized and properly done. The Devil, as the saying goes, is in the details.

Appendix 9.A.1 A Derivation of the Two-Sample t Test (A Proof of Theorem 9.2.2)

To begin, we note that both the restricted and unrestricted parameter spaces, ω and
�, are three dimensional:

ω ={(μX ,μY , σ ): −∞<μX =μY <∞,0 <σ <∞}
and

�={(μX ,μY , σ ): −∞<μX <∞,−∞<μY <∞,0 <σ <∞}
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Since the X ’s and Y ’s are independent (and normal),

L(ω)=
n∏

i=1

fX (xi )

m∏
j=1

fY (y j )

=
(

1√
2πσ

)n+m

exp

⎧⎨⎩− 1

2σ 2

⎡⎣ n∑
i=1

(xi −μ)2+
m∑

j=1

(yi −μ)2

⎤⎦⎫⎬⎭ (9.A.1.1)

where μ = μX = μY . If we take ln L(ω) and solve ∂ln L(ω)/∂μ = 0 and ∂ln
L(ω)/∂σ 2 = 0 simultaneously, the solutions will be the restricted maximum likeli-
hood estimates:

μωe =

n∑
i=1

xi +
m∑

j=1
y j

n + m
(9.A.1.2)

and

σ 2
ωe

=

n∑
i=1

(xi −μe)
2 +

m∑
j=1

(
y j −μe

)2
n + m

(9.A.1.3)

Substituting Equations 9.A.1.2 and 9.A.1.3 into Equation 9.A.1.1 gives the numera-
tor of the generalized likelihood ratio:

L(ωe)=
(

e−1

2πσ 2
ωe

)(n+m)/2

Similarly, the likelihood function unrestricted by the null hypothesis is

L(�)=
(

1√
2πσ

)n+m

exp

⎧⎨⎩− 1

2σ 2

⎡⎣ n∑
i=1

(xi −μX )2+
m∑

j=1

(y j −μY )2

⎤⎦⎫⎬⎭ (9.A.1.4)

Here, solving

∂ ln L(�)

∂μX
= 0

∂ ln L(�)

∂μY
= 0

∂ ln L(�)

∂σ 2
= 0



490 Chapter 9 Two-Sample Inferences

gives

μXe = x̄ μYe = ȳ

σ 2
�e

=

n∑
i=1

(xi − x̄)2 +
m∑

j=1
(y j − ȳ)2

n + m

If these estimates are substituted into Equation 9.A.1.4, the maximum value for
L(�) simplifies to

L(�e)= (e−1/2πσ 2
�e

)(n+m)/2

It follows, then, that the generalized likelihood ratio, λ, is equal to

λ = L(ωe)

L(�e)
=
(

σ 2
�e

σ 2
ωe

)(n+m)/2

or, equivalently,

λ2/(n+m) =

n∑
i=1

(xi − x̄)2 +
m∑

j=1

(
y j − ȳ

)2
n∑

i=1

[
xi −
(

nx̄ +mȳ
n +m

)]2 +
m∑

j=1

[
y j −
(

nx̄ +mȳ
n +m

)]2
Using the identity

n∑
i=1

(
xi − nx̄ + mȳ

n + m

)2

=
n∑

i=1

(xi − x̄)2 + m2n

(n + m)2
(x̄ − ȳ)2

we can write λ2/(n+m) as

λ2/(n+m) =

n∑
i=1

(xi − x̄)2 +
m∑

j=1

(
y j − ȳ

)2
n∑

i=1
(xi − x̄)2 +

m∑
j=1

(
y j − ȳ

)2 + nm
n+m (x̄ − ȳ)2

= 1

1 + (x̄−ȳ)2[
n∑

i=1
(xi −x̄)2+

m∑
j=1

(y j −ȳ)
2

](
1
n + 1

m

)

= n + m − 2

n + m − 2 + (x̄−ȳ)2

s2
p[(1/n)+ (1/m)]

where s2
p is the pooled variance:

s2
p = 1

n + m − 2

⎡⎣ n∑
i=1

(xi − x̄)2 +
m∑

j=1

(
y j − ȳ

)2⎤⎦
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Therefore, in terms of the observed t ratio, λ2/(n+m) simplifies to

λ2/(n+m) = n + m − 2

n + m − 2 + t2
(9.A.1.5)

At this point the proof is almost complete. The generalized likelihood ratio cri-
terion, rejecting H0: μX = μY when 0 < λ ≤ λ∗, is clearly equivalent to rejecting the
null hypothesis when 0 < λ2/(n+m) ≤ λ∗∗. But both of these, from Equation 9.A.1.5,
are the same as rejecting H0 when t2 is too large. Thus the decision rule in terms
of t2 is

Reject H0: μX =μY in favor of H1: μX �=μY if t2 ≥ t∗2

Or, phrasing this in still another way, we should reject H0 if either t ≥ t∗ or t ≤ −t∗,
where

P(−t∗ < T < t∗ | H0: μX =μY is true)= 1 −α

By Theorem 9.2.1, though, T has a Student t distribution with n + m − 2 df, which
makes ±t∗ =±tα/2,n+m−2, and the theorem is proved.

Appendix 9.A.2 Minitab Applications

Minitab has a simple command—TWOSAMPLE C1 C2—for doing a two-sample
t test on a set of xi ’s and yi ’s stored in columns C1 and C2, respectively. The same
command automatically constructs a 95% confidence interval for μX −μY .

Figure 9.A.2.1 MTB > set c1
DATA > 0.225 0.262 0.217 0.240 0.230 0.229 0.235 0.217
DATA > end
MTB > set c2
DATA > 0.209 0.205 0.196 0.210 0.202 0.207 0.224 0.223
DATA > 0.220 0.201
DATA > end
MTB > name c1 ‘X’ c2 ‘Y’
MTB > twosample c1 c2;
SUBC > pooled.

Two-Sample T-Test and CI: X, Y

Two-sample T for X vs Y

N Mean StDev SE Mean
X 8 0.2319 0.0146 0.0051
Y 10 0.20970 0.00966 0.0031

Difference = mu (X) - mu (Y)
Estimate for difference: 0.02217
95% CI for difference: (0.01005, 0.03430)
T-Test of difference = 0 (vs not =): T-Value = 3.88 P-Value = 0.001 DF = 16
Both use Pooled StDev = 0.0121

Figure 9.A.2.1 shows the syntax for analyzing the Quintus Curtius Snodgrass
data in Table 9.2.1. Notice that a subcommand is included. If we write

MTB > twosample c1 c2
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Minitab will assume the two population variances are not equal, and it will perform
the approximate t test described in Theorem 9.2.3. If the intention is to assume that
σ 2

X = σ 2
Y (and do the t test as described in Theorem 9.2.1), the proper syntax is

MTB > twosample c1 c2;
SUBC > pooled.

As is typical, Minitab associates the test statistic with a P-value rather than
an “Accept H0” or “Reject H0” conclusion. Here, P = 0.001, which is consistent
with the decision reached in Case Study 9.2.1 to “reject H0 at the α = 0.01 level of
significance.” Figure 9.A.2.2 shows the “unpooled” analysis of these same data. The
conclusion is the same, although the P-value has almost tripled, because both the
test statistic and its degrees of freedom have decreased (recall Question 9.2.18).

Figure 9.A.2.2 MTB > set c1
DATA > 0.225 0.262 0.217 0.240 0.230 0.229 0.235 0.217
DATA > end
MTB > set c2
DATA > 0.209 0.205 0.196 0.210 0.202 0.207 0.224 0.223 0.220 0.201
DATA > end
MTB > name c1 ‘X’ c2 ‘Y’
MTB > twosample c1 c2

Two-Sample T-Test and CI: X, Y

Two-sample T for X vs Y

N Mean StDev SE Mean
X 8 0.2319 0.0146 0.0051
Y 10 0.20970 0.00966 0.0031

Difference = mu (X) - mu (Y)
Estimate for difference: 0.02217
95% CI for difference: (0.00900, 0.03535)
T-Test of difference = 0 (vs not =): T-Value = 3.70 P-Value = 0.003 DF = 11

Testing H0:μX =μY Using Minitab Windows

1. Enter the two samples in C1 and C2, respectively.
2. Click on STAT, then on BASIC STATISTICS, then on 2-SAMPLE t.
3. Click on SAMPLES IN DIFFERENT COLUMNS, and type C1 in

FIRST box and C2 in SECOND box.
4. Click on ASSUME EQUAL VARIANCES (if a pooled t test is

desired).
5. Click on OPTIONS.
6. Enter value for 100 (1 −α) in CONFIDENCE LEVEL box.
7. Click on NOT EQUAL; then click on whichever H1 is desired.
8. Click on OK; click on remaining OK.
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Called by some the founder of twentieth-century statistics, Pearson received his
university education at Cambridge, concentrating on physics, philosophy, and law.
He was called to the bar in 1881 but never practiced. In 1911 Pearson resigned his
chair of applied mathematics and mechanics at University College, London, and
became the first Galton Professor of Eugenics, as was Galton’s wish. Together with
Weldon, Pearson founded the prestigious journal Biometrika and served as its
principal editor from 1901 until his death.

—Karl Pearson (1857--1936)

10.1 Introduction
The give-and-take between the mathematics of probability and the empiricism of
statistics should be, by now, a comfortably familiar theme. Time and time again we
have seen repeated measurements, no matter their source, exhibiting a regularity of
pattern that can be well approximated by one or more of the handful of probability
functions introduced in Chapter 4. Until now, all the inferences resulting from this
interfacing have been parameter specific, a fact to which the many hypothesis tests
about means, variances, and binomial proportions paraded forth in Chapters 6, 7,
and 9 bear ample testimony. Still, there are other situations where the basic form
of pX (k) or fY (y), rather than the value of its parameters, is the most important
question at issue. These situations are the focus of Chapter 10.

A geneticist, for example, might want to know whether the inheritance of a cer-
tain set of traits follows the same set of ratios as those prescribed by Mendelian
theory. The objective of a psychologist, on the other hand, might be to confirm
or refute a newly proposed model for cognitive serial learning. Probably the most
habitual users of inference procedures directed at the entire pdf, though, are statis-
ticians themselves: As a prelude to doing any sort of hypothesis test or confidence
interval, an attempt should be made, sample size permitting, to verify that the data
are, indeed, representative of whatever distribution that procedure presumes. Usu-
ally, this will mean testing to see whether a set of yi ’s might conceivably represent a
normal distribution.

493
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In general, any procedure that seeks to determine whether a set of data could
reasonably have originated from some given probability distribution, or class of
probability distributions, is called a goodness-of-fit test. The principle behind the
particular goodness-of-fit test we will look at is very straightforward: First the
observed data are grouped, more or less arbitrarily, into k classes; then each class’s
“expected” occupancy is calculated on the basis of the presumed model. If it should
happen that the set of observed and expected frequencies shows considerably more
disagreement than sampling variability would predict, our conclusion will be that
the supposed pX (k) or fY (y) was incorrect.

In practice, goodness-of-fit tests have several variants, depending on the speci-
ficity of the null hypothesis. Section 10.3 describes the approach to take when both
the form of the presumed data model and the values of its parameters are known.
More typically, we know the form of pX (k) or fY (y), but their parameters need to
be estimated; these are taken up in Section 10.4.

A somewhat different application of goodness-of-fit testing is the focus of
Section 10.5. There, the null hypothesis is that two random variables are indepen-
dent. In more than a few fields of endeavor, tests for independence are among the
most frequently used of all inference procedures.

10.2 The Multinomial Distribution
Their diversity notwithstanding, most goodness-of-fit tests are based on essentially
the same statistic, one that has an asymptotic chi square distribution. The underlying
structure of that statistic, though, derives from the multinomial distribution, a direct
extension of the familiar binomial. In this section we define the multinomial and
state those of its properties that relate to goodness-of-fit testing.

Given a series of n independent Bernoulli trials, each with success probability
p, we know that the pdf for X , the total number of successes, is

P(X = k)= pX (k)=
(

n

k

)
pk(1 − p)n−k, k = 0,1, . . . ,n (10.2.1)

One of the obvious ways to generalize Equation 10.2.1 is to consider situations in
which at each trial, one of t outcomes can occur, rather than just one of two. That is,
we will assume that each trial will result in one of the outcomes r1, r2, . . . , rt , where

p(ri )= pi , i = 1,2, . . . , t (see Figure 10.2.1). It follows, of course, that
t∑

i=1
pi = 1.

Figure 10.2.1

Possible

Independent trials

outcomes

r1

r2

r1

r2
pi = P(ri ),

r1

r2

i = 1, 2, . . . , t
rt

1
rt

2
. . .

rt

n

In the binomial model, the two possible outcomes are denoted s and f , where
P(s)= p and P( f )=1− p. Moreover, the outcomes of the n trials can be nicely sum-
marized with a single random variable X , where X denotes the number of successes.
In the more general multinomial model, we will need a random variable to count
the number of times that each of the ri ’s occurs. To that end, we define
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Xi = number of times ri occurs, i = 1,2, . . . , t

For a given set of n trials, X1 = k1, X2 = k2, . . . , Xt = kt and
t∑

i=1
ki = n.

Theorem
10.2.1

Let Xi denote the number of times that the outcome ri occurs, i = 1,2, . . . , t , in a
series of n independent trials, where pi = P(ri ). Then the vector (X1, X2, . . . , Xt ) has a
multinomial distribution and

pX1,X2, ... ,Xt (k1, k2, . . . , kt )= P(X1 = k1, X2 = k2, . . . , Xt = kt )

= n!
k1! k2! · · · kt ! pk1

1 pk2
2 · · · pkt

t ,

ki = 0,1, . . . ,n; i = 1,2, . . . , t;
t∑

i=1

ki = n

Proof Any particular sequence of k1 r1’s, k2 r2’s, . . . , and kt rt ’s has probability
pk1

1 pk2
2 . . . pkt

t . Moreover, the total number of outcome sequences that will gener-
ate the values (k1, k2, . . . , kt ) is the number of ways to permute n objects, k1 of one
type, k2 of a second type, . . ., and kt of a tth type. By Theorem 2.6.2 that number is
n!/k1!k2! . . . kt !, and the statement of the theorem follows. �

Depending on the context, the ri ’s associated with the n trials in Figure 10.2.1 can
be either single numerical values (or categories) or ranges of numerical values (or
categories). Example 10.2.1 illustrates the first type; Example 10.2.2, the second. The
only requirements imposed on the ri ’s are (1) they must span all of the outcomes
possible at a given trial and (2) they must be mutually exclusive.

Example
10.2.1

Suppose a loaded die is tossed twelve times, where

pi = P(Face i appears)= ci, i = 1,2, . . . ,6

What is the probability that each face will appear exactly twice?
Note that

6∑
i=1

pi = 1 =
6∑

i=1

ci = c · 6(6 + 1)

2

which implies that c = 1
21 (and pi = i/21). In the terminology of Theorem 10.2.1, the

possible outcomes at each trial are the t = 6 faces, 1 (= r1) through 6 (= r6), and Xi

is the number of times face i occurs, i = 1,2, . . . ,6.
The question is asking for the probability of the vector

(X1, X2, X3, X4, X5, X6)= (2,2,2,2,2,2)

According to Theorem 10.2.1,

P(X1 = 2, X2 = 2, . . . , X6 = 2) = 12!
2!2! · · ·2!

(
1

21

)2( 2

21

)2

· · ·
(

6

21

)2

= 0.0005
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Example
10.2.2

Five observations are drawn at random from the pdf

fY (y)= 6y(1 − y), 0 ≤ y ≤ 1

What is the probability that one of the observations lies in the interval [0, 0.25), none
in the interval [0.25, 0.50), three in the interval [0.50, 0.75), and one in the interval
[0.75, 1.00]?

0 0.25

1

2

0.50 0.75 1.00

P
ro

ba
bi

lit
y 

de
ns

it
y

f   (y) = 6y(1 – y)Y

p1

r1 r4

p4

p2

r2

p3

r3

Figure 10.2.2

Figure 10.2.2 shows the pdf being sampled, together with the ranges r1, r2, r3, and
r4, and the intended disposition of the five data points. The pi ’s of Theorem 10.2.1
are now areas. Integrating fY (y) from 0 to 0.25, for example, gives:

p1 =
∫ 0.25

0
6y(1 − y)dy

= 3y2

∣∣∣∣0.25
0

− 2y3

∣∣∣∣0.25
0

= 5

32

By symmetry, p4 = 5
32 . Moreover, since the area under fY (y) equals 1,

p2 = p3 = 1

2

(
1 − 10

32

)
= 11

32

Let Xi denote the number of observations that fall into the ith range, i =
1,2,3,4. The probability associated with the multinomial vector (1, 0, 3, 1), then,
is 0.0198:

P(X1 = 1, X2 = 0, X3 = 3, X4 = 1) = 5!
1! 0! 3! 1!

(
5

32

)1(11

32

)0(11

32

)3( 5

32

)1

= 0.0198

A Multinomial/Binomial Relationship

Since the multinomial pdf is conceptually a straightforward generalization of the
binomial pdf, it should come as no surprise that each Xi in a multinomial vector is,
itself, a binomial random variable.

Theorem
10.2.2

Suppose the vector (X1, X2, . . . , Xt ) is a multinomial random variable with parame-
ters n, p1, p2, . . ., and pt . Then the marginal distribution of Xi , i = 1,2, . . . , t , is the
binomial pdf with parameters n and pi .
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Proof To deduce the pdf for Xi we need simply to dichotomize the possible out-
comes at each of the trials into “ri ” and “not ri .” Then Xi becomes, in effect, the
number of “successes” in n independent Bernoulli trials, where the probability of
success at any given trial is pi . By Theorem 3.2.1, it follows that Xi is a binomial
random variable with parameters n and pi . �

Comment Theorem 10.2.2 gives the pdf for any given Xi in a multinomial vector.
Since that pdf is the binomial, we also know that the mean and variance of each Xi

are E(Xi )= npi and Var(Xi )= npi (1 − pi ), respectively.

Example
10.2.3

A physics professor has just given an exam to fifty students enrolled in a thermody-
namics class. From past experience, she has reason to believe that the scores will be
normally distributed with μ=80.0 and σ =5.0. Students scoring ninety or above will
receive A’s, between eighty and eighty-nine, B’s, and so on. What are the expected
values and variances for the numbers of students receiving each of the five letter
grades?

Let Y denote the score a student earns on the exam, and let r1, r2, r3, r4, and r5

denote the ranges corresponding to the letter grades A, B, C, D, and F, respectively.
Then

p1 = P(Student earns an A)

= P(90 ≤ Y ≤ 100)

= P

(
90 − 80

5
≤ Y − 80

5
≤ 100 − 80

5

)
= P(2.00 ≤ Z ≤ 4.00)

= 0.0228

If X1 is the number of A’s that are earned,

E(X1)= np1 = 50(0.0228)= 1.14

and

Var(X1)= np1(1 − p1)= 50(0.0228)(0.9772)= 1.11

Table 10.2.1 lists the means and variances for all the Xi ’s. Each is an illustration
of the Comment following Theorem 10.2.2.

Table 10.2.1

Score Grade pi E(Xi ) Var(Xi )

90 ≤ Y ≤ 100 A 0.0228 1.14 1.11
80 ≤ Y < 90 B 0.4772 23.86 12.47
70 ≤ Y < 80 C 0.4772 23.86 12.47
60 ≤ Y < 70 D 0.0228 1.14 1.11

Y <60 F 0.0000 0.00 0.00
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Questions

10.2.1 The Advanced Placement Program allows high
school students to enroll in special classes in which a sub-
ject is studied at the college level. Proficiency is measured
by a national examination. Universities typically grant
course credit for a sufficiently strong performance. The
possible scores are 1, 2, 3, 4, and 5, with 5 being the high-
est. The following table gives the probabilities associated
with the scores recently made on the U.S. history test (1):

Score Probability

1 0.116
2 0.325
3 0.236
4 0.211
5 0.112

Suppose six students from a class take the test. What is the
probability they earn three 5’s, two 4’s, and a 3?

10.2.2 In Mendel’s classical experiments with peas, he
produced hybrids in such a way that the probabilities of
observing the different phenotypes listed below were 9

16
,

3
16

, 3
16

, and 1
16

, respectively. Suppose that four such hybrid
plants were selected at random. What is the probability
that each of the four phenotypes would be represented?

Type Probability

Round and yellow 9/16
Round and green 3/16
Angular and yellow 3/16
Angular and green 1/16

10.2.3 In classifying hypertension, three categories are
used: individuals whose systolic blood pressures are less
than 140, those with blood pressures between 140 and
160, and those with blood pressures over 160. For males
between the ages of eighteen and twenty-four, systolic
blood pressures are normally distributed with a mean
equal to 124 and a standard deviation equal to 13.7.
Suppose a random sample of ten individuals from that
particular demographic group are examined. What is the
probability that six of the blood pressures will be in the
first group, three in the second, and one in the third?

10.2.4 An army enlistment officer categorizes poten-
tial recruits by IQ into three groups—class I:
< 90, class II: 90–110, and class III: > 110. Given that
the IQs in the population from which the recruits are
drawn are normally distributed with μ = 100 and σ = 16,
calculate the probability that of seven enlistees, two will
belong to class I, four to class II, and one to class III.

10.2.5 A disgruntled Anchorage bush pilot, upset because
his gasoline credit card was cancelled, fires six air-to-
surface missiles at the Alaskan pipeline. If a missile lands
anywhere within twenty yards of the pipeline, major struc-
tural damage will be sustained. Assume that the probabil-
ity function reflecting the pilot’s expertise as a bombardier
is the expression

fY (y)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
60 + y

3600
, −60 < y < 0

60 − y

3600
, 0 ≤ y < 60

0, elsewhere

where y denotes the perpendicular distance (in yards)
from the pipeline to the point of impact. What is the prob-
ability that two of the missiles will land within twenty
yards to the left of the pipeline and four will land within
twenty yards to the right?

10.2.6 Based on his performance so far this season, a
baseball player has the following probabilities associated
with each official at-bat:

Outcome Probability

Out .713
Single .270
Double .010
Triple .002
Home run .005

If he has five official at-bats in tomorrow’s game, what are
the chances he makes two outs and hits two singles and a
double?

10.2.7 Suppose that a random sample of fifty observations
are taken from the pdf

fY (y)= 3y2, 0 ≤ y ≤ 1

Let Xi be the number of observations in the interval [0,
1/4), X2 the number in [1/4, 2/4), X3 the number in [2/4,
3/4), and X4 the number in [3/4, 1].
(a) Write a formula for fX1, X2, X3, X4 (3,7,15,25).
(b) Find Var(X3).

10.2.8 Let the vector of random variables (X1, X2, X3)
have the trinomial pdf with parameters n, p1, p2, and p3 =
1 − p1 − p2. That is,

P(X1 = k1, X2 = k2, X3 = k3)= n!
k1! k2! k3! pk1

1 pk2
2 pk3

3 ,

ki = 0,1, . . . ,n; i = 1,2,3; k1 + k2 + k3 = n
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By definition, the moment-generating function for
(X1, X2, X3) is given by

MX1, X2, X3(t1, t2, t3)= E(et1 X1+t2 X2+t3 X3)

Show that

MX1,X2,X3(t1, t2, t3)= (p1et1 + p2et2 + p3et3)n

10.2.9 If MX1,X2,X3(t1, t2, t3) is the moment-generating
function for (X1, X2, X3), then MX1,X2,X3(t1,0,0),

MX1,X2,X3(0, t2,0), and MX1,X2,X3(0,0, t3) are the moment-
generating functions for the marginal pdfs of X1, X2, and
X3, respectively. Use this fact, together with the result of
Question 10.2.8, to verify the statement of Theorem 10.2.2.

10.2.10 Let (k1, k2, . . . , kt) be the vector of sample obser-
vations representing a multinomial random variable with
parameters n, p1, p2, . . ., and pt . Show that the maximum
likelihood estimate for pi is ki/n, i = 1,2, . . . , t .

10.3 Goodness-of-Fit Tests: All Parameters Known
The simplest version of a goodness-of-fit test arises when an experimenter is able to
specify completely the probability model from which the sample data are alleged to
have come. It might be supposed, for example, that a set of yi ’s is being generated
by an exponential pdf with parameter equal to 6.3, or by a normal distribution with
μ = 500 and σ = 100. For continuous pdfs such as those, the hypotheses to be tested
will be written

H0: fY (y)= fo(y)

versus

H1: fY (y) �= fo(y)

where fY (y) and fo(y) are the true and presumed pdfs, respectively. For a typical
discrete model, the null hypothesis would be written H0: pX (k) = po(k). It is not
uncommon, though, for discrete random variables to be characterized simply by a
set of probabilities associated with the t ri ’s defined in Section 10.2, rather than by
an equation. Then the hypotheses to be tested take the form

H0: p1 = p1o , p2 = p2o , . . . , pt = pto

versus

H1: pi �= pio for at least one i

The first procedure for testing goodness-of-fit hypotheses was proposed by Karl
Pearson in 1900. Couched in the language of the multinomial, the prototype of Pear-
son’s method requires that (1) the n observations be grouped into t classes and
(2) the presumed model be completely specified. Theorem 10.3.1 defines Pearson’s
test statistic and gives the decision rule for choosing between H0 and H1. In effect,
H0 is rejected if there is too much disagreement between the actual values for the
multinomial Xi ’s and the expected values of those same Xi ’s.

Theorem
10.3.1

Let r1, r2, . . . , rt be the set of possible outcomes (or ranges of outcomes) associated
with each of n independent trials, where P(ri )= pi , i = 1,2, . . . , t . Let Xi = number of
times ri occurs, i = 1,2, . . . , t . Then

a. The random variable

D =
t∑

i=1

(Xi − npi )
2

npi

has approximately a χ2 distribution with t − 1 degrees of freedom. For the
approximation to be adequate, the t classes should be defined so that npi ≥ 5,
for all i .
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b. Let k1, k2, . . . , kt be the observed frequencies for the outcomes r1, r2, . . . , rt ,
respectively, and let np1o ,np2o , . . . ,npto be the corresponding expected frequen-
cies based on the null hypothesis. At the α level of significance, H0: fY (y)= fo(y)

[or H0: pX (k)= po(k) or H0: p1 = p1o , p2 = p2o , . . . , pt = pto ] is rejected if

d =
t∑

i=1

(ki − npio)
2

npio

≥χ2
1−α,t−1

(where npio ≥ 5 for all i).

Proof A formal proof of part (a) lies beyond the scope of this text, but the
direction it takes can be illustrated for the simple case where t = 2. Under that
scenario,

D = (X1 − np1)
2

np1
+ (X2 − np2)

2

np2

= (X1 − np1)
2

np1
+ [n − X1 − n(1 − p1)]2

n(1 − p1)

= (X1 − np1)
2(1 − p1)+ (−X1 + np1)

2 p1

np1(1 − p1)

= (X1 − np1)
2

np1(1 − p1)

From Theorem 10.2.2, E(X1) = np1 and Var(X1) = np1(1 − p1), implying that D can
be written

D =
[

X1 − E(X1)√
Var(X1)

]2

By Theorem 4.3.1, then, D is the square of a variable that is asymptotically a stan-
dard normal, and the statement of part (a) follows (for k = 2) from Definition 7.3.1.
[Proving the general statement is accomplished by showing that the limit of the
moment-generating function for D—as n goes to ∞—is the moment-generating
function for a χ2

t−1 random variable. See (63).] �

Comment Although Pearson formulated his statistic before any general theories of
hypothesis testing had been developed, it can be shown that a decision rule based
on D is asymptotically equivalent to the generalized likelihood ratio test of H0: p1 =
p1o , p2 = p2o , . . . , pt = pto .

Case Study 10.3.1

Inhabiting many tropical waters is a small (<1 mm) crustacean, Ceriodaphnia
cornuta, that occurs in two distinct morphological forms: One has a series of
“horns” protruding from its exoskeleton, while the other is more rounded (see
Figure 10.3.1). Are these two variants equally likely to end up as fish food, or
do their predators have a preference (211)?

(Continued on next page)
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Unhorned Horned

Figure 10.3.1 Forms of C. cornuta.

A large number of C. cornuta were introduced into a holding tank in a
three-to-one ratio—three of the unhorned variety were added for every one
with horns. Also present in the tank was a natural predator of C. cornuta, a small
(6-cm) fish, Melaniris chagresi. After approximately one hour, long enough for
the predator to have completed its feeding, the fish was sacrificed and the con-
tents of its stomach examined. Among the forty-four crustacean casualties, the
unhorned-to-horned ratio was forty to four. What do these body counts imply?

Here, the two natural classes for the response variable are “unhorned” and
“horned,” and under the null hypothesis that morphology has no effect on sur-
vival, it would follow that the probability of either form’s being eaten should
be proportional to the numbers of each kind available. If p1 = P (Unhorned
C. cornuta is eaten) and p2 = P (Horned C. cornuta is eaten), the experimenter’s
objective reduces to a test of

H0 : p1 = 3

4
, p2 = 1

4

versus

H1 : p1 �= 3

4
, p2 �= 1

4

Let α = 0.05.

Reject H

Area = 0.05

0

3.841

χ   Distribution2
1

0

Figure 10.3.2 χ 2
1 distribution.

Since t =2, the behavior of D will be approximated by a χ2
1 distribution, for

which the 0.05 critical value is 3.841 (see Figure 10.3.2). Substituting the values
for the ki ’s and npio ’s into the test statistic gives a d of 5.93:

(Continued on next page)
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(Case Study 10.3.1 continued)

d =
[
40 − 44

(
3
4

)]2
44
(

3
4

) +
[
4 − 44

(
1
4

)]2
44
(

1
4

)
= 5.93

Our conclusion, then, is to reject H0—it would appear that morphology does
have an effect on C. cornuta’s chances of being eaten.

About the Data Rejecting H0 in this case does not actually imply what the analy-
sis seems to suggest. The calculation of d shows that more of the unhorned cornuta
(= 40) were eaten than the null hypothesis had predicted (= 33), and vice versa for
the horned cornuta (four eaten as opposed to the eleven predicted). But the pres-
ence or absence of horns was, in fact, irrelevant! A series of follow-up experiments
analyzed in much the same way clearly indicated that the reason the unhorned cor-
nuta were snacked on more often was their enlarged eyespot, which made them
more visible—and sadly (for them) more edible.

Case Study 10.3.2

Once upon a time, when there were no computers (and calculations were actu-
ally done using pencil and paper!), log tables were used to facilitate lengthy
multiplications. In the early 1930s, Frank Benford, a physicist, reexamined the
claim made many years earlier by Simon Newcomb that the first several pages
in library logarithm books are dirtier than the last several pages (recall Exam-
ple 3.3.3). Why should students and researchers have more reason to look up
logarithms beginning with 1 or 2, rather than 8 or 9? Benford began look-
ing closely at a variety of data sets, including molecular weights of chemicals,
surface areas of rivers, and baseball statistics.

Table 10.3.1

Digit, i log10(i + 1)− log10(i)

1 0.301
2 0.176
3 0.125
4 0.097
5 0.079
6 0.067
7 0.058
8 0.051
9 0.046

What he confirmed to his surprise was the fact that the first nonzero digits
in these various numbers are not equally likely to be 1’s, 2’s, . . ., and 9’s, contrary

(Continued on next page)
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to what our intuition would almost certainly suggest. For reasons discussed in
(78), the probability that the first nonzero digit is i tends to be

pi = log10(i + 1)− log10(i), i = 1,2, . . . ,9 (10.3.1)

These latter probabilities are now known as Benford’s law (see Table 10.3.1).
One particularly intriguing application of Benford’s law occurs in auditing,

where eagle-eyed examiners are ever on the lookout for budgets whose num-
bers have been fabricated to cover up falsified records. Bookkeepers are not
likely to be aware of Equation 10.3.1 and would tend to “make up” entries in
such a way that each first digit from 1 to 9 would occur roughly the same per-
centage of the time. Let pi denote the probability that the first nonzero digit in a
set of data is i , i =1,2, . . . ,9. A goodness-of-fit test to identify possible instances
of “creative” accounting would define the null hypothesis to be H0 : p1 =
p1o , p2 = p2o , · · · , p9 = p9o , where the Benford law probabilities become the pio ’s.

An example of such a test is summarized in Table 10.3.2. The values in
Column 2 are a breakdown of the 355 first digits appearing in the 1997–98
operating budget for the University of West Florida (110). The corresponding
expected frequencies based on Benford’s law are listed in Column 4, and the
goodness-of-fit test statistic, d, is the sum of the entries in Column 5:

d = [111 − 355 · (0.301)]2

355 · (0.301)
+ · · · + [20 − 355 · (0.046)]2

355 · (0.046)

= 2.49

Table 10.3.2

Digit Observed, ki Benford pio Expected (= 355 · pio ) (ki − 355pio)
2/355pio

1 111 0.301 106.9 0.16
2 60 0.176 62.5 0.10
3 46 0.125 44.4 0.06
4 29 0.097 34.4 0.86
5 26 0.079 28.0 0.15
6 22 0.067 23.8 0.13
7 21 0.058 20.6 0.01
8 20 0.051 18.1 0.20
9 20 0.046 16.3 0.82

355 1.000 355.0 2.49

Here, with t =9 classes, the critical value for the hypothesis test comes from
the chi square distribution with 8 df. If α is set equal to 0.05, χ2

.95,8 = 15.507, so
our conclusion is “fail to reject H0.”

About the Data There is no denying that Benford’s law is extremely counter-
intuitive. On everyone’s credibility scale, it would lie somewhere to the right of
ridiculous. That said, why Benford’s law holds for so many different phenomena
has a surprisingly simple explanation.
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Suppose a random variable Y takes on values that range over several orders of
magnitude—say, from 10 to 1,000,000. Also, suppose the pdf of Y when plotted on a
log base 10 scale tapers off slowly, to the extent that, for example,

P(100 ≤ Y ≤ 1000)
.= P(1000 ≤ Y ≤ 10,000)

.= P(10,000 ≤ Y ≤ 100,000)

That is,

P(2 ≤ log Y ≤ 3)
.= P(3 ≤ log Y ≤ 4)

.= P(4 ≤ log Y ≤ 5) (10.3.2)

which implies that log Y has approximately a uniform distribution.
Now, consider the log cycle for Y values ranging from, say, 1000 up to but not

including 10,000. Table 10.3.3 shows the log interval associated with each of the pos-
sible first digits, 1 through 9. In the last column are the widths of each of the nine
associated log intervals.

Table 10.3.3

Values of Y Associated Logs Width of Log Interval

1000 ≤ Y ≤ 1999+ 3.00000 ≤ log Y ≤ 3.30103 0.30103
2000 ≤ Y ≤ 2999+ 3.30103 ≤ log Y ≤ 3.47712 0.17609
3000 ≤ Y ≤ 3999+ 3.47712 ≤ log Y ≤ 3.60206 0.12494
4000 ≤ Y ≤ 4999+ 3.60206 ≤ log Y ≤ 3.69897 0.09691
5000 ≤ Y ≤ 5999+ 3.69897 ≤ log Y ≤ 3.77815 0.07918
6000 ≤ Y ≤ 6999+ 3.77815 ≤ log Y ≤ 3.84510 0.06695
7000 ≤ Y ≤ 7999+ 3.84510 ≤ log Y ≤ 3.90309 0.05799
8000 ≤ Y ≤ 8999+ 3.90309 ≤ log Y ≤ 3.95424 0.05115
9000 ≤ Y ≤ 9999+ 3.95424 ≤ log Y ≤ 4.00000 0.04576

By the earlier assumption, log Y has approximately a uniform distribution over
much of the range of Y. It follows that for a given log cycle (in this case, 3≤ log Y ≤4),

P(a ≤ log Y ≤ b)
.= b − a

Therefore, if a value is chosen at random from the interval (1000 ≤ Y ≤ 10,000), the
probability that its first digit will be 1 is the width of the interval of logs associated
with numbers in the range 1000 ≤ Y < 2000—that is, 3.30103 − 3.00000 = 0.30103.
Applying that same argument to each of the possible first digits, 1 through 9, gives
the entries listed in the third column of Table 10.3.3.

The interval widths just described, of course, are the same for every log cycle.
It follows, then, that if a random sample from fY (y) is taken over its entire range,
roughly 30% of the yi ’s will have a first digit of 1, roughly 18% will have a first digit
of 2, and so on. The entries in the third column are, in fact, Benford’s law:

P(First digit is i)= log10(i + 1)− log10(i), i = 1,2, . . . ,9

One question still remains: Are there any frequently encountered probability
functions that satisfy the assumptions imposed earlier on fY (y)? The answer is “yes.”
There is an entire family of pdfs known as power models that have the extremely
long tail necessary for Benford’s law to be applicable. Perhaps the most familiar
member of that family is the Pareto distribution, where

fY (y)= ay−a−1;a > 0,1 ≤ y <∞
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Originally developed as a model for wealth allocation among members of a popu-
lation (recall Question 5.2.14), Pareto’s distribution has been shown more recently
to describe phenomena as diverse as meteorite size, areas burned by forest fires,
population sizes of human settlements, monetary value of oil reserves, and lengths
of jobs assigned to supercomputers. Figure 10.3.3 shows two examples of Pareto
pdfs.

Figure 10.3.3
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Example
10.3.1

A new statistics software package claims to be able to generate random samples
from any continuous pdf. Asked to produce forty observations representing the pdf
fY (y) = 6y(1 − y),0 ≤ y ≤ 1, it printed out the numbers displayed in Table 10.3.4.
Are these forty yi ’s a believable random sample from fY (y)? Do an appropriate
goodness-of-fit test using the α = 0.05 level of significance.

Table 10.3.4

0.18 0.06 0.27 0.58 0.98
0.55 0.24 0.58 0.97 0.36
0.48 0.11 0.59 0.15 0.53
0.29 0.46 0.21 0.39 0.89
0.34 0.09 0.64 0.52 0.64
0.71 0.56 0.48 0.44 0.40
0.80 0.83 0.02 0.10 0.51
0.43 0.14 0.74 0.75 0.22

To apply Theorem 10.3.1 to a continuous pdf requires that the data first be
reduced to a set of classes. Table 10.3.5 shows one possible grouping. The pio ’s in
Column 3 are the areas under fY (y) above each of the five classes. For example,

p1o =
∫ 0.20

0
6y(1 − y)dy = 0.104
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Table 10.3.5

Class Observed Frequency, ki Pio 40pio

0 ≤ y < 0.20 8 0.104 4.16
0.20 ≤ y < 0.40 8 0.248 9.92
0.40 ≤ y < 0.60 14 0.296 11.84
0.60 ≤ y < 0.80 5 0.248 9.92
0.80 ≤ y < 1.00 5 0.104 4.16

Column 4 shows the expected frequencies for each of the classes. Notice that
40p1o and 40p5o are both less than 5 and fail to satisfy the “npi ≥5” restriction cited in
part (a) of Theorem 10.3.1. That violation can be easily corrected, though—we need
simply to combine the first two classes and the last two classes (see Table 10.3.6).

Table 10.3.6

Class Observed Frequency, ki Pio 40pio

0 ≤ y < 0.40 16 0.352 14.08
0.40 ≤ y < 0.60 14 0.296 11.84
0.60 ≤ y ≤1.00 10 0.352 14.08

The test statistic d, is calculated from the entries in Table 10.3.6:

d = (16 − 14.08)2

14.08
+ (14 − 11.84)2

11.84
+ (10 − 14.08)2

14.08

= 1.84

Since the number of classes ultimately being used is three, the number of degrees
of freedom associated with d is 2, and we should reject the null hypothesis that the
forty yi ’s are a random sample from fY (y)=6y(1 − y),0≤ y ≤1 if d ≥χ2

0.95,2. But the
latter is 5.991, so—based on these data—there is no compelling reason to doubt the
advertised claim.

The Goodness-of-Fit Decision Rule—An Exception

The fact that the decision rule given in part (b) of Theorem 10.3.1 is one-sided to the
right seems perfectly reasonable—simple logic tells us that the goodness-of-fit null
hypothesis should be rejected if d is large, but not if d is small. After all, small values
of d will occur only if the observed frequencies are matching up very well with the
predicted frequencies, and it seems that it would never make sense to reject H0 if
that should happen. Not so. There is one specific scenario in which the appropriate
goodness-of-fit test is one-sided to the left.

Human nature being what it is, researchers have been known (shame on them)
to massage, embellish, and otherwise falsify their data. Moreover, in their overzeal-
ous efforts to support whatever theory they claim is true, they often make a second
mistake of fabricating data that are too good—that is, that fit their model too closely.
How can that be detected? By calculating the goodness-of-fit statistic and seeing if
it falls less than χ2

α,t−1, where α would be set equal to, say, 0.05 or 0.01.
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Case Study 10.3.3

Gregor Mendel (1822–1884) was an Austrian monk and a scientist ahead of
his time. In 1866 he wrote “Experiments in Plant Hybridization,” which sum-
marized his exhaustive studies on the way inherited traits in garden peas are
passed from generation to generation. It was a landmark piece of work in which
he correctly deduced the basic laws of genetics without knowing anything about
genes, chromosomes, or molecular biology. But for reasons not entirely clear,
no one paid any attention and his findings were virtually ignored for the next
thirty-five years.

Early in the twentieth century, Mendel’s work was rediscovered and quickly
revolutionized the cultivation of plants and the breeding of domestic animals.
With his posthumous fame, though, came some blistering criticism. No less an
authority than Ronald A. Fisher voiced the opinion that Mendel’s results in that
1866 paper were too good to be true—the data had to have been falsified.

Table 10.3.7 summarizes one of the data sets that attracted Fisher’s atten-
tion (112). Two traits of garden peas were being studied—their shape (round
or angular) and their color (yellow or green). If “round” and “yellow” are
dominant and if the alleles controlling those two traits separate independently,
then (according to Mendel) dihybrid crosses should produce four possible
phenotypes, with probabilities 9/16, 3/16, 3/16, and 1/16, respectively.

Table 10.3.7

Phenotype Obs. Freq. Mendel’s Model Exp. Freq.

(round, yellow) 315 9/16 312.75
(round, green) 108 3/16 104.25
(angular, yellow) 101 3/16 104.25
(angular, green) 32 1/16 34.75

2 4

3
2

6 8 10
y

0

d = 0.47

0
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Figure 10.3.4

Notice how closely the observed frequencies approximate the expected fre-
quencies. The goodness-of-fit statistic from Theorem 10.3.1 (with 4 − 1 = 3 df) is
equal to 0.47:

(Continued on next page)
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(Case Study 10.3.3 continued)

d = (315 − 312.75)2

312.75
+ (108 − 104.25)2

104.25
+ (101 − 104.25)2

104.25
+ (32 − 34.75)2

34.75
= 0.47

Figure 10.3.4 shows that the value of d = 0.47 does look suspiciously small. By
itself, it does not rise to the level of a “smoking gun,” but Mendel’s critics had
similar issues with other portions of his data as well.

About the Data Almost seventy-five years have passed since Fisher raised his con-
cerns about the legitimacy of Mendel’s data, but there is still no broad consensus on
whether or not portions of the data were falsified. And if they were, who was respon-
sible? Mendel, of course, would be the logical suspect, but some would-be cold case
detectives think the gardener did it! What actually happened back in 1866 may never
be known, because many of Mendel’s original notes and records have been lost or
destroyed.

Questions

10.3.1 Verify the following identity concerning the statis-
tic of Theorem 10.3.1. Note that the right-hand side is
more convenient for calculations.

t∑
i=1

(Xi − npi )
2

npi
=

t∑
i=1

X 2
i

npi
− n

10.3.2 One hundred unordered samples of size 2 are
drawn without replacement from an urn containing six red
chips and four white chips. Test the adequacy of the hyper-
geometric model if zero whites were obtained 35 times;
one white, 55 times; and two whites, 10 times. Use the 0.10
decision rule.

10.3.3 Consider again the previous question. Suppose,
however, that we do not know whether the samples had
been drawn with or without replacement. Test whether
sampling with replacement is a reasonable model.

10.3.4 Show that the common belief in the propensity of
babies to choose an inconvenient hour for birth has a basis
in observation. A maternity hospital reported that out of
one year’s total of 2650 births, some 494 occurred between
midnight and 4 a.m. (168). Use the goodness-of-fit test to
show that the data are not what we would expect if births
are assumed to occur uniformly in all time periods. Let
α = 0.05.

10.3.5 Analyze the data in the previous problem using
the techniques of Section 6.3. What is the relationship
between the two test statistics?

10.3.6 A number of reports in the medical literature
suggest that the season of birth and the incidence of
schizophrenia may be related, with a higher proportion of
schizophrenics being born during the early months of the

year. A study (72) following up on this hypothesis looked
at 5139 persons born in England or Wales during the years
1921–1955 who were admitted to a psychiatric ward with a
diagnosis of schizophrenia. Of these 5139, 1383 were born
in the first quarter of the year. Based on census figures in
the two countries, the expected number of persons, out of
a random 5139, who would be born in the first quarter is
1292.1. Do an appropriate χ 2 test with α = 0.05.

10.3.7 In a move that shocked candy traditionalists, the
M&M/Mars Company recently replaced the tan M&M’s
with blue ones. More than ten million people had voted
in an election to select the new color. On learning of
the change, one concerned consumer counted the num-
ber of each color appearing in three pounds of M&M’s
(55). His tally, shown in the following table, suggests that
not all the colors appear equally often—blues, in particu-
lar, are decidedly less common than browns. According to
an M&M/Mars spokesperson, there are actually three fre-
quencies associated with the six colors: 30% of M&M’s
are brown, yellow and red each account for 20%, and
orange, blue, and green each occur 10% of the time. Test
at the α = 0.05 level of significance the hypothesis that the
consumer’s data are consistent with the company’s stated
intentions.

Color Number

Brown 455
Yellow 343
Red 318
Orange 152
Blue 130
Green 129
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10.3.8 The following table lists World Series lengths for
the fifty years from 1926 to 1975. Test at the 0.10 level
whether these data are compatible with the model that
each World Series game is an independent Bernoulli trial
with p = P(AL wins) = P(NL wins) = 1

2
.

Number of Games Number of Years

4 9
5 11
6 8
7 22

10.3.9 Records kept at an eastern racetrack showed the
following distribution of winners as a function of their
starting-post position. All 144 races were run with a full
field of eight horses.

Starting Post 1 2 3 4 5 6 7 8

Number of Winners 32 21 19 20 16 11 14 11

Test an appropriate goodness-of-fit hypothesis. Let α =
0.05.

10.3.10 It was noted in Question 4.3.24 that the mean (μ)

and standard deviation (σ ) of pregnancy durations are 266
days and 16 days, respectively. Accepting those as the true

parameter values, test whether the additional assump-
tion that pregnancy durations are normally distributed is
supported by the following list of seventy pregnancy dura-
tions reported by County General Hospital. Let α = 0.10
be the level of significance. Use “220 ≤ y < 230,” “230 ≤
y < 240,” and so on, as the classes.

251 264 234 283 226 244 269 241 276 274
263 243 254 276 241 232 260 248 284 253
265 235 259 279 256 256 254 256 250 269
240 261 263 262 259 230 268 284 259 261
268 268 264 271 263 259 294 259 263 278
267 293 247 244 250 266 286 263 274 253
281 286 266 249 255 233 245 266 265 264

10.3.11 In the past, defendants convicted of grand theft
auto served Y years in prison, where the pdf describing
the variation in Y had the form

fY (y)= 1

9
y2, 0 < y ≤ 3

Recent judicial reforms, though, may have impacted the
punishment meted out for this particular crime. A review
of 50 individuals convicted of grand theft auto five years
ago showed that 8 served less than one year in jail, 16
served between one and two years, and 26 served between
two and three years. Are these data consistent with fY (y)?
Do an appropriate hypothesis test using the α = 0.05 level
of significance.

10.4 Goodness-of-Fit Tests: Parameters Unknown
More common than the sort of problems described in Section 10.3 are situations
where the experimenter has reason to believe that the response variable follows
some particular family of pdfs—say, the normal or the Poisson—but has little or
no prior information to suggest what values should be assigned to the model’s
parameters. In cases such as these, we will carry out the goodness-of-fit test by
first estimating all unknown parameters, preferably with the method of maxi-
mum likelihood. The appropriate test statistic, denoted d1, is a modified version of
Pearson’s d:

d1 =
t∑

i=1

(ki − n p̂io)
2

n p̂io

Here, the factors p̂1o , p̂2o , . . . , p̂to denote the estimated probabilities associated with
the outcomes r1, r2, . . . , rt .

For example, suppose n = 100 observations are taken from a distribution
hypothesized to be an exponential pdf, fo(y) = λe−λy, y ≥ 0, and suppose that
r1 is defined to be the interval from 0 to 1.5. If the numerical value of λ is
known—say, λ= 0.4—then the probability associated with r1 would be denoted p1o ,
where

p1o =
∫ 1.5

0
0.4e−0.4y dy = 0.45
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On the other hand, suppose λ is not known but
100∑
i=1

yi = 200. Since the maximum

likelihood estimate for λ in this case is

λe = n

/
100∑
i=1

yi = 100

200
= 0.50

(recall Question 5.2.3), the estimated null hypothesis exponential model is fo(y) =
0.50e−0.50y , y ≥ 0, and the corresponding estimated probability associated with r1 is
denoted p̂1o , where

p̂1o =
∫ 1.5

0
fo(y;λe)dy =

∫ 1.5

0
λee−λe y dy =

∫ 1.5

0
0.5e−0.5y dy = 0.53

So, whereas d compares the observed frequencies of the ri ’s with their expected
frequencies, d1 compares the observed frequencies of the ri ’s with their estimated
expected frequencies.

We pay a price for having to rely on the data to fill in details about the pre-
sumed model: Each estimated parameter reduces by 1 the number of degrees of
freedom associated with the χ2 distribution approximating the sampling distribution
of D1. And, as we have seen in other hypothesis testing situations, as the number of
degrees of freedom associated with the test statistic decreases, so does the power of
the test.

Theorem
10.4.1

Suppose that a random sample of n observations is taken from fY (y) [or pX (k)], a
pdf having s unknown parameters. Let r1, r2, . . . , rt be a set of mutually exclusive
ranges (or outcomes) associated with each of the n observations. Let p̂i = estimated
probability of ri , i = 1,2, . . . , t (as calculated from fY (y) [or pX (k)] after the pdfs s
unknown parameters have been replaced by their maximum likelihood estimates). Let
Xi denote the number of times that ri occurs, i = 1,2, . . . , t . Then

a. the random variable

D1 =
t∑

i=1

(Xi − n p̂i )
2

n p̂i

has approximately a χ2 distribution with t − 1 − s degrees of freedom. For the
approximation to be fully adequate, the ri ’s should be defined so that n p̂i ≥ 5 for
all i .

b. to test H0: fY (y) = fo(y) [or H0: pX (k) = po(k)] at the α level of significance,
calculate

d1 =
t∑

i=1

(ki − n p̂io)
2

n p̂io

where k1, k2, . . . , kt are the observed frequencies of r1, r2, . . . , rt , respectively, and
n p̂1o ,n p̂2o , . . . ,n p̂to are the corresponding estimated expected frequencies based
on the null hypothesis. If

d1 ≥χ2
1−α,t−1−s

H0 should be rejected. (The ri ’s should be defined so that n p̂io ≥ 5 for all i .)
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Case Study 10.4.1

Despite the fact that batters occasionally go on lengthy hitting streaks (and
slumps), there is reason to believe that the number of hits a baseball player gets
in a game behaves much like a binomial random variable. Data demonstrating
that claim have come from a study (132) of National League box scores from
Opening Day through mid-July in 1996. Players had exactly four official at-bats
a total of 4096 times during that period. The resulting distribution of their hits is
summarized in Table 10.4.1. Are these numbers consistent with the hypothesis
that the number of hits a player gets in four at-bats is binomially distributed?

Table 10.4.1

Number of Hits, i Obs. Freq., ki Estimated Exp. Freq., n p̂io⎧⎪⎪⎪⎨⎪⎪⎪⎩
0
1

r ′
i s 2

3
4

1280 1289.1
1717 1728.0
915 868.6
167 194.0

17 16.3

Here the five possible outcomes associated with each four-at-bat game
would be the number of hits a player makes, so r1 = 0, r2 = 1, . . . , r5 = 4. The
presumption to be tested is that the probabilities of those ri ’s are given by the
binomial distribution—that is,

P(Player gets i hits in four at-bats)=
(

4

i

)
pi (1 − p)4−i , i = 0,1,2,3,4

where p = P(Player gets a hit on a given at-bat).
In this case, p qualifies as an unknown parameter and needs to be estimated

before the goodness-of-fit analysis can go any further. Recall from Exam-
ple 5.1.1 that the maximum likelihood estimate for p is the ratio of the total
number of successes divided by the total number of trials. With successes being
“hits” and trials being “at-bats,” it follows that

pe = 1280(0)+ 1717(1)+ 915(2)+ 167(3)+ 17(4)

4096(4)
= 4116

16,384
= 0.251

The precise null hypothesis being tested, then, can be written

H0: P(Player gets i hits)=
(

4

i

)
(0.251)i (0.749)4−i , i = 0,1,2,3,4

The third column in Table 10.4.1 shows the estimated expected frequencies
based on the estimated H0 pdf. For example,

n p̂1o = estimated expected frequency for r1

= estimated number of times players would get 0 hits

= 4096 ·
(

4

0

)
(0.251)0(0.749)4

= 1289.1

(Continued on next page)
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(Case Study 10.4.1 continued)

Corresponding to 1289.1, of course, is the entry in the first row of Column 2
in Table 10.4.1, listing the observed number of times players got zero hits
(= 1280).

If we elect to test the null hypothesis at the α = 0.05 level of significance,
then by Theorem 10.4.1 H0 should be rejected if

d1 ≥ χ2
0.95,5−1−1 = 7.815

Here the degrees of freedom associated with the test statistic would be t − 1 −
s = 5 − 1 − 1 = 3 because s = 1 df is lost as a result of p having been replaced by
its maximum likelihood estimate.

Putting the entries from the last two columns of Table 10.4.1 into the
formula for d1 gives

d1 = (1280 − 1289.1)2

1289.1
+ (1717 − 1728.0)2

1728.0
+ (915 − 868.6)2

868.6

+ (167 − 194.0)2

194.0
+ (17 − 16.3)2

16.3

= 6.401

Our conclusion, then, is to fail to reject H0—the data summarized in Table 10.4.1
do not rule out the possibility that the numbers of hits players get in four-at-bat
games follow a binomial distribution.

About the Data The fact that the binomial pdf is not ruled out as a model for the
number of hits a player gets in a game is perhaps a little surprising in light of the
fact that some of its assumptions are clearly not being satisfied. The parameter p,
for example, is presumed to be constant over the entire set of trials. That is certainly
not true for the data in Table 10.4.1. Not only does the “true” value of p obviously
vary from player to player, it varies from at-bat to at-bat for the same player if differ-
ent pitchers are used during the course of a game. Also in question is whether each
at-bat qualifies as a truly independent event. As a game progresses, Major League
players (hitters and pitchers alike) surely rehash what happened on previous at-bats
and try to make adjustments accordingly. To borrow a term we used earlier in con-
nection with hypothesis tests, it would appear that the binomial model is somewhat
“robust” with respect to departures from its two most basic assumptions.

Case Study 10.4.2

The Poisson probability function often models rare events that occur over time,
which suggests that it may prove useful in describing actuarial phenomena.
Table 10.4.2 raises one such possibility—listed are the daily numbers of death
notices for women over the age of eighty that appeared in the London Times
over a three-year period (74). Is it believable that these fatalities are occurring
in a pattern consistent with a Poisson pdf?

(Continued on next page)
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Table 10.4.2

Number of Deaths, i Obs. Freq., ki Est. Exp. Freq., n p̂io

0 162 126.8
1 267 273.5
2 271 294.9
3 185 212.1
4 111 114.3
5 61 49.3
6 27 17.8
7 8 5.5
8 3 1.4
9 1 0.3

10+ 0 0.1
1096 1096

To claim that a Poisson pdf can model these data is to say that

P(i women over the age of eighty die on a given day)= e−λλi/ i !, i = 0,1,2, . . .

where λ is the expected number of such fatalities on a given day. Other than
what the data may suggest, there is no obvious numerical value to assign to λ

at the outset. However, from Chapter 5, we know that the maximum likelihood
estimate for the parameter in a Poisson pdf is the sample average rate at which
the events occurred—that is, the total number of occurrences divided by the
total number of time periods covered. Here, that quotient comes to 2.157:

λe = total number of fatalities
total number of days

= 0(162)+ 1(267)+ 2(271)+ · · · + 9(1)

1096

= 2.157

The estimated expected frequencies, then, are calculated by multiplying
1096 times e−2.157(2.157)i/ i !, i = 0,1,2, . . .. The third column in Table 10.4.2
lists the entire set of n p̂io’s. [Note: Whenever the model being fitted has an
infinite number of possible outcomes (as is the case with the Poisson), the
last expected frequency is calculated by subtracting the sum of all the others
from n. This guarantees that the sum of the observed frequencies is equal to
the sum of the estimated expected frequencies.] Applied to these data, that
proviso implies that

estimated expected frequency for “10+” = 1096−126.8−273.5 − · · · −0.3 = 0.1

One final modification needs to be made before the test statistic, d1, can be
calculated. Recall that each estimated expected frequency should be at least 5
in order for the χ2 approximation to the pdf of D1 to be adequate. The last three

(Continued on next page)
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(Case Study 10.4.2 continued)

classes in Table 10.4.2, though, all have very small values for n p̂io (1.4, 0.3,
and 0.1). To comply with the “n p̂io ≥ 5” requirement, we need to pool the last
four rows into a “7+” category, which would have an observed frequency of
12 (= 0 + 1 + 3 + 8) and an estimated expected frequency of 7.3 (= 0.1 + 0.3 +
1.4 + 5.5) (see Table 10.4.3).

Table 10.4.3

Number of Deaths, i Obs. Freq., ki Est. Exp. Freq., n p̂io

0 162 126.8
1 267 273.5
2 271 294.9
3 185 212.1r1, r2, . . . , r8

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
4 111 114.3
5 61 49.3
6 27 17.8
7+ 12 7.3

1096 1096

Based on the observed and estimated expected frequencies for the eight ri ’s
identified in Table 10.4.3, the test statistic, d1, equals 25.98:

d1 = (162 − 126.8)2

126.8
+ (267 − 273.5)2

273.5
+ · · ·+ (12 − 7.3)2

7.3

= 25.98

With eight classes and one estimated parameter, the number of degrees of
freedom associated with d1 is 6 (= 8 − 1 − 1). To test

H0: P(i women over eighty die on a given day)=e−2.157(2.157)i/ i !, i =0,1,2, . . .

at the α = 0.05 level of significance, we should reject H0 if

d1 ≥χ2
0.95,6

But the 95th percentile of the χ2
6 distribution is 12.592, which lies well to the

left of d1, so our conclusion is to reject H0—there is too much disagreement
between the observed and estimated expected frequencies in Table 10.4.3 to be
consistent with the hypothesis that the data’s underlying probability model is a
Poisson pdf.

About the Data A row-by-row comparison of the entries in Table 10.4.3 shows a
pronounced excess of days having zero fatalities and also an excess of days having
large numbers of fatalities (five, six, or seven plus). One possible explanation for
those disparities would be that the Poisson assumption that λ remains constant over
the entire time covered is not satisfied. Events such as flu epidemics, for example,
might cause λ to vary considerably from month to month and contribute to the data’s
“disconnect” from the Poisson model.
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Case Study 10.4.3

Listed in Table 10.4.4 are the times (in days) that it takes each of the fifty states,
the District of Columbia, and Puerto Rico to process a Social Security disability
claim (185). Can these fifty-two measurements be considered a random sample
from a normal distribution? Test the appropriate hypothesis at the α = 0.05
level of significance.

Table 10.4.4

State Time State Time State Time

Alabama 67.4 Louisiana 86.0 Oklahoma 104.2
Alaska 81.8 Maine 51.3 Oregon 101.6
Arizona 106.5 Maryland 74.1 Pennsylvania 60.1
Arkansas 53.5 Massachusetts 77.8 Puerto Rico 108.3
California 122.8 Michigan 75.1 Rhode Island 84.8
Colorado 71.6 Minnesota 56.5 S. Carolina 70.8
Connecticut 71.4 Mississippi 63.2 S. Dakota 47.3
Delaware 73.1 Missouri 57.1 Tennessee 72.4
D.C. 100.5 Montana 62.2 Texas 72.5
Florida 63.9 Nebraska 70.2 Utah 81.1
Georgia 74.6 Nevada 113.2 Vermont 92.5
Hawaii 115.8 New Hampshire 76.4 Virginia 46.2
Idaho 47.9 New Jersey 109.6 Washington 76.0
Illinois 68.1 New Mexico 74.1 W. Virginia 78.8
Indiana 55.3 New York 86.2 Wisconsin 66.7
Iowa 61.2 N. Carolina 59.5 Wyoming 45.6
Kansas 78.9 N. Dakota 53.9
Kentucky 61.1 Ohio 69.8

Shown in Column 1 of Table 10.4.5 is an initial breakdown of the range of
Y into nine intervals. Notice that the first and last intervals are open-ended to
reflect the fact that the presumed underlying normal distribution is defined for
the entire real line.

Table 10.4.5

Interval Obs. Freq., ki p̂i0 Est. Exp. Freq.

y < 50.0 4 0.0968 5.03
50.0 ≤ y < 60.0 7 0.1209 6.29
60.0 ≤ y < 70.0 10 0.1797 9.34
70.0 ≤ y < 80.0 16 0.2052 10.67
80.0 ≤ y < 90.0 5 0.1797 9.34

90.0 ≤ y < 100.0 1 0.1209 6.29
100.0 ≤ y < 110.0 6 0.0616 3.20
110.0 ≤ y < 120.0 2 0.0253 1.31

y ≥ 120.0 1 0.0099 0.51

(Continued on next page)
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(Case Study 10.4.3 continued)

In a typical test of normality—and these data are no exception—both
parameters, μ and σ , need to be estimated before any expected frequencies
can be calculated. Here, using the formulas for the sample mean and sample
standard deviation given in Chapter 5,

μe = ȳ = 75.0 days

and

σe = s = 19.3 days

The estimated probability, p̂i0 , associated with the ith interval is calculated by
using ȳ and s to define an approximate Z transformation. For example,

p̂30 = P(60.0 ≤ Y < 70.0)
.= P

(
60.0 − 75.0

19.3
≤ Z <

70.0 − 75.0

19.3

)
.= P(−0.78 ≤ Z <−0.26)= 0.1797

The estimated expected frequencies, then, are the products 52 · p̂i0 , for i =
1,2, . . . ,9. For the interval 60 ≤ y < 70.0,

n · p̂30 = 52(0.1797)= 9.34

Notice that the three bottom-most subintervals in Column 4 of Table 10.4.5
have estimated expected frequencies less than 5, which violates the condition
imposed in Theorem 10.4.1. Collapsing those three into a single interval yields
a revised set of data on which the goodness-of-fit statistic can be calculated (see
Table 10.4.6).

Table 10.4.6

Interval Obs. Freq. ki p̂i0 Est. Exp. Freq.

y < 50.0 4 0.0968 5.03
50.0 ≤ y < 60.0 7 0.1209 6.29
60.0 ≤ y < 70.0 10 0.1797 9.34
70.0 ≤ y < 80.0 16 0.2052 10.67
80.0 ≤ y < 90.0 5 0.1797 9.34

90.0 ≤ y < 100.0 1 0.1209 6.29
y ≥ 100.0 9 0.0968 5.03

52 1 52.0

According to Theorem 10.4.1, the assumption that Y is a normally
distributed random variable should be rejected at the α = 0.05 level of
significance if

d1 ≥χ2
0.95,7−1−2 =χ2

0.95,4 = 9.488

since the revised data grouped into seven classes and two parameters in fY (y)

have been estimated. But

d1 = (4 − 5.03)2

5.03
+ (7 − 6.29)2

6.29
+ · · ·+ (9 − 5.03)2

5.03
= 12.59

so the conclusion is to reject the normality assumption.
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About the Data These data raise two obvious questions: (1) What effect does the
conclusion of the goodness-of-fit test have on the legitimacy of other analyses that
might be done—for example, the construction of a confidence interval for μ? and
(2) What might account for the distribution of processing times not being normal?

The answer to the first question is easy—none. It is true that the derivation of
the formula for, say, a confidence interval for μ assumes that the data are normally
distributed (recall Theorem 7.4.1). In this case, though, mitigating circumstances
make that assumption not so critical. The sample size is large (n = 52); the degree of
nonnormality is not egregious (had α been set equal to 0.01, H0 would not have been
rejected); and, as the discussion on pp. 406–410 pointed out, procedures involving
the Student t distribution are very robust with respect to departures from normality.

The second question is more problematic. The second column in Table 10.4.5
shows that the data are clearly skewed to the right, and there is even a suggestion
that the fifty-two observations might represent a mixture of two distributions, each
having a different mean. The nine states representing the highest processing times
appear to have nothing in common in terms of size, location, or demographics. So
why is the right-hand tail of the distribution so different from the left-hand tail?
Perhaps the states with the longest waiting times have smaller staffs (relative to their
workloads) or they use less up-to-date equipment or follow different procedures.
Another possibility—and one that can always be a factor when data are coming from
different sources—is that not every state is defining or measuring “processing time”
in the same way. From a public policy standpoint, researching the second question
is obviously more important than simply doing a goodness-of-fit test to answer the
first.

Questions

10.4.1 A public policy polling group is investigating
whether people living in the same household tend to make
independent political choices. They select two hundred
homes where exactly three voters live. The residents are
asked separately for their opinion (“yes” or “no”) on a
city charter amendment. If their opinions are formed inde-
pendently, the number saying “yes” should be binomially
distributed. Do an appropriate goodness-of-fit test on the
data below. Let α = 0.05.

No. Saying “yes” Frequency

0 30
1 56
2 73
3 41

10.4.2 From 1837 to 1932, the U.S. Supreme Court had
forty-eight vacancies. The table in the next column shows
the number of years in which exactly k of the vacan-
cies occurred (185). At the α = 0.01 level of significance,
test the hypothesis that these data can be described by a
Poisson pdf.

Number of Vacancies Number of Years

0 59
1 27
2 9
3 1
4+ 0

10.4.3 As a way of studying the spread of a plant dis-
ease known as creeping rot, a field of cabbage plants was
divided into 270 quadrats, each quadrat containing the
same number of plants. The following table lists the num-
bers of plants per quadrat showing signs of creeping rot
infestation.

Number of Infected
Plants/Quadrat Number of Quadrats

0 38
1 57
2 68
3 47
4 23
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Number of Infected
Plants/Quadrat Number of Quadrats

5 9
6 10
7 7
8 3
9 4

10 2
11 1
12 1
13+ 0

Can the number of plants infected with creeping rot per
quadrat be described by a Poisson pdf? Let α = 0.05.
What might be a physical reason for the Poisson not being
appropriate in this situation? Which assumption of the
Poisson appears to be violated?

10.4.4 Carry out the details for a goodness-of-fit test on
the horse kick data of Question 4.2.10. Use the 0.01 level
of significance.

10.4.5 In rotogravure, a method of printing by rolling
paper over engraved, chrome-plated cylinders, the printed
paper can be flawed by undesirable lines called bands.
Bands occur when grooves form on the cylinder’s sur-
face. When this happens, the presses must be stopped,
and the cylinders repolished or replated. The follow-
ing table gives the number of workdays a printing firm
experienced between successive banding shutdowns (39).
Fit these data with an exponential model and perform
the appropriate goodness-of-fit test at the 0.05 level of
significance.

Workdays Between Shutdowns Number Observed

0–1 130
1–2 41
2–3 25
3–4 8
4–5 2
5–6 3
6–7 1
7–8 1

10.4.6 Do a goodness-of-fit test for normality on the
SAT data in Table 3.13.1. Take the sample mean
and sample standard deviation to be 949.4 and 68.4,
respectively.

10.4.7 A sociologist is studying various aspects of the per-
sonal lives of preeminent nineteenth-century scholars. A
total of 120 subjects in her sample had families consisting
of two children. The distribution of the number of boys in
those families is summarized in the following table. Can it

be concluded that the number of boys in two-child fami-
lies of preeminent scholars is binomially distributed? Let
α = 0.05.

Number of boys 0 1 2
Number of families 24 64 32

10.4.8 In theory, Monte Carlo studies rely on comput-
ers to generate large sets of random numbers. Partic-
ularly important are random variables representing the
uniform pdf defined over the unit interval, fY (y) = 1,0 ≤
y ≤ 1. In practice, though, computers typically generate
pseudorandom numbers, the latter being values produced
systematically by sophisticated algorithms that presum-
ably mimic “true” random variables. Below are one hun-
dred pseudorandom numbers from a uniform pdf. Set up
and test the appropriate goodness-of-fit hypothesis. Let
α = 0.05.

.216 .673 .130 .587 .044 .501 .958 .415 .872 .329

.786 .243 .700 .157 .614 .071 .528 .985 .442 .899

.356 .813 .270 .727 .184 .641 .098 .555 .012 .469

.926 .383 .840 .297 .754 .211 .668 .125 .582 .039

.496 .953 .410 .867 .324 .781 .238 .695 .152 .609

.066 .523 .980 .437 .894 .351 .808 .265 .722 .179

.636 .093 .550 .007 .464 .921 .378 .835 .292 .749

.206 .663 .120 .577 .034 .491 .948 .405 .862 .319

.776 .233 .690 .147 .604 .061 .518 .975 .432 .889

.346 .803 .260 .717 .174 .631 .088 .545 .002 .459

10.4.9 Because it satisfies all the assumptions implicit
in the Poisson model, radioactive decay should be
described by a probability function of the form pX (k) =
e−λλk/k!, k = 0,1,2, . . . , where the random variable X
denotes the number of particles emitted (or counted)
during a given time interval. Does that hold true
for the Rutherford and Geiger data given in Case
Study 4.2.2? Set up and carry out an appropriate
analysis.

10.4.10 Carry out the details to test whether the suf-
frage data described in Question 4.2.13 follow a Poisson
model.

10.4.11 Is the following set of data likely to have
come from the geometric pdf, pX (k) = (1 − p)k−1 p,

k = 1,2, . . .?

2 8 1 2 2 5 1 2 8 3
5 4 2 4 7 2 2 8 4 7
2 6 2 3 5 1 3 3 2 5
4 2 2 3 6 3 6 4 9 3
3 7 5 1 3 4 3 4 6 2
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10.4.12 To raise money for a new rectory, the members of
a church hold a raffle. A total of n tickets are sold (num-
bered 1 through n), out of which a total of fifty winners
are to be drawn presumably at random. The following are
the fifty lucky numbers. Set up a goodness-of-fit test that
focuses on the randomness of the draw. Use the 0.05 level
of significance.

108 110 21 6 44
89 68 50 13 63
84 64 69 92 12
46 78 113 104 105

9 115 58 2 20
19 96 28 72 81
32 75 3 49 86
94 61 35 31 56
17 100 102 114 76

106 112 80 59 73

10.5 Contingency Tables
Hypothesis tests, as we have seen, take several fundamentally different forms. Those
covered in Chapters 6, 7, and 9 focus on parameters of pdfs—the one-sample, two-
sided t test, for example, reduces to a choice between H0: μ = μo and H1: μ �= μo.
Earlier in this chapter, the pdf itself was the issue, and the goodness-of-fit tests in
Sections 10.3 and 10.4 dealt with null hypotheses of the form H0: fY (y)= fo(y).

A third (and final) category of hypothesis tests remains. These apply to sit-
uations where the independence of two random variables is being questioned.
Examples are commonplace. Are the incidence rates of cancer related to mental
health? Do a politician’s approval ratings depend on the gender of the respon-
dents? Are trends in juvenile delinquency linked to the increasing violence in video
games? In this section, we will modify the goodness-of-fit statistic D1 in such a way
that it can distinguish between events that are independent and events that are
dependent.

Testing for Independence: A Special Case

A simple example is the best way to motivate the changes that need to be made
to the structure of D1 to make it capable of testing for independence. The key is
Definition 2.5.1.

Suppose A is some trait (or random variable) that has two mutually exclusive
categories, A1 and A2, and suppose that B is a second trait (or random variable) that
also has two mutually exclusive categories, B1 and B2. To say that A is independent
of B is to say that the likelihoods of A1 or A2 occurring are not influenced by B1 or
B2. More specifically, four separate conditional probability equations must hold if A
and B are to be independent:

P(A1 | B1)= P(A1) P(A1 | B2)= P(A1)

P(A2 | B1)= P(A2) P(A2 | B2)= P(A2)
(10.5.1)

By Definition 2.4.1, P(Ai |B j ) = P(Ai ∩B j )

P(B j )
, for all i and j , so the conditions

specified in Equation 10.5.1 are equivalent to

P(A1 ∩ B1)= P(A1)P(B1) P(A1 ∩ B2)= P(A1)P(B2)

P(A2 ∩ B1)= P(A2)P(B1) P(A2 ∩ B2)= P(A2)P(B2)
(10.5.2)

Now, suppose a random sample of n observations is taken, and ni j is defined to be
the number of observations belonging to Ai and B j (so n = n11 + n12 + n21 + n22). If
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Table 10.5.1

Trait B

B1 B2 Row Totals

A1 n11 n12 R1Trait A
A2 n21 n22 R2

Column totals: C1 C2 | n

we imagine the two categories of A and the two categories of B defining a matrix
with two rows and two columns, the four observed frequencies can be displayed in
the contingency table pictured in Table 10.5.1.

If A and B are independent, the probability statements in Equation 10.5.2 would
be true, and (by virtue of Theorem 10.2.2), the expected frequencies for the four
combinations of Ai and B j would be the entries shown in Table 10.5.2.

Table 10.5.2

Trait B

B1 B2 Row Totals

A1 n P(A1)P(B1) n P(A1)P(B2) R1Trait A
A2 n P(A2)P(B1) n P(A2)P(B2) R2

Column totals: C1 C2 | n

Although P(A1), P(A2), P(B1), and P(B2) are unknown, they all have obvious
estimates—namely, the sample proportion of the time that each occurs. That is,

P̂(A1) = R1

n
P̂(B1)= C1

n

P̂(A2) = R2

n
P̂(B2)= C2

n
(10.5.3)

Table 10.5.3, then, shows the estimated expected frequencies (corresponding to n11,
n12, n21, and n22) based on the assumption that A and B are independent.

Table 10.5.3

Trait B

B1 B2

A1 R1C1/n R1C2/n
Trait A

A2 R2C1/n R2C2/n

If traits A and B are independent, the observed frequencies in Table 10.5.1
should agree fairly well with the estimated expected frequencies in Table 10.5.3
because the latter were calculated under the presumption that A and B are indepen-
dent. The analog of the test statistic d1, then, would be the sum d2, where

d2 =
(
n11 − R1C1

n

)2
R1C1

n

+
(
n12 − R1C2

n

)2
R1C2

n

+
(
n21 − R2C1

n

)2
R2C1

n

+
(
n22 − R2C2

n

)2
R2C2

n
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In the event that d2 is “large,” meaning that one or more of the observed frequencies
is substantially different from the corresponding estimated expected frequency, H0:
A and B are independent should be rejected. (In this simple case where both A and
B have only two categories, D2 has approximately a χ2

1 pdf when H0 is true, so if α

were set at 0.05, H0 would be rejected if d2 ≥χ2
0.95,1 = 3.841.)

Testing for Independence: The General Case

Suppose n observations are taken on a sample space S partitioned by the set of
events A1, A2, . . . , Ar and also partitioned by the set of events B1, B2, . . . , Bc. That is,

Ai ∩ A j =∅ for all i �= j and
r⋃

i=1

Ai = S

and

Bi ∩ B j =∅ for all i �= j and
c⋃

j=1

B j = S

Let the random variables Xi j , i = 1,2, . . . , r, j = 1,2, . . . , c, denote the number of
observations that belong to Ai ∩ B j . Our objective is to test whether the Ai ’s are
independent of the B j ’s.

Table 10.5.4 shows the two sets of events defining the rows and columns of an
r × c matrix; the ki j ’s that appear in the body of the table are the observed values of
the Xi j ’s (recall Table 10.5.1).

Table 10.5.4

B1 B2 · · · Bc Row Totals

A1 k11 k12 k1c R1

A2 k21 k22 k2c R2
...

... · · · ...
...

Ar kr1 kr2 krc Rr

Column totals C1 C2 Cc n

[Note: In the terminology of Section 10.2, the Xi j ’s are a set of rc multinomial ran-
dom variables. Moreover, each individual Xi j is a binomial random variable with
parameters n and pi j , where pi j = P(Ai ∩ B j ).]

Let pi = P(Ai ), i = 1,2, . . . , r, and let q j = P(B j ), j = 1,2, . . . , c, so

r∑
i=1

pi = 1 =
c∑

j=1

q j

Invariably, the pi ’s and q j ’s will be unknown, but their maximum likelihood
estimates are simply the corresponding row and column sample proportions:

p̂1 = R1/n, p̂2 = R2/n, . . . , p̂r = Rr/n

q̂1 = C1/n, q̂2 = C2/n, . . . , q̂c = Cc/n

(recall Equation 10.5.3).
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If the Ai ’s and B j ’s are independent, then

P(Ai ∩ B j )= P(Ai )P(B j )= pi q j

and the expected frequency corresponding to ki j would be npi q j , i = 1,2, . . . , r ;
j = 1,2, . . . , c (recall the Comment following Theorem 10.2.2). Also, the estimated
expected frequency for Ai ∩ B j would be

n p̂i q̂ j = n · Ri/n · C j/n = Ri C j/n (10.5.4)

(recall Table 10.5.3).
So, for each of the rc row-and-column combinations pictured in Table 10.5.4, we

have an observed frequency (ki j ) and an estimated expected frequency (Ri C j/n)
based on the null hypothesis that the Ai ’s are independent of the B j ’s. The test
statistic that would be analogous to d1, then, would be the double sum d2, where

d2 =
r∑

i=1

c∑
j=1

(ki j − n p̂i q̂ j )
2

n p̂i q̂ j

Large values of d2 would be considered evidence against the independence
assumption.

Theorem
10.5.1

Suppose that n observations are taken on a sample space partitioned by the events
A1, A2, . . . , Ar and also by the events B1, B2, . . . , Bc. Let pi = P(Ai ) q j = P(B j ),
and pi j = P(Ai ∩ B j ), i = 1,2, . . . , r; j = 1,2, . . . , c. Let Xi j denote the number of
observations belonging to the intersection Ai ∩ B j . Then

a. the random variable

D2 =
r∑

i=1

c∑
j=1

(Xi j − npi j )
2

npi j

has approximately a χ2 distribution with rc − 1 degrees of freedom (provided
npi j ≥ 5 for all i and j).

b. to test H0: the Ai ’s are independent of the B j ’s, calculate the test statistic

d2 =
r∑

i=1

c∑
j=1

(ki j − n p̂i q̂ j )
2

n p̂i q̂ j

where ki j is the number of observations in the sample that belong to Ai ∩ B j , i =
1,2, . . . , r; j = 1,2, . . . , c and p̂i and q̂ j are the maximum likelihood estimates for
pi and q j , respectively. The null hypothesis should be rejected at the α level of
significance if

d2 ≥ χ2
1−α,(r−1)(c−1)

(Analogous to the condition stipulated for all other goodness-of-fit tests, it will be
assumed that n p̂i q̂ j ≥ 5 for all i and j .)

Comment In general, the number of degrees of freedom associated with a
goodness-of-fit statistic is given by the formula

df = number of classes − 1 − number of estimated parameters
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(recall Theorem 10.4.1). For the double sum that defines d2,

number of classes = rc

number of estimated parameters = r − 1 + c − 1

(because once r − 1 of the pi ’s are estimated, the one that remains is predetermined

by the fact that
r∑

i=1
pi = 1; similarly, only c − 1 of the q j ’s need to be estimated). But

rc − 1 − (r − 1)− (c − 1)= (r − 1)(c − 1)

Comment The χ2 distribution with (r − 1) (c − 1) degrees of freedom provides an
adequate approximation to the distribution of d2 only if n p̂i q̂ j ≥ 5 for all i and j. If
one or more cells in a contingency table have estimated expected frequencies that
are substantially less than 5, the table should be “collapsed” and the rows and/or
columns redefined.

Case Study 10.5.1

Gene Siskel and Roger Ebert were popular movie critics for a syndicated
television show. Viewers of the program were entertained by the frequent
flare-ups of acerbic disagreement between the two. They were immediately
recognizable to a large audience of movie goers by their rating system of
“thumbs up” for good films, “thumbs down” for bad ones, and an occasional
“sideways” for those in between.

Table 10.5.5 summarizes their evaluations of 160 movies (2). Do these num-
bers suggest that Siskel and Ebert had completely different aesthetics—in which
case their ratings would be independent—or do they demonstrate that the two
shared considerable common ground, despite their many on-the-air verbal jabs?

Table 10.5.5

Ebert Ratings

Down Sideways Up Total

Down 24 8 13 45
Siskel Sideways 8 13 11 32
Ratings Up 10 9 64 83

Total 42 30 88 160

Using Equation 10.5.4, we can calculate the estimated expected number of
times that both reviewers would say “thumbs down” if, in fact, their ratings were
independent:

Ê(X11)= R1 · C1

n
= (45)(42)

160

= 11.8

(Continued on next page)
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(Case Study 10.5.1 continued)

Table 10.5.6 displays the entire set of estimated expected frequencies, all
calculated the same way.

Table 10.5.6

Ebert Ratings

Down Sideways Up Total

Down 24 8 13 45
(11.8) (8.4) (24.8)

Siskel Sideways 8 13 11 32
Ratings (8.4) (6.0) (17.6)

Up 10 9 64 83
(21.8) (15.6) (45.6)

Total 42 30 88 160

Now, suppose we wish to test

H0: Siskel ratings and Ebert ratings were independent

versus

H1: Siskel ratings and Ebert ratings were dependent

at the α = 0.01 level of significance. With r = 3 and c = 3, the number of degrees
of freedom associated with the test statistic is (3 − 1)(3 − 1) = 4, and H0 should
be rejected if

d2 ≥χ2
0.99,4 = 13.277

But

d2 = (24 − 11.8)2

11.8
+ (8 − 8.4)2

8.4
+ · · · + (64 − 45.6)2

45.6

= 45.37

so the evidence is overwhelming that Siskel and Ebert’s judgments were not
independent.

“Reducing” Continuous Data to Contingency Tables

Most applications of contingency tables begin with qualitative data, Case Study
10.5.1 being a typical case in point. Sometimes, though, contingency tables can pro-
vide a particularly convenient format for testing the independence of two random
variables that initially appear as quantitative data. If those x and y measurements
are each reduced to being either “high” or “low,” for example, the original xi ’s and
yi ’s become frequencies in a 2 × 2 contingency table (and can be used to test H0: X
and Y are independent).
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Case Study 10.5.2

Sociologists have speculated that feelings of alienation may be a major factor
contributing to an individual’s risk of committing suicide. If so, cities with more
transient populations should have higher suicide rates than urban areas where
neighborhoods are more stable. Listed in Table 10.5.7 is the “mobility index” (y)
and the “suicide rate” (x) for each of twenty-five U.S. cities (210). (Note: The
mobility index was defined in such a way that smaller values of y correspond to
higher levels of transiency.) Do these data support the sociologists’ suspicion?

Table 10.5.7

Suicides per Mobility Suicides per Mobility
City 100,000, xi Index, yi City 100,000, xi Index, yi

New York 19.3 54.3 Washington 22.5 37.1
Chicago 17.0 51.5 Minneapolis 23.8 56.3
Philadelphia 17.5 64.6 New Orleans 17.2 82.9
Detroit 16.5 42.5 Cincinnati 23.9 62.2
Los Angeles 23.8 20.3 Newark 21.4 51.9
Cleveland 20.1 52.2 Kansas City 24.5 49.4
St. Louis 24.8 62.4 Seattle 31.7 30.7
Baltimore 18.0 72.0 Indianapolis 21.0 66.1
Boston 14.8 59.4 Rochester 17.2 68.0
Pittsburgh 14.9 70.0 Jersey City 10.1 56.5
San Francisco 40.0 43.8 Louisville 16.6 78.7
Milwaukee 19.3 66.2 Portland 29.3 33.2
Buffalo 13.8 67.6

To reduce these data to a 2 × 2 contingency table, we redefine each xi as
being either “≥ x̄” or “< x̄” and each yi as being either “≥ ȳ” or “< ȳ.” Here,

x̄ = 19.3 + 17.0 + · · · + 29.3

25
= 20.8

and

ȳ = 54.3 + 51.5 + · · · + 33.2

25
= 56.0

so the twenty-five (xi , yi )’s produce the 2 × 2 contingency table shown in
Table 10.5.8.

Table 10.5.8

Mobility Index

Low (<56.0) High (≥56.0)

Suicide High (≥20.8) 7 4
Rate Low (<20.8) 3 11

(Continued on next page)
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(Case Study 10.5.2 continued)

If X and Y are independent, the four estimated expected frequencies asso-
ciated with the contingency table (and calculated from Equation 10.5.4) are the
entries appearing in Table 10.5.9.

Table 10.5.9

Mobility Index

Low (<56.0) High (≥56.0)

Suicide High (≥20.8) 4.4∗ 6.6
Rate Low (<20.8) 5.6 8.4
∗ Ê(X11) = 4.4 does not quite satisfy the “n p̂i q̂ j ≥ 5” restriction stated in

Theorem 10.5.1, but 4.4 is close enough to 5 to maintain the integrity of the χ2

approximation.

Substituting into the test statistic from Theorem 10.5.1 gives

d2 = (7 − 4.4)2

4.4
+ (4 − 6.6)2

6.6
+ (3 − 5.6)2

5.6
+ (11 − 8.4)2

8.4

= 4.57

With (r − 1)(c − 1) = (2 − 1)(2 − 1) = 1 df, the α = 0.05 critical value associated
with d2 is χ2

0.95,1 = 3.841. The appropriate conclusion, then, is to reject H0 since
d2 ≥3.841—the sociologists’ suspicion that suicide rates and transiency in urban
areas are dependent is borne out by the data.

Case Study 10.5.3

Beginning in 1647, witchcraft accusations, trials, and executions were an
on-again, off-again phenomenon in the New England colonies. Occasionally,
Puritan angst over matters Satanic would flare up like an epidemic, and entire
communities would become convinced that many of their neighbors were in
league with the Devil. The most famous of these paranoid outbreaks were the
Salem witch trials that occurred in 1692 and 1693.

Altogether, a total of 185 adults (and children) were accused of witchcraft
in Salem during those two years, 141 females and 44 males. Fourteen of the
women (9.9%) were eventually hanged; a similar fate befell five (11.4%) of the
men (90). Is the difference between 9.9% and 11.4% statistically significant?

Recall the discussion on p. 447. Testing whether the difference between
two independent binomial proportions is statistically significant is equivalent
to testing whether the two factors represented in a 2 × 2 contingency table are
independent—that is, H0 : pX = pY will be rejected if and only if we reject H0: X
and Y are independent.

Table 10.5.10 shows the Salem data presented as a 2 × 2 contingency
table. In parentheses are the expected frequencies calculated under the

(Continued on next page)
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null hypothesis that the chances of an accused witch being executed were
independent of gender.

Table 10.5.10

Accused Witches
Female Male

Executed
14 5 19

(14.5) (4.5)

Not
Executed

127 39 166
(126.5) (39.5)

185
Totals 141 44

By part (b) of Theorem 10.5.1, d2 = 0.08 (with 1 df). If the independence
hypothesis is to be tested at the α = 0.05 level of significance, the appropriate
critical value is

χ2
1−α,(r−1)(c−1) =χ2

0.95,(2−1)(2−1) =χ2
0.95,1 = 3.84

so the conclusion is “fail to reject H0.”
If these data were viewed as two independent sets of Bernoulli trials of sizes

141 and 44, respectively, the appropriate test statistic would be the observed Z
ratio described in Theorem 9.4.1. With x = 14, n = 141, y = 5, m = 44, z =−0.28,
and α = 0.05, critical values would be ±1.96 (see Question 10.5.10), implying
that the difference between 9.9% and 11.4% is not statistically significant.

Questions

10.5.1 Market researchers often gather information by
telephone, but calling only listed numbers may badly skew
the responses, if listed and unlisted households are fun-
damentally different with respect to the question being
asked. The following is the slightly modified summary of
a survey done by Pacific Bell to see whether homeowner-
ship is related to telephone listing (142). At the α = 0.05
and α = 0.10 levels of significance, test whether those two
“conditions” are independent.

Listed Unlisted

Own 628 146
Rent 172 54

10.5.2 Many factors influence a company’s decision to
relocate to another site. The state of Florida, hoping to
attract such relocations, sponsored a study (50) on how
different companies view various factors. One part of the
study compared the importance of a high-quality work-
force to manufacturing firms and to nonmanufacturing

firms. At the α =0.05 level of significance, do the following
data suggest that the importance of a high-quality work-
force is not viewed the same by all types of businesses?

Manufacturing Other

Extremely 168 73
Importance or somewhat

Not very 42 26

10.5.3 A total of 1154 girls attending a public high school
were given a questionnaire that measured how much each
had exhibited delinquent behavior (124). From an analysis
of the results, the researchers categorized 111 of the girls
as “delinquent.” The following is a cross-classification of
the delinquents and the nondelinquents according to their
birth order. At the α = 0.01 level of significance, is there
evidence here to support the contention that birth order
and delinquency are related?
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Delinquent Not Delinquent

Oldest 24 450
In Between 29 312
Youngest 35 211
Only Child 23 70

10.5.4 Recall the rubella/birth defect study described in
Case Study 8.1.3. At the α = 0.01 level of significance,
can it be concluded that the risk of an abnormal birth is
affected by when a rubella infection is contracted during
pregnancy?

10.5.5 Research has suggested that regular use of aspirin
or other nonsteroidal anti-inflammatory drugs (NSAIDs)
may be effective in reducing the risk of breast cancer.
In one recent study (179), 1442 women with breast can-
cer were asked whether they had used aspirin regularly
one year prior to their diagnosis; 301 said “yes.” Among
a matched control group of 1420 women without breast
cancer, 345 reported that they were regular aspirin users.
What would you conclude? Set up and test an appropriate
hypothesis. Let 0.05 be the level of significance.

10.5.6 High blood pressure is known to be one of the
major contributors to coronary heart disease. A study was
done to see whether or not there is a significant relation-
ship between the blood pressures of children and those of
their fathers (88). If such a relationship did exist, it might
be possible to use one group to screen for high-risk indi-
viduals in the other group. The subjects were 92 eleventh
graders, 47 males and 45 females, and their fathers. Blood
pressures for both the children and the fathers were cate-
gorized as belonging to either the lower, middle, or upper
third of their respective distributions. Test whether or not
the blood pressures of children can be considered to be
independent of the blood pressures of their fathers. Let
α = 0.05.

Child’s Blood Pressure

Lower Middle Upper
Third Third Third

Father’s Lower third 14 11 8
blood Middle third 11 11 9
pressure Upper third 6 10 12

10.5.7 The following data were collected as part of a
study to see whether a mouse’s early upbringing has any
effect on its aggressiveness later in life (84). A total of
307 mice were divided into two groups shortly after birth.
Each of the 167 mice in the first group was raised by its
natural mother; the remaining 140 in the second group

were raised by “foster” mice. When each mouse was three
months old, it was put into a small cage with another
mouse it had not seen before. The two were then watched
for a predetermined period of time (six minutes) to see
whether they would start fighting. Set up and carry out an
appropriate χ 2 test. Let α = 0.05.

Natural Mother Foster Mother

Number fighting 27 47
Number not fighting 140 93

167 140

10.5.8 The Hopwood Decision resulted from a 1996 U.S.
Fifth Circuit Court of Appeals case that greatly limited
Texas universities’ affirmative-action programs for admis-
sion of minority students. As a consequence, minority
enrollment dropped significantly. One solution proposed
was to accept all students in the top 10% of their graduat-
ing class. The success of such a plan in achieving diversity
would hinge on the enrollment rates for the different
racial groups. The following are the average numbers of
freshmen in the top 10% of their classes admitted and
enrolled, by race, at UT-Austin for the years 1990–1996.
Are the enrollment rates dependent on the racial groups?
Do the appropriate analysis using the α = 0.05 level of
significance.

Admitted Enrolled

White 2592 1481
African-American 159 78
Hispanic 800 375
Asian 667 399

10.5.9 Portfolio turnover expresses the past year’s trad-
ing activity as a percentage of an account’s average assets.
The following table summarizes the performances of one
hundred mutual funds cross-classified according to port-
folio turnover and annual return. Test the independence
assumption. Let α = 0.05.

Annual Return

≤10% >10%

Portfolio ≥100% 11 10
Return <100% 55 24

10.5.10 (a) For the witchcraft data described in Case
Study 10.5.3, verify that z =−0.28.
(b) Notice that (−0.28)2 = 0.08 and (±1.96)2 = 3.84. Why
should those equalities be true?
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10.6 Taking a Second Look at Statistics (Outliers)
This chapter has explored important questions related to the “pedigree” of a set of
data. Given the measurements y1, y2, . . . , yn , for example, is it believable that they
represent a random sample from some particular pdf, fo(y)? Or, given a set of bivari-
ate observations, (x1, y1), (x2, y2), . . . , (xn , yn), representing the random variables X
and Y , is it believable that X and Y are independent?

In practice, experimenters sometimes encounter a slightly different sort of pedi-
gree question, one that focuses on individual measurements rather than on entire
data sets. For example, suppose a laboratory experiment has yielded the twenty
observations listed in Table 10.6.1. Grouped into classes of width 10, the data have
the frequency distribution shown in Table 10.6.2. The question is, what (if anything)
should be done with the measurement y = 127.6 that lies considerably to the right
of the rest of the data? Is it simply the largest observation in the sample (in which
case it should be kept), or does its separation from the bulk of the distribution reflect
some sort of fundamental measurement error (in which case it should be discarded)?

Table 10.6.1

73.5 45.6 51.2 15.6 49.2
55.7 24.8 127.6 49.7 53.8
91.6 82.9 78.4 58.4 67.9
44.3 62.4 37.4 30.8 59.6

Table 10.6.2

Observation Frequency

10.0≤ y < 20.0 1
20.0≤ y < 30.0 1
30.0≤ y < 40.0 2
40.0≤ y < 50.0 4
50.0≤ y < 60.0 5
60.0≤ y < 70.0 2
70.0≤ y < 80.0 2
80.0≤ y < 90.0 1
90.0≤ y < 100.0 1

100.0≤ y < 110.0 0
110.0≤ y < 120.0 0
120.0≤ y < 130.0 1

While there is no way to answer that question with any certainty, there are test
procedures that can shed some light on the likelihood (subject to certain assump-
tions) of an “outlier” being a sample from the same pdf that generated all the other
observations. One such procedure, due to Dixon (38), assumes that the observations
are coming from a normal distribution and is based on either the ratio

r01 = y′
n − y′

n−1

y′
n − y′

1

or r10 = y′
2 − y′

1

y′
n − y′

1

where y′
1 is the ith order statistic in the sample of size n. If the potential outlier is

the largest observation in the sample, the test statistic is r01; if the potential outlier is
the smallest observation, the test statistic is r10.
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Table 10.6.3 gives upper percentage points for the distribution of r01 (and r10) as
a function of the sample size n. For the data in Table 10.6.1, n = 20 and the largest
observation is the measurement in question, so the test statistic is

r01 = y′
20 − y′

19

y′
20 − y′

1

From Table 10.6.1, y′
1 = 15.6, y′

19 = 91.6, and y′
20 = 127.6, so

r01 = 127.6 − 91.6

127.6 − 15.6
= 0.32

According to Table 10.6.3, the P-value associated with the outcome r01 = 0.32 is
between 0.05 and 0.02, since the 95th percentile of the r01 distribution when n = 20

Table 10.6.3
PERCENTAGE POINTS OF THE DISTRIBUTION OF r10

�
��n
1-α

.80 .90 .95 .98 .99 .995

3 .781 .886 .941 .976 .988 .994
4 .560 .679 .765 .846 .889 .926
5 .451 .557 .642 .729 .780 .821

6 .386 .482 .560 .644 .698 .740
7 .344 .434 .507 .586 .637 .680
8 .314 .399 .468 .543 .590 .634
9 .290 .370 .437 .510 .555 .598

10 .273 .349 .412 .483 .527 .568

11 .259 .332 .392 .460 .502 .542
12 .247 .318 .376 .441 .482 .522
13 .237 .305 .361 .425 .465 .503
14 .228 .294 .349 .411 .450 .488
15 .220 .285 .338 .399 .438 .475

16 .213 .277 .329 .388 .426 .463
17 .207 .269 .320 .379 .416 .452
18 .202 .263 .313 .370 .407 .442
19 .197 .258 .306 .363 .398 .433
20 .193 .252 .300 .356 .391 .425

21 .189 .247 .295 .350 .384 .418
22 .185 .242 .290 .344 .378 .411
23 .182 .238 .285 .338 .372 .404
24 .179 .234 .281 .333 .367 .399
25 .176 .230 .277 .329 .362 .393

26 .173 .227 .273 .324 .357 .388
27 .171 .224 .269 .320 .353 .384
28 .168 .220 .266 .316 .349 .380
29 .166 .218 .263 .312 .345 .376
30 .164 .215 .260 .309 .341 .372

Source: Dunn, Olive Jean and Clark, Virginia A. Applied Statistics: Analysis of Variance and Regression. New York:
John Wiley & Sons, 1974, p. 374.
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is 0.300, and the 98th percentile is 0.356. So, should y′
20 be discarded? Probably not,

unless there is reason to believe that its large value was the result of a measurement
error. The distribution of r01 makes it clear that a value of 127.6 in this case is not
dramatically out of line.

A word of caution—the simplicity of testing for outliers does not mean the pro-
cedure should be used capriciously. More than a few experimenters have woefully
regretted discarding suspicious observations under the guise of “cleaning up” their
data. Sometimes the observations not fitting the presumed model constitute the
most important information in a data set, because they may be the first and only
clues that the presumed model is, in fact, incorrect.

Appendix 10.A.1 Minitab Applications

The Minitab command CHISQUARE, followed by the columns in which the
observed frequencies have been entered, performs the χ2 test for independence
described in Theorem 10.5.1. Figure 10.A.1.1 shows the input and output for the
Minitab analysis of the data in Case Study 10.5.1. In addition to the estimated
expected frequencies and the value of the test statistic, the CHISQUARE rou-
tine also indicates the number of degrees of freedom associated with d2 and its
P-value. Here the P-value is so small there is no question that the null hypothesis
of independence should be rejected.

MTB > set c1
DATA > 24 8 10
DATA > end
MTB > set c2
DATA > 8 13 9
DATA > end
MTB > set c3
DATA > 13 11 64
DATA > end
MTB > chisquare c1-c3

Figure 10.A.1.1 Chi Square Test: C1, C2, C3

Expected counts are printed below observed counts
Chi square contributions are printed below expected counts

C1 C2 C3 Total
1 24 8 13 45

11.81 8.44 24.75
12.574 0.023 5.578

2 8 13 11 32
8.40 6.00 17.60
0.019 8.167 2.475

3 10 9 64 83
21.79 15.56 45.65
6.377 2.767 7.376

Total 42 30 88 160

Chi-Sq = 45.357, DF = 4, P-Value = 0.000

Testing for Independence Using Minitab Windows

1. Enter each column of observed frequencies in a separate column.
2. Click on STAT, then on TABLES, then on CHISQUARE TEST.
3. Enter the columns containing the data, and click on OK.
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Galton had earned a Cambridge mathematics degree and completed two years of
medical school when his father died, leaving him with a substantial inheritance. Free
to travel, he became an explorer of some note, but when The Origin of Species was
published in 1859, his interests began to shift from geography to statistics and
anthropology (Charles Darwin was his cousin). It was Galton’s work on fingerprints
that made possible their use in human identification. He was knighted in 1909.

—Francis Galton (1822–1911)

11.1 Introduction
High on the list of problems that experimenters most frequently need to deal with
is the determination of the relationships that exist among the various components
of a complex system. If those relationships are sufficiently understood, there is a
good possibility that the system’s output can be effectively modeled, maybe even
controlled.

Consider, for example, the formidable problem of relating the incidence of can-
cer to its many contributing causes—diet, genetic makeup, pollution, and cigarette
smoking, to name only a few. Or think of the Wall Street financier trying to antici-
pate trends in stock prices by tracking market indices and corporate performances,
as well as the overall economic climate. In those situations, a host of variables are
involved, and the analysis becomes very intricate. Fortunately, many of the fun-
damental ideas associated with the study of relationships can be nicely illustrated
when only two variables are involved. This two-variable model will be the focus of
Chapter 11.

Section 11.2 gives a computational technique for determining the “best” equa-
tion describing a set of points (x1, y1), (x2, y2), . . . , and (xn, yn), where best is defined
geometrically. Section 11.3 adds a probability distribution to the y-variable, which
allows for a variety of inference procedures to be developed. The consequences
of both measurements being random variables is the topic of Section 11.4. Then
Section 11.5 takes up a special case of Section 11.4, where the variability in X and Y
is described by the bivariate normal pdf.

532
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11.2 The Method of Least Squares
We begin our study of the relationship between two variables by asking a simple
geometry question. Given a set of n points—(x1, y1), (x2, y2), . . . , (xn, yn)—and a
positive integer m, which polynomial of degree m is “closest” to the given points?

Suppose that the desired polynomial, p(x), is written

p(x)= a +
m∑

i=1

bi x
i

where a,b1, . . . ,bm are to be determined. The method of least squares answers the
question by finding the coefficient values that minimize the sum of the squares of
the vertical distances from the data points to the presumed polynomial. That is, the
polynomial p(x) that we will call “best” is the one whose coefficients minimize the
function L , where

L =
n∑

i=1

[yi − p(xi )]2

Theorem 11.2.1 summarizes the method of least squares as it applies to the impor-
tant special case where p(x) is a linear polynomial. (Note: To simplify notation, the
linear polynomial y = a + b1x1 will be written y = a + bx .)

Theorem
11.2.1

Given n points (x1, y1), (x2, y2), . . . , (xn, yn), the straight line y = a + bx minimizing

L =
n∑

i=1

[yi − (a + bxi )]2

has slope

b =
n

n∑
i=1

xi yi −
(

n∑
i=1

xi

)(
n∑

i=1
yi

)
n

(
n∑

i=1
x2

i

)
−
(

n∑
i=1

xi

)2

and y-intercept

a =

n∑
i=1

yi − b
n∑

i=1
xi

n
= ȳ − bx̄

Proof The proof is accomplished by the familiar calculus technique of taking the
partial derivatives of L with respect to a and b, setting the resulting expressions
equal to 0, and solving. By the first step we get

∂L

∂b
=

n∑
i=1

(−2)xi [yi − (a + bxi )]

and

∂L

∂a
=

n∑
i=1

(−2)[yi − (a + bxi )]

Setting the right-hand sides of ∂L/∂a and ∂L/∂b equal to 0 and simplifying
yields the two equations

na +
(

n∑
i=1

xi

)
b =

n∑
i=1

yi
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and (
n∑

i=1

xi

)
a +
(

n∑
i=1

x2
i

)
b =

n∑
i=1

xi yi

An application of Cramer’s rule gives the solution for b stated in the theorem. The
expression for a follows immediately. �

Case Study 11.2.1

A manufacturer of air conditioning units is having assembly problems due to
the failure of a connecting rod to meet finished-weight specifications. Too many
rods are being completely tooled, then rejected as overweight. To reduce that
cost, the company’s quality-control department wants to quantify the relation-
ship between the weight of the finished rod, y, and that of the rough casting, x
(139). Castings likely to produce rods that are too heavy can then be discarded
before undergoing the final (and costly) tooling process.

As a first step in examining the xy-relationship, twenty-five (xi , yi ) pairs
are measured (see Table 11.2.1). Graphed, the points suggest that the weight
of the finished rod is linearly related to the weight of the rough casting (see
Figure 11.2.1). Use Theorem 11.2.1 to find the best straight line approximating
the xy-relationship.

Table 11.2.1

Rod
Number

Rough
Weight, x

Finished
Weight, y

Rod
Number

Rough
Weight, x

Finished
Weight, y

1 2.745 2.080 14 2.635 1.990
2 2.700 2.045 15 2.630 1.990
3 2.690 2.050 16 2.625 1.995
4 2.680 2.005 17 2.625 1.985
5 2.675 2.035 18 2.620 1.970
6 2.670 2.035 19 2.615 1.985
7 2.665 2.020 20 2.615 1.990
8 2.660 2.005 21 2.615 1.995
9 2.655 2.010 22 2.610 1.990

10 2.655 2.000 23 2.590 1.975
11 2.650 2.000 24 2.590 1.995
12 2.650 2.005 25 2.565 1.955
13 2.645 2.015

From Table 11.2.1, we find that

25∑
i=1

xi = 66.075
25∑

i=1
x2

i = 174.672925

25∑
i=1

yi = 50.12
25∑

i=1
y2

i = 100.49865

25∑
i=1

xi yi = 132.490725

(Continued on next page)
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Therefore,

b = 25(132.490725)− (66.075)(50.12)

25(174.672925)− (66.075)2
= 0.642

and

a = 50.12 − 0.642(66.075)

25
= 0.308

making the least squares line

y = 0.308 + 0.642x

The manufacturer is now in a position to make some informed policy deci-
sions. If the weight of a rough casting is, say, 2.71 oz., the least squares line
predicts that its finished weight will be 2.05 oz.:

estimated weight = a + b(2.71)= 0.308 + 0.642(2.71)= 2.05

In the event that finished weights of 2.05 oz. are considered to be too heavy,
rough castings weighing 2.71 oz. (or more) should be discarded.

Residuals

The difference between an observed yi and the value of the least squares line when
x = xi is called the ith residual. Its magnitude reflects the failure of the least squares
line to “model” that particular point.

Definition 11.2.1. Let a and b be the least squares coefficients associated with
the sample (x1, y1), (x2, y2), . . . , (xn, yn). For any value of x , the quantity ŷ =
a + bx is known as the predicted value of y. For any given i, i = 1,2, . . . ,n, the
difference yi − ŷi = yi − (a + bxi ) is called the ith residual. A graph of yi − ŷi

versus xi , for all i , is called a residual plot.
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Interpreting Residual Plots

Applied statisticians find residual plots to be very helpful in assessing the appro-
priateness of fitting a straight line through a given set of n points. If the
relationship between x and y is linear, the corresponding residual plot typi-
cally shows no patterns, cycles, trends, or outliers. For nonlinear relationships,
though, residual plots often take on dramatically nonrandom appearances that
can very effectively highlight and illuminate the underlying association between
x and y.

Example
11.2.1

Make the residual plot for the data in Case Study 11.2.1. What does its appearance
imply about the suitability of fitting those points with a straight line?

We begin by calculating the residuals for each of the twenty-five data points.
The first observation recorded, for example, was (x1, y1) = (2.745,2.080). The
corresponding predicted value, ŷ1, is 2.070:

ŷ1 = 0.308 + 0.642(2.745)

= 2.070

The first residual, then, is y1 − ŷ1 = 2.080 − 2.070, or 0.010. The complete set of
residuals appears in the last column of Table 11.2.2.

Table 11.2.2

xi yi ŷi yi − ŷi

2.745 2.080 2.070 0.010
2.700 2.045 2.041 0.004
2.690 2.050 2.035 0.015
2.680 2.005 2.029 −0.024
2.675 2.035 2.025 0.010
2.670 2.035 2.022 0.013
2.665 2.020 2.019 0.001
2.660 2.005 2.016 −0.011
2.655 2.010 2.013 −0.003
2.655 2.000 2.013 −0.013
2.650 2.000 2.009 −0.009
2.650 2.005 2.009 −0.004
2.645 2.015 2.006 0.009
2.635 1.990 2.000 −0.010
2.630 1.990 1.996 −0.006
2.625 1.995 1.993 0.002
2.625 1.985 1.993 −0.008
2.620 1.970 1.990 −0.020
2.615 1.985 1.987 −0.002
2.615 1.990 1.987 0.003
2.615 1.995 1.987 0.008
2.610 1.990 1.984 0.006
2.590 1.975 1.971 0.004
2.590 1.995 1.971 0.024
2.565 1.955 1.955 0.000
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Figure 11.2.2

Figure 11.2.2 shows the residual plot generated by fitting the least squares
straight line, y = 0.308 + 0.642x , to the twenty-five (xi , yi )’s. To an applied statisti-
cian, there is nothing here that would raise any serious doubts about using a straight
line to describe the xy-relationship—the points appear to be randomly scattered and
exhibit no obvious anomalies or patterns.

Case Study 11.2.2

Table 11.2.3 lists Social Security expenditures for five-year intervals from 1965
to 2005. During that period, payouts rose from $19.2 billion to $529.9 billion.
Substituting these nine (xi , yi )’s into the formulas in Theorem 11.2.1 gives

y =−38.0 + 12.9x

Table 11.2.3

Year Years after 1965, x
Social Security Expenditures

($ billions), y

1965 0 19.2
1970 5 33.1
1975 10 69.2
1980 15 123.6
1985 20 190.6
1990 25 253.1
1995 30 339.8
2000 35 415.1
2005 40 529.9

Source: www.socialsecurity.gov/history/trustfunds.html.

(Continued on next page)

www.socialsecurity.gov/history/trustfunds.html
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(Case Study 11.2.2 continued)

as the least squares straight line describing the xy-relationship. Based on the
data from 1965 to 2005, is it reasonable to predict that Social Security costs in
the year 2010 (when x = 45) will be $543 billion [=−38.0 + 12.9(45)]?

Not at all. At first glance, the least squares line does appear to fit the data
quite well (see Figure 11.2.3). A closer look, though, suggests that the under-
lying xy-relationship may be curvilinear rather than linear. The residual plot
(Figure 11.2.4) confirms that suspicion—there we see a distinctly nonrandom
pattern.
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Clearly, extrapolating these data would be foolish. The figure for the next
year, 2006, of $555 billion already exceeded the linear projection of $543 billion,
leading economists to predict rapidly accelerating expenditures in the future.

Comment For the data in Table 11.2.3, the suggestion that the xy-relationship may
be curvilinear is certainly present in Figure 11.2.3, but the residual plot makes the
case much more emphatically. In point of fact, that will often be the case, which is
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why residual plots are such a valuable diagnostic tool—departures from randomness
that may be only hinted at in an xy-plot will be exaggerated and highlighted in the
corresponding residual plot.

Case Study 11.2.3

A new, presumably simpler laboratory procedure has been proposed for recov-
ering calcium oxide (CaO) from solutions that contain magnesium. Critics
of the method argue that the results are too dependent on the person who
performs the analysis. To demonstrate their concern, they arrange for the pro-
cedure to be run on ten samples, each containing a known amount of CaO. Nine
of the ten tests are done by Chemist A; the other is run by Chemist B. Based on
the results summarized in Table 11.2.4, does their criticism seem justified?

Table 11.2.4

Chemist CaO Present (in mg), x CaO Recovered (in mg), y

A 4.0 3.7
A 8.0 7.8
A 12.5 12.1
A 16.0 15.6
A 20.0 19.8
A 25.0 24.5
B 31.0 31.1
A 36.0 35.5
A 40.0 39.4
A 40.0 39.5

Figure 11.2.5 shows the scatterplot of y versus x . The linear function
appears to fit all ten points exceptionally well, which would suggest that the crit-
ics’ concerns are unwarranted. But look at the residual plot (Figure 11.2.6). The
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Figure 11.2.5

(Continued on next page)
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(Case Study 11.2.3 continued)
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latter shows one point located noticeably further away from zero than any of
the others, and that point corresponds to the one measurement attributed to
Chemist B. So, while the scatterplot has failed to identify anything unusual
about the data, the residual plot has focused on precisely the question the data
set out to answer.

Does the appearance of the residual plot—specifically, the separation
between the Chemist B data point and the nine Chemist A data points—
“prove” that the output from the new procedure is dependent on the analyst?
No, but it does speak to the magnitude of the disparity and, in so doing, provides
the critics with at least a partial answer to their original question.

Questions

11.2.1. Crickets make their chirping sound by sliding one
wing cover very rapidly back and forth over the other.
Biologists have long been aware that there is a linear
relationship between temperature and the frequency with
which a cricket chirps, although the slope and y-intercept
of the relationship vary from species to species. The fol-
lowing table lists fifteen frequency-temperature observa-
tions recorded for the striped ground cricket, Nemobius
fasciatus fasciatus (135). Plot these data and find the equa-
tion of the least squares line, y = a + bx . Suppose a cricket
of this species is observed to chirp eighteen times per
second. What would be the estimated temperature?

For the data in the table, the sums needed are:

15∑
i=1

xi = 249.8
15∑

i=1

x2
i = 4,200.56

15∑
i=1

yi = 1,200.6
15∑

i=1

xi yi = 20,127.47

Observation Chirps per Second, Temperature,
Number x y (◦F)

1 20.0 88.6
2 16.0 71.6
3 19.8 93.3
4 18.4 84.3
5 17.1 80.6
6 15.5 75.2
7 14.7 69.7
8 17.1 82.0
9 15.4 69.4

10 16.2 83.3
11 15.0 79.6
12 17.2 82.6
13 16.0 80.6
14 17.0 83.5
15 14.4 76.3
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11.2.2. The aging of whisky in charred oak barrels brings
about a number of chemical changes that enhance its taste
and darken its color. The following table shows the change
in a whisky’s proof as a function of the number of years it
is stored (159).

Age, x (years) Proof, y

0 104.6
0.5 104.1
1 104.4
2 105.0
3 106.0
4 106.8
5 107.7
6 108.7
7 110.6
8 112.1

(Note: The proof initially decreases because of dilution by
moisture in the staves of the barrels.) Graph these data
and draw in the least squares line.

11.2.3. As water temperature increases, sodium nitrate
(NaNO3) becomes more soluble. The following table (103)
gives the number of parts of sodium nitrate that dissolve
in one hundred parts of water.

Temperature
(degrees Celsius), x Parts Dissolved, y

0 66.7
4 71.0

10 76.3
15 80.6
21 85.7
29 92.9
36 99.4
51 113.6
68 125.1

Calculate the residuals, y1–ŷ1, . . . , y9–ŷ9, and draw the
residual plot. Does it suggest that fitting a straight line
through these data would be appropriate? Use the follow-
ing sums:

9∑
i=1

xi = 234
9∑

i=1

yi = 811.3

9∑
i=1

x2
i = 10,144

9∑
i=1

xi yi = 24,628.6

11.2.4. What, if anything, is unusual about the following
residual plots?
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11.2.5. The following is the residual plot that results from
fitting the equation y = 6.0 + 2.0x to a set of n = 10 points.
What, if anything, would be wrong with predicting that y
will equal 30.0 when x = 12?
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11.2.6. Would the following residual plot produced by fit-
ting a least squares straight line to a set of n = 13 points
cause you to doubt that the underlying xy-relationship is
linear? Explain.
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11.2.7. The relationship between school funding and stu-
dent performance continues to be a hotly debated political
and philosophical issue. Typical of the data available are
the following figures, showing the per-pupil expenditures
and graduation rate for 26 randomly chosen districts in
Massachusetts.

Graph the data and superimpose the least squares
line, y = a + bx . What would you conclude about the
xy-relationship? Use the following sums:

26∑
i=1

xi = 360
26∑

i=1

yi = 2,256.6

26∑
i=1

x2
i = 5,365.08

26∑
i=1

xi yi = 31,402
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District

Spending per
Pupil

(in 1000s), x Graduation Rate

Dighton-Rehoboth $10.0 88.7
Duxbury $10.2 93.2
Tyngsborough $10.2 95.1
Lynnfield $10.3 94.0
Southwick-Tolland $10.3 88.3
Clinton $10.8 89.9
Athol-Royalston $11.0 67.7
Tantasqua $11.0 90.2
Ayer $11.2 95.5
Adams-Cheshire $11.6 75.2
Danvers $12.1 84.6
Lee $12.3 85.0
Needham $12.6 94.8
New Bedford $12.7 56.1
Springfield $12.9 54.4
Manchester Essex $13.0 97.9
Dedham $13.9 83.0
Lexington $14.5 94.0
Chatham $14.7 91.4
Newton $15.5 94.2
Blackstone Valley $16.4 97.2
Concord Carlisle $17.5 94.4
Pathfinder $18.1 78.6
Nantucket $20.8 87.6
Essex $22.4 93.3
Provincetown $24.0 92.3

Source: profiles.doe.mass.edu/state–report/ppx.aspx.

11.2.8. (a) Find the equation of the least squares straight
line for the plant cover diversity/bird species diversity data
given in Question 8.2.11.
(b) Make the residual plot associated with the least
squares fit asked for in part (a). Based on the appear-
ance of the residual plot, would you conclude that fitting a
straight line to these data is appropriate? Explain.

11.2.9. A nuclear plant was established in Hanford,
Washington, in 1943. Over the years, a significant amount
of strontium 90 and cesium 137 leaked into the Columbia
River. In a study to determine how much this radioactiv-
ity caused serious medical problems for those who lived
along the river, public health officials created an index
of radioactive exposure for nine Oregon counties in the
vicinity of the river. As a covariate, cancer mortality was
determined for each of the counties (40). The results are
given in the table in the next column. For the nine (xi , yi )’s
in the table,

9∑
i=1

xi = 41.56
9∑

i=1
x2

i = 289.4222

9∑
i=1

yi = 1,416.1
9∑

i=1
xi yi = 7,439.37

County Index of Exposure
Cancer Mortality

per 100,000

Umatilla 2.49 147.1
Morrow 2.57 130.1
Gilliam 3.41 129.9
Sherman 1.25 113.5
Wasco 1.62 137.5
Hood River 3.83 162.3
Portland 11.64 207.5
Columbia 6.41 177.9
Clatsop 8.34 210.3

Find the least squares straight line for these points. Also,
construct the corresponding residual plot. Does it seem
reasonable to conclude that x and y are linearly related?

11.2.10. Would you have any reservations about fitting
the following data with a straight line? Explain.

x y

3 20
7 37
5 29
1 10

10 59
12 69

6 39
11 58

8 47
9 48
2 18
4 29

11.2.11. When two closely related species are crossed, the
progeny will tend to have physical traits that lie some-
where between those of the two parents. Whether a similar
mixing occurs with behavioral traits was the focus of an
experiment where the subjects were mallard and pintail
ducks (162). A total of eleven males were studied; all were
second-generation crosses. A rating scale was devised that
measured the extent to which the plumage of each of
the ducks resembled the plumage of the first genera-
tion’s parents. A score of 0 indicated that the hybrid had
the same appearance (phenotype) as a pure mallard; a
score of 20 meant that the hybrid looked like a pintail.
Similarly, certain behavioral traits were quantified and a
second scale was constructed that ranged from 0 (com-
pletely mallard-like) to 15 (completely pintail-like). Use
Theorem 11.2.1 and the following data to summarize the
relationship between the plumage and behavioral indices.
Does a linear model seem adequate?
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Male Plumage Index, x Behavioral Index, y

R 7 3
S 13 10
D 14 11
F 6 5
W 14 15
K 15 15
U 4 7
O 8 10
V 7 4
J 9 9
L 14 11

11.2.12. Verify that the coefficients a and b of the
least squares straight line are solutions of the matrix
equation ⎛⎜⎜⎜⎜⎝

n
n∑

i=1

xi

n∑
i=1

xi

n∑
i=1

x2
i

⎞⎟⎟⎟⎟⎠
(

a

b

)
=

⎛⎜⎜⎜⎜⎝
n∑

i=1

yi

n∑
i=1

xi yi

⎞⎟⎟⎟⎟⎠
11.2.13. Prove that a least squares straight line must
necessarily pass through the point (x̄, ȳ).

11.2.14. In some regression situations, there are a pri-
ori reasons for assuming that the xy-relationship being
approximated passes through the origin. If so, the equa-
tion to be fit to the (xi , yi )’s has the form y = bx . Use the
least squares criterion to show that the “best” slope in that
case is given by

b =

n∑
i=1

xi yi

n∑
i=1

x2
i

11.2.15. One of the most startling scientific discover-
ies of the twentieth century was the announcement in
1929 by the American astronomer Edwin Hubble that
the universe is expanding. If v is a galaxy’s recession
velocity (relative to that of any other galaxy) and d is
its distance (from that same galaxy), Hubble’s law states
that

v = Hd

where H is known as Hubble’s constant. (To cosmologists,
Hubble’s constant is a critically important number—its
reciprocal, after being properly scaled, is an estimate of
the age of the universe.) The following are distance and
velocity measurements made on eleven galactic clusters
(23). Use the formula cited in Question 11.2.14 to estimate
Hubble’s constant.

Distance Velocity

Cluster
(millions of
light-years)

(thousands
of miles/sec)

Virgo 22 0.75
Pegasus 68 2.4
Perseus 108 3.2
Coma Berenices 137 4.7
Ursa Major No. 1 255 9.3
Leo 315 12.0
Corona Borealis 390 13.4
Gemini 405 14.4
Bootes 685 24.5
Ursa Major No. 2 700 26.0
Hydra 1100 38.0

11.2.16. Given a set of n linearly related points,
(x1, y1), (x2, y2), . . . , and (xn, yn), use the least squares cri-
terion to find formulas for

(a) a if the slope of the xy-relationship is known to
be b∗.

(b) b if the y-intercept of the xy-relationship is known
to be a∗.

11.2.17. Among the problems faced by job seekers want-
ing to reenter the workforce, eroded skills and outdated
backgrounds are two of the most difficult to overcome.
Knowing that, employers are often wary of hiring indi-
viduals who have spent lengthy periods of time away
from the job. The following table shows the percent-
ages of hospitals willing to rehire medical technicians
who have been away from that career for x years (145).
It can be argued that the fitted line should necessarily
have a y-intercept of 100 because no employer would
refuse to hire someone (due to outdated skills) whose
career had not been interrupted at all—that is, applicants
for whom x = 0. Under that assumption, use the result
from Question 11.2.16 to fit these data with the model
y = 100 + bx .

Percent of Hospitals
Years of Willing to

Inactivity, x Hire, y

0.5 100
1.5 94
4 75
8 44

13 28
18 17
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11.2.18. A graph of the luxury suite data in Question
8.2.5 suggests that the xy-relationship is linear. Moreover,
it makes sense to constrain the fitted line to go through
the origin, since x = 0 suites will necessarily produce y = 0
revenue.

(a) Find the equation of the least squares line, y = bx .
(Hint: Recall Question 11.2.14.)

(b) How much revenue would 120 suites be expected to
generate?

11.2.19. Set up (but do not solve) the equations nec-
essary to determine the least squares estimates for the
trigonometric model,

y = a + bx + c sin x

Assume that the data consist of the random sample (x1,
y1), (x2, y2), . . . , and (xn, yn).

Nonlinear Models

Obviously, not all xy-relationships can be adequately described by straight lines.
Curvilinear relationships of all sorts can be found in every field of endeavor. Many
of these nonlinear models, though, can still be fit using Theorem 11.2.1, provided the
data have been initially “linearized” by a suitable transformation.

Exponential Regression Suppose the relationship between two variables is best
described by an exponential function of the form

y = aebx (11.2.1)

Depending on the value of b, Equation 11.2.1 will look like one of the graphs
pictured in Figure 11.2.7. Those curvilinear shapes notwithstanding, though, there is
a linear model also related to Equation 11.2.1.

Figure 11.2.7

x

y

x

y

y = aebx

(b < 0)

y = aebx

(b > 0)

If y = aebx , it is necessarily true that

ln y = ln a + bx (11.2.2)

which implies that ln y and x have a linear relationship. That being the case, the for-
mulas of Theorem 11.2.1 applied to x and ln y should yield the slope and y-intercept
of Equation 11.2.2.

Specifically,

b =
n

n∑
i=1

xi ln yi −
(

n∑
i=1

xi

)(
n∑

i=1
ln yi

)
n

n∑
i=1

x2
i −
(

n∑
i=1

xi

)2
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and

ln a =

n∑
i=1

ln yi − b
n∑

i=1
xi

n

Comment Transformations that induce linearity often require that the slope and/or
y-intercept of the transformed model be transformed “back” to the original
model. Here, for example, Theorem 11.2.1 leads to a formula for ln a, which means
that the constant a appearing in the original exponential model is evaluated by
calculating eln a .

Case Study 11.2.4

Beginning in the 1970s, computers have steadily decreased in size as they have
grown in power. The ability to have more computing potential in a four-pound
laptop than in a mainframe of the 1970s is a result of engineers squeezing more
and more transistors onto silicon chips. The rate at which this miniaturization
occurs is known as Moore’s law, after Gordon Moore, one of the founders of
Intel Corporation. His prediction, first articulated in 1965, was that the number
of transistors per chip would double every eighteen months.

Table 11.2.5 lists some of the growth benchmarks—namely, the number of
transistors per chip—associated with the Intel chips marketed over the twenty-
year period from 1975 through 1995. Based on these figures, is it believable that
chip capacity is, in fact, doubling at a fixed rate (meaning that Equation 11.2.1
applies)? And if so, how close is the actual doubling time to Moore’s prediction
of eighteen months?

A plot of y versus x shows that their relationship is certainly not linear (see
Figure 11.2.8). The scatterplot more closely resembles the graph of y = aebx

when b > 0, as shown in Figure 11.2.7.

Table 11.2.5

Chip Year Years after 1975, x Transistors per Chip, y

8080 1975 0 4,500
8086 1978 3 29,000
80286 1982 7 90,000
80386 1985 10 229,000
80486 1989 14 1,200,000
Pentium 1993 18 3,100,000
Pentium Pro 1995 20 5,500,000

Source: en.wikipedia.org/wiki/Transistor—count.

Table 11.2.6 shows the calculation of the sums required to evaluate
the formulas for b and ln a. Here the slope and the y-intercept

(Continued on next page)
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(Case Study 11.2.4 continued)
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Figure 11.2.8

Table 11.2.6

Years after 1975, xi x2
i Transistors per Chip, yi ln yi xi · ln yi

0 0 4,500 8.41183 0
3 9 29,000 10.27505 30.82515
7 49 90,000 11.40756 79.85292

10 100 229,000 12.34148 123.41480
14 196 1,200,000 13.99783 195.96962
18 324 3,100,000 14.94691 269.04438
20 400 5,500,000 15.52026 310.40520

72 1078 86.90093 1009.51207

of the linearized model (Equation 11.2.2) are 0.342810 and 8.888369,
respectively:

b = 7(1009.51207)− 72(86.90093)

7(1078)− (72)2

= 0.342810

and

ln a = 86.9093 − (0.342810)(72)

7

= 8.888369

Therefore,

a = eln a = e8.888369 = 7247.189

(Continued on next page)
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which implies that the best-fitting exponential model describing Intel’s techno-
logical advances in chip design has the equation

y = 7247.189e0.343x

(see Figure 11.2.8).
To compare Equation 11.2.1 to Moore’s “eighteen-month doubling time”

prediction requires that we write y = 7247.189e0.343x in the form y =
7247.189(2)x . But

e0.343 = 20.495

so another way to express the fitted curve would be

y = 7247.189(20.495x ) (11.2.3)

In Equation 11.2.3, though, y doubles when 20.495x = 2, or, equivalently, when
0.495x =1, which implies that 2.0 years is the empirically determined technology
doubling time, a pace not too much slower than Moore’s prediction of eighteen
months.

About the Data In April of 2005, Gordon Moore pronounced his law dead. He
said, “It can’t continue forever. The nature of exponentials is that you push them out
and eventually disaster happens.” If by “disaster” he meant that technology often
makes a quantum leap, moving well beyond what an extrapolated law could predict,
he was quite correct. Indeed, he could have made this declaration in 2003. By that
year, the Itanium 2 featured 220,000,000 transistors on a chip, whereas the model of
the case study predicts the number to be only

y = 7247.189e0.343(28) = 107,432,032

(In the equation, x = 2003 − 1975 = 28.)

Logarithmic Regression Another frequently encountered curvilinear model that
can be easily linearized is the equation

y = axb (11.2.4)

Taking the common log of both sides of Equation 11.2.4 gives

log y = log a + b log x

which implies that log y is linear with log x . Therefore,

b =
n

n∑
i=1

log xi · log yi −
(

n∑
i=1

log xi

)(
n∑

i=1
log yi

)
n

n∑
i=1

(log xi )2 −
(

n∑
i=1

log xi

)2

and

log a =

n∑
i=1

log yi − b
n∑

i=1
log xi

n
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Regressions of this type have slower growth rates than exponential mod-
els and are particularly useful in describing biological and engineering
phenomena.

Case Study 11.2.5

Among mammals, the relationship between the age at which an animal devel-
ops locomotion and the age at which it first begins to play has been widely
studied. Table 11.2.7 lists “onset” times for locomotion and for play in eleven
different species (41). Graphed, the data show a pattern that suggests that
y = axb would be a good function for modeling the xy-relationship (see
Figure 11.2.9).

Table 11.2.7

Species
Locomotion

Begins, x (days)
Play Begins,

y (days)

Homo sapiens 360 90
Gorilla gorilla 165 105
Felis catus 21 21
Canis familiaris 23 26
Rattus norvegicus 11 14
Turdus merula 18 28
Macaca mulatta 18 21
Pan troglodytes 150 105
Saimiri sciurens 45 68
Cercocebus alb. 45 75
Tamiasciureus hud. 18 46
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Figure 11.2.9
(Continued on next page)
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Table 11.2.8

xi log xi yi log yi (log xi )
2 log xi log yi

360 2.55630 90 1.95424 6.53467 4.99562
165 2.21748 105 2.02119 4.91722 4.48195

21 1.32222 21 1.32222 1.74827 1.74827
23 1.36173 26 1.41497 1.85431 1.92681
11 1.04139 14 1.14613 1.08449 1.19357
18 1.25527 28 1.44716 1.57570 1.81658
18 1.25527 21 1.32222 1.57570 1.65974

150 2.17609 105 2.02119 4.73537 4.39829
45 1.65321 68 1.83251 2.73310 3.02952
45 1.65321 75 1.87506 2.73310 3.09987
18 1.25527 46 1.66276 1.57570 2.08721

17.74744 18.01965 31.06763 30.43743

The sums and sums of squares necessary to find a and b are calculated
in Table 11.2.8. Substituting into the formulas on p. 547 for the slope and
y-intercept of the linearized model gives

b = 11(30.43743)− (17.74744)(18.01965)

11(31.06763)− (17.74744)2

= 0.56

and

log a = 18.01965 − (0.56)(17.74744)

11

= 0.73364

Therefore, a = 100.73364 = 5.42, and the equation describing the xy-relationship
is y = 5.42x0.56 (see Figure 11.2.9).

Logistic Regression Growth is a fundamental characteristic of organisms, institu-
tions, and ideas. In biology, it might refer to the change in size of a Drosophila
population; in economics, to the proliferation of global markets; in political science,
to the gradual acceptance of tax reform. Prominent among the many growth models
capable of describing situations of this sort is the logistic equation

y = L

1 + ea+bx
(11.2.5)

where a,b, and L are constants. For different values of a and b, Equation 11.2.5
generates a variety of S-chaped curves.

To linearize Equation 11.2.5, we start with its reciprocal:

1

y
= 1 + ea+bx

L
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Therefore,

L

y
= 1 + ea+bx

and
L − y

y
= ea+bx

Equivalently,

ln

(
L − y

y

)
= a + bx

which implies that ln

(
L − y

y

)
is linear with x .

Comment The parameter L is interpreted as the limit to which y is converging as
x increases. In practice, L is often estimated simply by plotting the data and “eye-
balling” the y-asymptote.

Case Study 11.2.6

Biological organisms often exhibit exponential growth. However, in some cases,
that rapid rate of growth cannot be sustained. Such factors as lack of nutrition
to support a large population or the buildup of toxins limit the rate of growth.
In such cases the curve begins concave up, inflects at some point, and becomes
concave down and asymptotic to a limit.

A now-classical experiment provides data with the above characteristics.
Carlson (20) measured the amount of biomass of brewer’s yeast (Saccha-
romyces Cerevisiae) at one-hour intervals. Table 11.2.9 shows the results.

Table 11.2.9

Hour Yeast Count Hour Yeast Count

0 9.6 9 441.0
1 18.3 10 513.3
2 29.0 11 559.7
3 47.2 12 594.8
4 71.1 13 629.4
5 119.1 14 640.8
6 174.6 15 651.1
7 257.3 16 655.9
8 350.7 17 659.6

The scatterplot for these eighteen data points has a definite S-shaped
appearance (see Figure 11.2.10), which makes Equation 11.2.5 a good candidate
for modeling the xy-relationship. The limit to which the population is converg-
ing appears to be about 700. Quantify the population/time relationship by fitting
a logistic equation to these data. Let L = 700.

(Continued on next page)
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The form of the linearized version of Equation 11.2.5 requires that we find
the following sums:

18∑
i=1

xi = 153,

18∑
i=1

ln

(
700 − yi

yi

)
= 1.75603,

18∑
i=1

x2
i = 1785, and

18∑
i=1

xi · ln

(
700 − yi

yi

)
=−197.40071

Substituting ln
(

700−yi
yi

)
for yi into the formulas for a and b in Theorem 11.2.1

gives

b = 18(−197.40071)− (153)(1.75603)

18(1785)− (153)2
=−0.4382

and

a = 1.75603 − (−0.4382)(153)

18
= 3.822

so the best-fitting logistic curve has equation

y = 700

1 + e3.822−0.4382x

Other Curvilinear Models While the exponential, logarithmic, and logistic equa-
tions are three of the most common curvilinear models, there are several others that
deserve mention as well. Table 11.2.10 lists a total of six nonlinear equations, includ-
ing the three already described. Along with each is the particular transformation
that reduces the equation to a linear form. Proofs for parts (d), (e), and (f) will be
left as exercises.
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Table 11.2.10

a. If y = aebx , then ln y is linear with x .

b. If y = axb, then log y is linear with log x .

c. If y = L/(1 + ea+bx), then ln

(
L − y

y

)
is linear with x .

d. If y = 1

a + bx
, then

1

y
is linear with x .

e. If y = x

a + bx
, then

1

y
is linear with

1

x
.

f. If y = 1 − e−xb/a , then ln ln

(
1

1 − y

)
is linear with ln x .

Questions

11.2.20. Radioactive gold (195Au-aurothiomalate) has an
affinity for inflamed tissues and is sometimes used as a
tracer to diagnose arthritis. The data in the following table
(62) come from an experiment investigating the length
of time and the concentrations that 195Au-aurothiomalate
is retained in a person’s blood. Listed are the serum
gold concentrations found in ten blood samples taken
from patients given an initial dose of 50 mg. Follow-up
readings were made at various times, ranging from one to
seven days after injection. In each case, the retention is
expressed as a percentage of the patient’s day-zero serum
gold concentration.

Days after Injection, x
Serum Gold %

Concentration, y

1 94.5
1 86.4
2 71.0
2 80.5
2 81.4
3 67.4
5 49.3
6 46.8
6 42.3
7 36.6

(a) Fit an exponential curve to these data.
(b) Estimate the half-life of 195Au-aurothiomalate; that

is, how long does it take for half the gold to disappear
from a person’s blood?

If x denotes days after injection and y denotes

serum gold % concentration, then
10∑

i=1
xi = 35,

10∑
i=1

x2
i = 169,

10∑
i=1

ln yi = 41.35720, and
10∑

i=1
xi ln yi = 137.97415.

11.2.21. The growth of the federal debt is one of the char-
acteristic features of the U.S. economy. The rapidity of the
increases from 1996 to 2006, as shown in the table below,
suggests an exponential model.

Year Years after 1995, x
Gross Federal Debt

(in $ trillions), y

1996 1 5.181
1997 2 5.396
1998 3 5.478
1999 4 5.606
2000 5 5.629
2001 6 5.770
2002 7 6.198
2003 8 6.760
2004 9 7.355
2005 10 7.905
2006 11 8.451

Source: whitehouse.gov/omb/budget/fy2008/pdf/hist.pdf.

(a) Find the best-fitting exponential curve, using the
method of least squares together with an appro-
priate linearizing transformation. Use the sums:
20∑

i=1
ln yi = 20.16825 and

20∑
i=1

xi · ln yi = 126.33786.

(b) The official Office of Management and Budget pre-
diction for 2007 was $9 trillion. Compare this figure
to the projection using the model from part (a).

(c) Even though the model of part (a) is considered
“good” by a criterion to be given in Section 11.4
(r squared), plot the residuals and consider what they
say about the exponential fit.

11.2.22. Used cars are often sold wholesale at auctions,
and from these sales, retail sales prices are recommended.
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The following table gives the recommended prices in 2009
for a four-door manual transmission Toyota Corolla based
on the age of the car.

Age (in years), x Suggested retail price, y

1 $14,680
2 12,150
3 11,215
4 10,180
5 9,230
6 8,455
7 7,730
8 6,825
9 6,135

10 5,620
Source: www.bb.com.

(a) Fit these data with a model of the form y = aebx .
Graph the (xi , yi )’s and superimpose the least
squares exponential curve.

(b) What would you predict the retail price of an eleven-
year-old Toyota Corolla to be?

(c) The price of a new Corolla in 2009 was $16,200. Is
that figure consistent with the widely held belief that
a new car depreciates substantially the moment it is
purchased? Explain.

11.2.23. The stock market showed steady and significant
growth during the period from 1981 to 2000. This growth
was reflected in the Dow Jones Industrial Average. The
table gives the Dow Jones average (rounded to the near-
est whole number) for the opening of the stock market in
January for the years 1981 to 2000.

Years after 1981, x
Dow Jones Industrial

Average, y

0 947
1 871
2 1,076
3 1,221
4 1,287
5 1,571
6 2,158
7 1,958
8 2,342
9 2,591

10 2,736
11 3,223
12 3,310
13 3,978
14 3,844
15 5,395
16 6,813
17 7,907
18 9,359
19 10,941

Source: finance.yahoo.com/of/hp?s=%5EDJI.

Use the fact that
20∑

i=1
ln yi = 158.58560 and

20∑
i=1

xi · ln yi =
1591.99387 to fit the data with an exponential model.

11.2.24. Suppose a set of n (xi , yi )’s are measured on a
phenomenon whose theoretical xy-relationship is of the
form y = aebx .

(a) Show that
dy

dx
= by implies that y = aebx .

(b) On what kind of graph paper would the (xi , yi )’s
show a linear relationship?

11.2.25. In 1959, the Ise Bay typhoon devastated parts of
Japan. For seven metropolitan areas in the storm’s path,
the following table gives the number of homes damaged
as a function of peak wind gust (118). Show that a func-
tion of the form y = axb provides a good model for the
data.

Peak Wind Gust Numbers of Damaged
City (hundred mph), x Homes (in thousands), y

A 0.98 25.000
B 0.74 0.950
C 1.12 200.000
D 1.34 150.000
E 0.87 0.940
F 0.65 0.090
G 1.39 260.000

Use the following sums:

7∑
i=1

log xi =−0.067772
7∑

i=1
log yi = 7.1951

7∑
i=1

(log xi )
2 = 0.0948679

7∑
i=1

(log xi )(log yi )= 0.92314

11.2.26. Studies have shown that certain ants in a colony
are assigned foraging duties, which require them to come
and go from the colony on a regular basis. Furthermore,
if y is the colony size and x is the number of ants that
forage, the relationship between y and x has the form
y = axb, where a and b vary from species to species.
Once the parameter values have been estimated for a
particular kind of ant, biologists can count the (relatively
small) number of ants that forage and then use the regres-
sion equation to estimate the (much larger) number of
ants living in the colony. The table on p. 554 gives the
results of a “calibration” study done on the red wood ant
(Formica polyctena): Listed are the actual colony sizes,
y, and the foraging sizes, x , recorded for fifteen of their
colonies (94).

www.bb.com
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(a) Find a and b using the sums below.
(b) If the number of red wood ants seen foraging is 2500,

what would be a reasonable estimate for the size of
the colony from which they came?

15∑
i=1

log xi = 41.77441
15∑

i=1
log yi = 52.79857

15∑
i=1

(log xi )
2 = 126.60450

15∑
i=1

log xi · log yi = 156.03811

Foraging Size, x Colony Size, y

45 280
74 222

118 288
70 601

220 1,205
823 2,769
647 2,828
446 3,229
765 3,762
338 7,551
611 8,834

4,119 12,584
850 12,605

11,600 34,661
64,512 139,043

11.2.27. Over the years, many efforts have been made to
demonstrate that the human brain is appreciably different
in structure from the brains of lower-order primates. In
point of fact, such differences in gross anatomy are discon-
certingly difficult to discern. The following are the average
areas of the striate cortex (x) and the prestriate cortex (y)

found for humans and for three species of chimpanzees
(129).

Area

Primate
Striate Cortex,

x (mm2)

Prestriate Cortex,
y (mm2)

Homo 2613 7838
Pongo 1876 2864
Cercopithecus 933 1334
Galago 78.9 40.8

Plot the data and superimpose the least squares curve,
y = axb.

11.2.28. Years of experience buying and selling commer-
cial real estate have convinced many investors that the
value of land zoned for business (y) is inversely related

to its distance (x) from the center of town—that is, y =
a + b · 1

x
. If that suspicion is correct, what should be the

appraised value of a piece of property located 1
4

mile from
the town square, based on the sales listed below?

Distance from
Land Center of City (in Value
Parcel thousand feet), x (in thousands), y

H1 1.00 $20.5
B6 0.50 42.7
Q4 0.25 80.4
L4 2.00 10.5
T7 4.00 6.1
D9 6.00 6.0
E4 10.00 3.5

11.2.29. Verify the claims made in parts (d), (e), and (f)
of Table 11.2.10—that is, prove that the transformations
cited will linearize the original models.

11.2.30. During the 1960s, when the Cold War was fuel-
ing an arms race between the Soviet Union and the United
States, the number of American intercontinental ballis-
tic missiles (ICBMs) rose from 18 to 1054 (9). Moreover,
the sizes of the ICBM stockpile during that decade had
an S-shaped pattern, suggesting that the logistic curve
would provide a good model. Graph the following data,
and approximate the xy-relationship with the function y =

L

1 + ea+bx
. Assume that L = 1055.

Years
Years after

1959, x
Number of
ICBMs, y

1960 1 18
1961 2 63
1962 3 294
1963 4 424
1964 5 834
1965 6 854
1966 7 9̧04
1967 8 1054
1968 9 1054
1969 10 1054

11.2.31. The following table shows a portion of the results
from a clinical trial investigating the effectiveness of a
monoamine oxidase inhibitor as a treatment for depres-
sion (207). The relationship between y, the percentage of
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subjects showing improvement, and x , the patient’s age,
appears to be S-shaped. Graph the data and superimpose

a graph of the least squares curve y = L

1 + ea+bx
. Take L to

be 60.

Age Group Age Mid-Point, x % Improved, y ln
(

60−y
y

)
[28, 32) 30 11 1.49393
[32, 36) 34 14 1.18958
[36, 40) 38 19 0.76913
[40, 44) 42 32 −0.13353
[44, 48) 46 42 −0.84730
[48, 52) 50 48 −1.38629
[52, 56) 54 50 −1.60944
[56, 60) 58 52 −1.87180

11.3 The Linear Model
Section 11.2 views the problem of “curve fitting” from a purely geometrical per-
spective. The observed (xi , yi )’s are assumed to be nothing more than points in the
xy-plane, devoid of any statistical properties. It is more realistic, though, to think of
each y as the value recorded for a random variable Y , meaning that a distribution of
possible y-values is associated with every value of x .

Consider, for example, the connecting rod weights analyzed in Case
Study 11.2.1. The first rod listed in Table 11.2.1 had an initial weight of x = 2.745 oz.
and, after the tooling process was completed, a finished weight of y = 2.080 oz.
It does not follow from that one observation, of course, that an initial weight of
2.745 oz. necessarily leads to a finished weight of 2.080 oz. Common sense tells
us that the tooling process will not always have exactly the same effect, even on
rods having the same initial weight. Associated with each x , then, there will be a
range of possible y-values. The symbol fY |x (y) is used to denote the pdfs of these
“conditional” distributions.

Definition 11.3.1. Let fY |x (y) denote the pdf of the random variable Y for a
given value x , and let E(Y | x) denote the expected value associated with fY |x (y).
The function

y = E(Y | x)

is called the regression curve of Y on x .

Example
11.3.1

Suppose that corresponding to each value of x in the interval 0 ≤ x ≤ 1 is a
distribution of y-values having the pdf

fY |x (y)= x + y

x + 1
2

, 0 ≤ y ≤ 1; 0 ≤ x ≤ 1

Find and graph the regression curve of Y on x .
Notice, first of all, that for any x between 0 and 1, fY |x (y) does qualify as a pdf:

1. fY |x (y)≥ 0, for 0 ≤ y ≤ 1 and any 0 ≤ x ≤ 1

2.
∫ 1

0
fY |x (y)dy =

∫ 1

0

(
x + y

x + 1
2

)
dy = 1
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Moreover,

E(Y | x) =
∫ 1

0
y · fY |x (y)dy =

∫ 1

0
y · x + y

x + 1
2

dy

=
[

xy2

2
(
x + 1

2

) + y3

3
(
x + 1

2

)]∣∣∣∣∣
1

0

= 3x + 2

6x + 3
, 0 ≤ x ≤ 1

0

1

1

E(Y |   ) = 0.58

2y + 2
3f      (y) = 2yY | 0 f      (y) = y +Y |  

2
3

E(Y | 0) = 3x + 2
6x + 3y = E(Y | x) =

Regression curve:

f      (y) =Y | 1

E(Y | 1) =

1
2

1
2

1
2

1
2

5
9

1
2

x

y

Figure 11.3.1

Figure 11.3.1 shows the regression curve, y = E(Y | x) = 3x + 2

6x + 3
, together with

three of the conditional distributions— fY |0(y) = 2y, fY | 1
2
(y) = y + 1

2 , and fy|1(y) =
2y + 2

3
. The fY |x (y)’s, of course, should be visualized as coming out of the plane of

the paper.

A Special Case

Definition 11.3.1 introduces the notion of a regression curve in the most gen-
eral of contexts. In practice, there is one special case of the function y = E(Y | x)

that is particularly important. Known as the simple linear model, it makes four
assumptions:

1. fY |x (y) is a normal pdf for all x .
2. The standard deviation, σ , associated with fY |x (y) is the same for all x .
3. The means of all the conditional Y distributions are collinear—that is,

y = E(Y | x)=β0 +β1x

4. All of the conditional distributions represent independent random variables.
(See Figure 11.3.2.)
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Figure 11.3.2

xi xj xk

f       (y)Y | xi

E(Y | x )i

E(Y | x )j

E(Y | x  )k

x

f       (y)Y | xj

f       (y)Y | xk

y = E (Y  | x) = β  + β 1 x 0

y

Estimating the Linear Model Parameters

Implicit in the simple linear model are three parameters—β0, β1, and σ 2. Typically,
all three will be unknown and need to be estimated. Since the model assumes a
probability structure for the Y -variable, estimates can be obtained using the method
of maximum likelihood, as opposed to the method of least squares that we saw in
Section 11.2. (Maximum likelihood estimates are preferable to least squares esti-
mates because the former have probability distributions that can be used to set up
hypothesis tests and confidence intervals.)

Comment It would be entirely consistent with the notation used previously to
denote the sample in Theorem 11.3.1 as (x1, y1), (x2, y2), . . ., and (xn, yn). To empha-
size the important distinction, though, between the (lack of) assumptions on the
yi ’s made in Section 11.2 and the conditional pdfs fY |x (y) introduced in Defini-
tion 11.3.1, we will use random variable notation to write linear model data as
(x1,Y1), (x2,Y2), . . ., and (xn,Yn).

Theorem
11.3.1

Let (x1,Y1), (x2,Y2), . . ., and (xn,Yn) be a set of points satisfying the simple linear
model, E(Y | x)=β0 +β1x . The maximum likelihood estimators for β0, β1, and σ 2 are
given by

β̂1 =
n

n∑
i=1

xi Yi −
(

n∑
i=1

xi

)(
n∑

i=1
Yi

)
n

(
n∑

i=1
x2

i

)
−
(

n∑
i=1

xi

)2

β̂0 = Ȳ − β̂1 x̄

and

σ̂ 2 = 1

n

n∑
i=1

(Yi − Ŷi )
2

where Ŷi = β̂0 + β̂1xi , i = 1, . . . ,n.
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Proof Since each Yi is assumed to be normally distributed with mean equal to β0 +
β1xi and variance equal to σ 2, the sample’s likelihood function, L , is the product

L =
n∏

i=1

fY |xi (yi )

=
n∏

i=1

1√
2πσ

e
− 1

2

(
yi −β0−β1xi

σ

)2

The maximum of L occurs when the partial derivatives with respect to β0, β1, and σ 2

all vanish.
It will be easier, computationally, to differentiate −2 ln L , and the latter will be

minimized for the same parameter values that maximize L . Here,

−2 ln L = n · ln(2π)+ n · ln(σ 2)+ 1

σ 2

n∑
i=1

(yi −β0 −β1xi )
2

Setting the three partial derivatives equal to 0 gives

∂(−2 ln L)

∂β0
= 2

σ 2

n∑
i=1

(yi −β0 −β1xi )(−1)= 0

∂(−2 ln L)

∂β1
= 2

σ 2

n∑
i=1

(yi −β0 −β1xi )(−xi )= 0

∂(−2 ln L)

∂σ 2
= n

σ 2
− 2

(σ 2)2

n∑
i=1

(yi −β0 −β1xi )
2 = 0

The first two equations depend only on β0 and β1, and the resulting solutions for β̂0

and β̂1 have the same forms that are given in the statement of the theorem. Substi-
tuting the solutions from the first two equations into the third gives the expression
for σ̂ 2. �

Comment Note the similarity in the formulas for the maximum likelihood esti-
mators and the least squares estimates for β̂0 and β̂1. The least squares estimates,
of course, are numbers, while the maximum likelihood estimators are random
variables.

Up to this point, random variables have been denoted with uppercase letters
and their values with lowercase letters. In this section, boldface β̂0 and β̂1 will rep-
resent the maximum likelihood random variables, and plain-text β̂0 and β̂1 will refer
to specific values taken on by those random variables.

Properties of Linear Model Estimators

By virtue of the assumptions that define the simple linear model, we know that the
estimators β̂0, β̂1, and σ̂

2 are random variables. Before those estimators can be used
to set up inference procedures, though, we need to establish their basic statistical
properties—specifically, their means, variances, and pdfs.

Theorem
11.3.2

Let (x1,Y1), (x2,Y2), . . ., and (xn,Yn) be a set of points satisfying the simple linear
model, E(Y | x)=β0 +β1x . Let β̂0, β̂1, and σ̂

2 be the maximum likelihood estimators
for β0, β1, and σ 2, respectively. Then



11.3 The Linear Model 559

a. β̂0 and β̂1 are both normally distributed.
b. β̂0 and β̂1 are both unbiased: E(β̂0)=β0 and E(β̂1)=β1.
c. Var(β̂1)= σ 2

n∑
i=1

(xi −x̄)2

d. Var(β̂0)=
σ 2

n∑
i=1

x2
i

n
n∑

i=1
(xi −x̄)2

= σ 2

⎡⎣ 1
n + x̄2

n∑
i=1

(xi −x̄)2

⎤⎦

Proof We will prove the statements for β̂1; the results for β̂0 follow similarly.
The equation for the estimator β̂1 given in Theorem 11.3.1 is the simplest form

that solves the likelihood equations (and the least squares equations as well). It is
also convenient for computation. However, two other expressions for β̂1 are useful
for theoretical results.

To begin, take the version of β̂1 from Theorem 11.3.1:

β̂1 =
n

n∑
i=1

xi Yi −
(

n∑
i=1

xi

)(
n∑

i=1
Yi

)
n

(
n∑

i=1
x2

i

)
−
(

n∑
i=1

xi

)2

Dividing numerator and denominator by n gives

β̂1 =

n∑
i=1

xi Yi − 1
n

(
n∑

i=1
xi

)(
n∑

i=1
Yi

)
(

n∑
i=1

x2
i

)
− 1

n

(
n∑

i=1
xi

)2

=

n∑
i=1

xi Yi − x̄

(
n∑

i=1
Yi

)
(

n∑
i=1

x2
i

)
− nx̄2

=

n∑
i=1

(xi − x̄)Yi(
n∑

i=1
x2

i

)
− nx̄2

(11.3.1)

Equation 11.3.1 expresses β̂1 as a linear combination of independent normal vari-
ables, so by the second corollary to Theorem 4.3.3, it is itself normal, proving
part (a).

To see that β̂1 is unbiased, note that

E(β̂1) =

n∑
i=1

(xi − x̄)E(Yi )(
n∑

i=1
x2

i

)
− nx̄2

=

n∑
i=1

(xi − x̄)(β0 +β1xi )(
n∑

i=1
x2

i

)
− nx̄2

=
β0

n∑
i=1

(xi − x̄)+β1

n∑
i=1

(xi − x̄)xi(
n∑

i=1
x2

i

)
− nx̄2

=
0 +β1

n∑
i=1

(xi − x̄)xi(
n∑

i=1
x2

i

)
− nx̄2

=
β1

(
n∑

i=1
x2

i − nx̄2

)
(

n∑
i=1

x2
i

)
− nx̄2

=β1
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To find Var(β̂1), rewrite the denominator of Equation 11.3.1 in the form(
n∑

i=1

x2
i

)
− nx̄2 =

n∑
i=1

(x2
i − 2xi x̄ + x̄2) =

n∑
i=1

(xi − x̄)2

which makes

β1 =

n∑
i=1

(xi − x̄)Yi

n∑
i=1

(xi − x̄)2

(11.3.2)

Using Equation 11.3.2, Theorem 3.6.2, and the second corollary to Theorem 3.9.5
gives

Var(β̂1)= Var

⎡⎢⎢⎣ 1
n∑

i=1
(xi − x̄)2

n∑
i=1

(xi − x̄)Yi

⎤⎥⎥⎦
= 1[

n∑
i=1

(xi − x̄)2

]2

n∑
i=1

(xi − x̄)2σ 2

= σ 2

n∑
i=1

(xi − x̄)2

�

Theorem
11.3.3

Let (x1,Y1), (x2,Y2), . . . , (xn,Yn) satisfy the assumptions of the simple linear model.
Then

a. β̂1, Ȳ , and σ̂
2 are mutually independent.

b.
nσ̂

2

σ 2
has a chi square distribution with n − 2 degrees of freedom.

Proof See Appendix 11.A.2. �

Corollary Let σ̂
2 be the maximum likelihood estimator for σ 2 in a simple linear model. Then

n

n − 2
· σ̂ 2 is an unbiased estimator for σ 2.

Proof Recall that the expected value of a χ2
k distribution is k (see Theorems 4.6.3

and 7.3.1). Therefore,

E

(
n

n − 2
· σ̂ 2
)

= σ 2

n − 2
E

(
nσ̂

2

σ 2

)

= σ 2

n − 2
· (n − 2) [by part (b) of Theorem 11.3.3]

= σ 2 �

Corollary The random variables Ŷ and σ̂
2 are independent. �
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Estimating σ 2

We know that the (biased) maximum likelihood estimator for σ 2 in a simple linear
model is

σ̂
2 = 1

n

n∑
i=1

(Yi − β̂0 − β̂1xi )
2

The unbiased estimator for σ 2 based on σ̂
2 is denoted S2, where

S2 = n

n − 2
σ̂

2 = 1

n − 2

n∑
i=1

(Yi − β̂0 − β̂1xi )
2

Statistical software packages—including Minitab—typically print out s, rather than
σ̂ , in summarizing the calculations associated with linear model data. To accommo-
date that convention, we will use s2 rather than σ̂ 2 in writing the formulas for the
test statistics and confidence intervals that arise in connection with the simple linear
model.

Comment Calculating
n∑

i=1
(yi − β̂0 − β̂1xi )

2 =
n∑

i=1
(yi − ŷi )

2 can be cumbersome.

Three (algebraically equivalent) computing formulas are available that may be
easier to use, depending on the data:

n∑
i=1

(yi − ŷi )
2 =

n∑
i=1

(yi − ȳ)2 − β̂2
1

n∑
i=1

(xi − x̄)2 (11.3.3)

n∑
i=1

(yi − ŷi )
2 =

n∑
i=1

y2
i − 1

n

n∑
i=1

yi −

[
n∑

i=1
xi yi − 1

n

(
n∑

i=1
xi

)(
n∑

i=1
yi

)]2

n∑
i=1

x2
i − 1

n

n∑
i=1

xi

(11.3.4)

n∑
i=1

(yi − ŷi )
2 =

n∑
i=1

y2
i − β̂0

n∑
i=1

yi − β̂1

n∑
i=1

xi yi (11.3.5)

Drawing Inferences about β1

Hypothesis tests and confidence intervals for β1 can be carried out by defining a t
statistic based on the properties that appear in Theorems 11.3.2 and 11.3.3.

Theorem
11.3.4

Let (x1,Y1), (x2,Y2), . . ., and (xn,Yn) be a set of points that satisfy the assumptions of

the simple linear model, and let S2 = 1
n−2

n∑
i=1

(Yi − β̂0 − β̂1xi )
2. Then

Tn−2 = β̂1 −β1

S

/√
n∑

i=1
(xi − x̄)2

has a Student t distribution with n − 2 degrees of freedom.
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Proof We know from Theorem 11.3.2 that

Z = β̂1 −β1

σ

/√
n∑

i=1
(xi − x̄)2

has a standard normal pdf. Furthermore, nσ̂
2

σ 2 = (n−2)S2

σ 2 has a χ2 pdf with n − 2

degrees of freedom, and, by Theorem 11.3.3, Z and (n−2)S2

σ 2 are independent. From
Definition 7.3.3, then, it follows that

Z

/√
(n − 2)S2

σ 2

/
(n − 2) = β̂1 −β1

S

/√
n∑

i=1
(xi − x̄)2

has a Student t distribution with n − 2 degrees of freedom. �

Theorem
11.3.5

Let (x1,Y1), (x2,Y2), . . ., and (xn,Yn) be a set of points that satisfy the assumptions of
the simple linear model. Let

t = β̂1 −β1o

s

/√
n∑

i=1
(xi − x̄)2

a. To test H0:β1 = β1o versus H1:β1 > β1o at the α level of significance, reject H0 if
t ≥ tα,n−2.

b. To test H0:β1 = β1o versus H1:β1 < β1o at the α level of significance, reject H0 if
t ≤ −tα,n−2.

c. To test H0:β1 = β1o versus H1:β1 �= β1o at the α level of significance, reject H0 if t
is either (1) ≤ −tα/2,n−2 or (2) ≥ tα/2,n−2.

Proof The decision rule given here is, in fact, a GLRT. A formal proof proceeds
along the lines followed in Appendix 7.A.4. We will omit the details. �

Comment A particularly common application of Theorem 11.3.5 is to test H0:β1 =
0. If the null hypothesis that the slope is zero is rejected, it can be concluded (at
the α level of significance) that E(Y ) changes with x . Conversely, if H0:β1 = 0
is not rejected, the data have not ruled out the possibility that variation in Y is
unaffected by x .

Case Study 11.3.1

By late 1971, all cigarette packs had to be labeled with the words, “Warning:
The Surgeon General Has Determined That Smoking Is Dangerous To Your
Health.” The case against smoking rested heavily on statistical, rather than lab-
oratory, evidence. Extensive surveys of smokers and nonsmokers had revealed
the former to have much higher risks of dying from a variety of causes, including
heart disease.

(Continued on next page)
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Typical of that research are the data in Table 11.3.1, showing the annual
cigarette consumption, x , and the corresponding mortality rate, Y , due to
coronary heart disease (CHD) for twenty-one countries (116). Do these
data support the suspicion that smoking contributes to CHD mortality?
Test H0:β1 = 0 versus H1:β1 > 0 at the α = 0.05 level of significance.

Table 11.3.1

Cigarette CHD Mortality
Consumption per per 100,000

Country Adult per Year, x (ages 35–64), y

United States 3900 256.9
Canada 3350 211.6
Australia 3220 238.1
New Zealand 3220 211.8
United Kingdom 2790 194.1
Switzerland 2780 124.5
Ireland 2770 187.3
Iceland 2290 110.5
Finland 2160 233.1
West Germany 1890 150.3
Netherlands 1810 124.7
Greece 1800 41.2
Austria 1770 182.1
Belgium 1700 118.1
Mexico 1680 31.9
Italy 1510 114.3
Denmark 1500 144.9
France 1410 59.7
Sweden 1270 126.9
Spain 1200 43.9
Norway 1090 136.3

From Table 11.3.1,
21∑

i=1
xi = 45,110

21∑
i=1

yi = 3,042.2

21∑
i=1

x2
i = 109,957,100

21∑
i=1

y2
i = 529,321.58

21∑
i=1

xi yi = 7,319,602

and it follows that

β̂1 =
n

n∑
i=1

xi yi −
(

n∑
i=1

xi

)(
n∑

i=1
yi

)
n

(
n∑

i=1
x2

i

)
−
(

n∑
i=1

xi

)2

= 21(7,319,602)− (45,110)(3,042.2)

21(109,957,100)− (45,110)2
= 0.0601

(Continued on next page)
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(Case Study 11.3.1 continued)

and

β̂0 =

n∑
i=1

yi − β̂1

n∑
i=1

xi

n

= 3,042.2 − 0.0601(45,110)

21
= 15.771

The two other quantities needed for the test statistic are

n∑
i=1

(xi − x̄)2 =
n∑

i=1

x2
i −
(

1

n

)( n∑
i=1

xi

)2

= 109,957,100 −
(

1

21

)
(45,100)2 = 13,056,523.81

so

√
n∑

i=1
(xi − x̄)2 =√

13,056,523.81 = 3,613.38.

From Equation 11.3.5,

s2 = 1

21 − 2

(
21∑

i=1

y2
i − β̂0

21∑
i=1

yi − β̂1

21∑
i=1

xi yi

)

= 1

19
[529,321.58 − (15.766)(3,042.2)− (0.0601)(7,319,602)] = 2,181.588

and s =√
2,181.588 = 46.707

To test

H0: β1 = 0

versus

H0: β1 > 0

at the α = 0.05 level of significance, we should reject the null hypothesis if t ≥
t.05,19 = 1.7291. But

t = β̂1 −β1o

s

/√
n∑

i=1
(xi − x̄)2

= 0.0601 − 0

46.707/3,613.38

= 4.65

so our conclusion is clear-cut—reject H0. It would appear that the level of CHD
mortality in a country is affected by its citizens’ smoking habits. More specifi-
cally, as the number of people who smoke increases, so will the number who die
of coronary heart disease.

Theorem
11.3.6

Let (x1,Y1), (x2,Y2), . . ., and (xn,Yn) be a set of points that satisfy the assumptions of

the simple linear model, and let s2 = 1
n−2

n∑
i=1

(yi − β̂0 − β̂1xi )
2. Then
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n∑

i=1
(xi − x̄)2

, β̂1 + tα/2,n−2 · s√
n∑

i=1
(xi − x̄)2

⎤⎥⎥⎥⎥⎦
is a 100(1 −α)% confidence interval for β1.

Proof Let Tn−2 denote a Student t random variable with n − 2 degrees of freedom,
in which case

P(−tα/2,n−2 ≤ Tn−2 ≤ tα/2,n−2)= 1 −α

Substitute the expression for Tn−2 given in Theorem 11.3.4 and isolate β1 in the
center of the inequalities. The resulting endpoints will be the expressions appearing
in the statement of the theorem. �

Case Study 11.3.2

For many firms, the cost of sales is a linear function of net revenue. This seems
to be the case for Starbucks, now a staple of the coffee-drinking public. Prior
to 1971, Americans drinking coffee outside of their homes had little choice but
a weak, watery brew often kept for hours on a hotplate, giving a burned, bitter
taste. In 1971, a company opened a coffee shop in Seattle’s famous Pike Place
Market to serve robust and fresh coffee. The shop was named after a character
in Herman Melville’s Moby Dick, and it signified the import of coffee across the
seas. By 2007, the chain had grown to over fifteen thousand outlets.

Table 11.3.2 shows Starbucks’ annual net revenue (x) and the cost of oper-
ating the stores (y) primarily responsible for generating that revenue. Graphed,
the xy-relationship is described very well by the line y = 18.57 + 0.41x , where
18.57 and 0.41 are the values of β̂0 and β̂1 calculated from the formulas in
Theorem 11.3.1 (see Figure 11.3.3).

Table 11.3.2

Year Net Revenue (in $ millions), x Cost of Sales (in $ millions), y

1999 1687 748
2000 2178 962
2001 2649 1113
2002 3289 1350
2003 4076 1686
2004 5294 2199
2005 6369 2605
2006 7787 3179
2007 9411 3999

Source: Company reports.

(Continued on next page)



566 Chapter 11 Regression

(Case Study 11.3.2 continued)
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Figure 11.3.3

The true slope in this situation—β1—is particularly important from the
company’s perspective because it represents the amount that costs are likely to
increase when revenues go up by one unit. That said, it makes sense to construct,
say, a 95% confidence interval for β1 based on the observed β̂1.

Here,
9∑

i=1

(xi − x̄)2 = 56,865,526.89

so

√√√√ 9∑
i=1

(xi − x̄)2 =
√

56,865,526.89 = 7540.92

and from Equation 11.3.5,

s2 = 1

9 − 2

[
9∑

i=1

y2
i − β̂0

9∑
i=1

yi − β̂1

9∑
i=1

xi yi

]

= 1

7
[45,108,481 − (18.57)(17,841)− (0.41)(108,239,948)] = 2535.01

so s =√
2535.01 = 50.35.

Using t.025,7 = 2.3646, the expression given in Theorem 11.3.6 reduces to(
0.41 − 2.3646 · 50.35

7540.92
,0.41 + 2.3646 · 50.35

7540.92

)
= ($0.394, $0.426)

Judging from these data, then, the company can anticipate that costs will
rise somewhere between thirty-nine and forty-three cents for every one-dollar
increase in revenues.

About the Data The predictive value of the regression equation in Case
Study 11.3.2 depends on a continuing healthy economic climate after the years 1999–
2007, the period for which the data were generated. In the case of Starbucks, a
serious economic downturn began in 2008, and in the summer of that year, Starbucks
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announced plans to close six hundred stores. An equation based on 1999–2007 data
might still be useful, but a more prudent strategy would be to revisit the equation in
light of what happened in 2008 and 2009, when consumers’ discretionary expenses
were curtailed.

Drawing Inferences about β0

In practice, the value of β0 is not likely to be as important as the value of β1. Slopes
often quantify particularly important aspects of xy-relationships, which was true,
for example, in Case Study 11.3.2. Nevertheless, hypothesis tests and confidence
intervals for β0 can be easily derived from the results given in Theorems 11.3.2 and
11.3.3.

The GLRT procedure for assessing the credibility of H0 : β0 = β0o is based on a
Student t random variable with n − 2 degrees of freedom:

Tn−2 =

(
β̂0 −β0o

)√
n

√
n∑

i=i
(xi − x̄)2

S

√
n∑

i=1
x2

i

= β̂0 −β0o√
V̂ar(β̂0)

(11.3.6)

“Inverting” Equation 11.3.6 (recall the proof of Theorem 11.3.6) yields⎡⎢⎢⎢⎢⎣β̂0 − tα/2,n−2 ·
s

√
n∑

i=1
x2

i

√
n

√
n∑

i=1
(xi − x̄)2

, β̂0 + tα/2,n−2 ·
s

√
n∑

i=1
x2

i

√
n

√
n∑

i=1
(xi − x̄)2

⎤⎥⎥⎥⎥⎦
as the formula for a 100(1 −α)% confidence interval for β0.

Drawing Inferences about σ 2

Since (n − 2)S2/σ 2 has a χ2 pdf with n − 2 df (if the n observations satisfy the
stipulations implicit in the simple linear model), it follows that

P

[
χ2

α/2,n−2 ≤ (n − 2)S2

σ 2
≤χ2

1−α/2,n−2

]
= 1 −α

Equivalently,

P

[
(n − 2)S2

χ2
1−a/2,n−2

≤ σ 2 ≤ (n − 2)S2

χ2
α/2,n−2

]
= 1 −α

in which case [
(n − 2)s2

χ2
1−α/2,n−2

,
(n − 2)s2

χ2
α/2,n−2

]
becomes the 100(1 − α)% confidence interval for σ 2 (recall Theorem 7.5.1). Testing
H0 : σ 2 = σ 2

o is done by calculating the ratio

χ2 = (n − 2)s2

σ 2
o
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which has a χ2 distribution with n − 2 df when the null hypothesis is true. Except for
the degrees of freedom (n − 2 rather than n − 1), the appropriate decision rules for
one-sided and two-sided H1’s are similar to those given in Theorem 7.5.2.

Questions

11.3.1. Insect flight ability can be measured in a labora-
tory by attaching the insect to a nearly frictionless rotating
arm with a thin wire. The “tethered” insect then flies in
circles until exhausted. The nonstop distance flown can
easily be calculated from the number of revolutions made
by the arm. The following are measurements of this sort
made on Culex tarsalis mosquitos of four different ages.
The response variable is the average distance flown until
exhaustion for forty females of the species (150).

Distance Flown, y
Age, x (weeks) (thousand meters)

1 12.6
2 11.6
3 6.8
4 9.2

Fit a straight line to these data and test that the slope
is zero. Use a two-sided alternative and the 0.05 level of
significance.

11.3.2. The best straight line through the Massachusetts
funding/graduation rate data described in Question 11.2.7
has the equation y = 81.088 + 0.412x , where s = 11.78848.

(a) Construct a 95% confidence interval for β1.
(b) What does your answer to part (a) imply about the

outcome of testing H0 : β1 = 0 versus H1: β1 �= 0 at the
α = 0.05 level of significance?

(c) Graph the data and superimpose the regression line.
How would you summarize these data, and their
implications, to a meeting of the state School Board?

11.3.3. Based on the data in Question 11.2.1, the rela-
tionship between y, the ambient temperature, and x , the
frequency of a cricket’s chirping, is given by y = 25.2 +
3.29x , where s = 3.83. At the α = 0.01 level of significance,
can the hypothesis that chirping frequency is not related
to temperature be rejected?

11.3.4. Suppose an experimenter intends to do a regres-
sion analysis by taking a total of 2n data points, where
the xi ’s are restricted to the interval [0, 5]. If the xy-
relationship is assumed to be linear and if the objective is
to estimate the slope with the greatest possible precision,
what values should be assigned to the xi ’s?

11.3.5. Suppose a total of n = 9 measurements are to be
taken on a simple linear model, where the xi ’s will be set

equal to 1,2, . . . , and 9. If the variance associated with the
xy-relationship is known to be 45.0, what is the probability
that the estimated slope will be within 1.5 units of the true
slope?

11.3.6. Prove the useful computing formula (Equa-
tion 11.3.5) that

n∑
i=1

(yi − β̂0 − β̂1xi )
2 =

n∑
i=1

y2
i − β̂0

n∑
i=1

yi − β̂1

n∑
i=1

xi yi

11.3.7. The sodium nitrate (NaNO3) solubility data in
Question 11.2.3 is described nicely by the regression line
y = 67.508 + 0.871x , where s = 0.959. Construct a 90%
confidence interval for the y-intercept, β0.

11.3.8. Set up and carry out an appropriate hypothesis
test for the Hanford radioactive contamination data given
in Question 11.2.9. Let α = 0.05. Justify your choice of H0

and H1. What do you conclude?

11.3.9. Test H0: β1 = 0 versus H1: β1 �= 0 for the plumage
index/behavioral index data given in Question 11.2.11 Let
α = 0.05. Use the fact that y = 0.61 + 0.84x is the best
straight line describing the xy-relationship.

11.3.10. Let (x1,Y1), (x2,Y2), . . . , and (xn,Yn) be a set
of points satisfying the assumptions of the simple linear
model. Prove that

E(Ȳ )=β0 +β1 x̄

11.3.11. Derive a formula for a 95% confidence interval
for β0 if n (xi ,Yi )’s are taken on a simple linear model
where σ is known.

11.3.12. Which, if any, of the assumptions of the simple
linear model appear to be violated in the following scat-
terplot? Which, if any, appear to be satisfied? Which, if
any, cannot be assessed by looking at the scatterplot?

x

y

0
^ ^y = β  + β1 x
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11.3.13. State the decision rule and the conclusion if
H0: σ 2 = 12.6 is to be tested against H1: σ 2 �= 12.6 where
n = 24, s2 = 18.2, and α = 0.05.

11.3.14. Construct a 90% confidence interval for σ 2 in the
cigarette-consumption/CHD mortality data given in Case
Study 11.3.1.

11.3.15. Recall Kepler’s Third Law data given in Ques-
tion 8.2.1. The estimated regression line describing the
xy-relationship has the equation y = 2.27 + 0.16x , where
s = 2.31. Construct a 90% confidence interval for σ 2.

Drawing Inferences about E(Y | x)

In Case Study 11.3.1, the random variable Y represents the CHD mortality resulting
from x cigarette consumption. A public health official would certainly want to have
some idea of the range of mortality likely to be encountered in a country where x is,
say, 4200.

Intuition tells us that a reasonable point estimator for E(Y | x) is the height
of the regression line at x—that is, Ŷ = β̂0 + β̂1x . By Theorem 11.3.2, the latter is
unbiased:

E(Ŷ )= E(β̂0 + β̂1x)= E(β̂0)+ x E(β̂1)=β0 +β1x

Of course, to use Ŷ in any inference procedure requires that we know its
variance. But

Var(Ŷ )= Var(β̂0 + β̂1x)= Var(Ȳ − β̂1 x̄ + β̂1x)

= Var[Ȳ + β̂1(x − x̄)]
= Var(Ȳ )+ (x − x̄)2Var(β̂1) (why?)

= 1

n
σ 2 + (x − x̄)2

n∑
i=1

(xi − x̄)2

σ 2

= σ 2

⎡⎢⎢⎣1

n
+ (x − x̄)2

n∑
i=1

(xi − x̄)2

⎤⎥⎥⎦
An application of Definition 7.3.3, then, allows us to construct a Student t

random variable based on Ŷ . Specifically,

Tn−2 = Ŷ − (β0 +β1x)

σ

√
1
n + (x−x̄)2

n∑
i=1

(xi −x̄)2

/√
(n − 2)S2

σ 2

n−2

= Ŷ − (β0 +β1x)

S
√

1
n + (x−x̄)2

n∑
i=1

(xi −x̄)2

has a Student t distribution with n −2 degrees of freedom. Isolating β0 +β1x = E(Y |
x) in the center of the inequalities P(−tα/2,n−2 ≤ Tn−2 ≤ tα/2,n−2) = 1 − α produces a
100(1 −α)% confidence interval for E(Y | x).

Theorem
11.3.7

Let (x1,Y1), (x2,Y2), . . ., and (xn,Yn) be a set of points that satisfy the assumptions of
the simple linear model. A 100(1 − α)% confidence interval for E(Y | x) = β0 + β1x is
given by (ŷ −w, ŷ +w), where
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w = tα/2,n−2 · s

√√√√√1

n
+ (x − x̄)2

n∑
i=1

(xi − x̄)2

and ŷ = β̂0 + β̂1x .

Example
11.3.2

Look again at Case Study 11.3.1. Suppose a country’s public health officials estimate
cigarette consumption to be 4200 per adult per year. If that were the case, what
CHD mortality would they expect? Answer the question by constructing a 95%
confidence interval for E(Y |4200).

Here, n = 21, t.025,19 = 2.0930,
21∑

i=1
(xi − x̄)2 = 13,056,523.81, s = 46.707, β̂0 =

15.7661, β̂1 = 0.0601, and x̄ = 2148.095. From Theorem 11.3.7, then,

ŷ = 15.7661 + 0.0601(4200)= 268.1861

w = 2.0930(46.707)

√
1

21
+ (4200 − 2148.095)2

13,056,523.81
= 59.4714

and the 95% confidence interval for E(Y|4200) is

(268.1861 − 59.4714, 268.1861 − 59.4714)

which rounded to two decimal places is

(208.71,327.66)

Comment Notice from the formula in Theorem 11.3.7 that the width of a confi-
dence interval for E(Y | x) increases as the value of x becomes more extreme. That
is, we are better able to predict the location of the regression line for an x-value
close to x̄ than we are for x-values that are either very small or very large.

Figure 11.3.4 shows the dependence of w on x for the data from Case
Study 11.3.1. The lower and upper limits for the 95% confidence interval for E(Y | x)

have been calculated for all x . Pictured is the dotted curve (or 95% confidence band)
connecting those endpoints. The width of the band is smallest when x =2148.1 (= x̄).
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Drawing Inferences about Future Observations

A variation on Theorem 11.3.7 is the determination of a range of numbers that
would have a high probability of including the value Y of a single future observation
to be recorded at some given level of x . In Case Study 11.3.1, public health officials
might want to predict the actual (not the average) CHD mortality that would occur
if cigarette consumption is x .

Let (x1,Y1), (x2,Y2), . . . , (xn,Yn) be a set of n points that satisfy the assump-
tions of the simple linear model, and let (x,Y ) be a hypothetical future observation,
where Y is independent of the n Yi ’s. A prediction interval is a range of numbers that
contains Y with a specified probability.

Consider the difference Ŷ − Y . Clearly,

E(Ŷ − Y )= E(Ŷ )− E(Y )= (β0 +β1x)− (β0 +β1x)= 0

and

Var(Ŷ − Y ) = Var(Ŷ )+ Var(Y )

= σ 2

⎡⎢⎢⎣1

n
+ (x − x̄)2

n∑
i=1

(xi − x̄)2

⎤⎥⎥⎦+ σ 2

= σ 2

⎡⎢⎢⎣1 + 1

n
+ (x − x̄)2

n∑
i=1

(xi − x̄)2

⎤⎥⎥⎦
Following exactly the same steps that were taken in the derivation of Theo-
rem 11.3.7, a Student t random variable with n − 2 degrees of freedom can be con-
structed from Ŷ − Y (using Definition 7.3.3). Inverting the equation P(−tα/2,n−2 ≤
Tn−2 ≤ tα/2,n−2) = 1 − α will then yield the prediction interval (ŷ − w, ŷ + w) given in
Theorem 11.3.8.

Theorem
11.3.8

Let (x1,Y1), (x2,Y2), . . ., and (xn,Yn) be a set of n points that satisfy the assumptions
of the simple linear model. A 100(1 −α)% prediction interval for Y at the fixed value
x is given by (ŷ −w, ŷ +w), where

w = tα/2,n−2 · s

√√√√√1 + 1

n
+ (x − x̄)2

n∑
i=1

(xi − x̄)2

and ŷ = β̂0 + β̂1x . �

Example
11.3.3

Based on the data in Case Study 11.3.1, we calculated in Example 11.3.2 that a 95%
confidence interval for E(Y |4200) is (208.71, 327.66). How does that compare to the
corresponding 95% prediction interval for Y ?

When x =4200, ŷ =268.1861 for both intervals. From Theorem 11.3.8, the width
of the 95% prediction interval for Y is:

w = 2.0930(46.707)

√
1 + 1

21
+ (4200 − 2148.095)2

13,056,523.81
= 114.4725
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The 95% prediction interval, then, is

(268.1861 − 114.4725,268.1861 + 114.4725)

which rounded to two decimal places is

(153.76,382.61)

which makes it 92% wider than the 95% confidence interval for E(Y |4200).

Testing the Equality of Two Slopes

We saw in Chapter 9 that the comparison of two treatments or two conditions often
leads to a hypothesis test that the mean of one is equal to the mean of the other.
Similarly, the comparison of two linear xy-relationships often requires that we test
H0 :β1 =β∗

1 , where β1 and β∗
1 are the true slopes associated with the two regressions.

If the data points taken on the two regressions are all independent, a two-
sample t test can be set up based on the properties in Theorems 11.3.2 and 11.3.3.
Theorem 11.3.9 identifies the appropriate test statistic and summarizes the GLRT
decision rule. Details of the proof will be omitted.

Theorem
11.3.9

Let (x1,Y1), (x2,Y2), . . . , (xn,Yn) and (x∗
1 ,Y ∗

1 ), (x∗
2 ,Y ∗

2 ), . . . , (x∗
m,Y ∗

m) be two indepen-
dent sets of points, each satisfying the assumptions of the simple linear model—that is,
E(Y | x)=β0 +β1x and E(Y ∗ | x∗)=β∗

0 +β∗
1 x∗.

a. Let

T = β̂1 − β̂∗
1 − (β1 −β∗

1 )

S
√

1
n∑

i=1
(xi −x̄)2

+ 1
m∑

i=1
(x∗

i −x̄∗)2

where

S =

√√√√√ n∑
i=1

[Yi − (β̂0 + β̂1xi )]2 +
m∑

i=1
[Y ∗

i − (β̂∗
0 + β̂∗

1xi )]2

n + m − 4

Then T has a Student t distribution with n + m − 4 degrees of freedom.
b. To test H0 : β1 = β∗

1 versus H1 : β1 �= β∗
1 at the α level of significance, reject H0 if t

is either (1) ≤ −tα/2,n+m−4 or (2) ≥ tα/2,n+m−4, where

t = β̂1 − β̂∗
1

s
√

1
n∑

i=1
(xi − x̄)2

+ 1
m∑

i=1
(x∗

i − x̄ ∗)2

(One-sided tests are defined in the usual way by replacing ±tα/2,n+m−4 with either
tα,n+m−4 or −tα,n+m−4.)

Example
11.3.4

Genetic variability is thought to be a key factor in the survival of a species, the idea
being that “diverse” populations should have a better chance of coping with chang-
ing environments. Table 11.3.3 summarizes the results of a study designed to test
that hypothesis experimentally [data slightly modified from (4)]. Two populations
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Table 11.3.3

Date Day no., x(= x∗) Strain A popn, y Strain B popn, y∗

Feb 2 0 100 100
May 13 100 250 203
Aug 21 200 304 214
Nov 29 300 403 295
Mar 8 400 446 330
Jun 16 500 482 324

of fruit flies (Drosophila serrata)—one that was cross-bred (Strain A) and the other,
in-bred (Strain B)—were put into sealed containers where food and space were kept
to a minimum. Recorded every hundred days were the numbers of Drosophila alive
in each population.

Figure 11.3.5 shows a graph of the two sets of population figures. For both
strains, growth was approximately linear over the period covered. Strain A, though,
with an estimated slope of 0.74, increased at a faster rate than did Strain B, where
the estimated slope was 0.45. The question is, do we have enough evidence here
to reject the null hypothesis that the two true slopes are equal? Is the difference
between 0.74 and 0.45, in other words, statistically significant?
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Figure 11.3.5

Let α = 0.05 and let (xi , yi ), i = 1,2, . . ., 6, and (x∗
i , y∗

i ), i = 1,2, . . ., 6, denote the
times and population sizes for Strain A and Strain B, respectively. Our objective is
to test H0 : β1 = β∗

1 versus H1 : β1 > β∗
1 . Rejecting H0, of course, would support the

contention that genetic variability benefits a species’ chances of survival.
From Table 11.3.3, x̄ = x̄ ∗ = 250 and

6∑
i=1

(xi − x̄)2 =
6∑

i=1

(x∗
i − x̄∗)2 = 175,000
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Also,
6∑

i=1

[yi − (145.3 − 0.742xi )]2 = 5512.14

and
6∑

i=1

[y∗
i − (131.3 + 0.452x∗

i )]2 = 3960.14

so

s =
√

5512.14 + 3960.14

6 + 6 − 4
= 34.41

Since H1 is one-sided to the right, we should reject H0 if t ≥ t.05,8 = 1.8595. But

t = 0.742 − 0.452

34.41

√
1

175,000
+ 1

175,000

= 2.50

These data, then, do support the theory that genetically mixed populations have a
better chance of survival in hostile environments.

Questions

11.3.16. Regression techniques can be very useful in situ-
ations where one variable—say, y—is difficult to measure
but x is not. Once such an xy-relationship has been “cal-
ibrated,” based on a set of (xi , yi )’s, future values of Y
can be easily estimated using β̂0 + β̂1x . Determining the
volume of an irregularly shaped object, for example, is
often difficult, but weighing that object is likely to be easy.
The following table shows the weights (in kilograms) and
the volumes (in cubic decimeters) of eighteen children
between the ages of five and eight (13). The estimated
regression line has the equation y = −0.104 + 0.988x ,
where s = 0.202.

(a) Construct a 95% confidence interval for E(Y |14.0).
(b) Construct a 95% prediction interval for the volume

of a child weighing 14.0 kilograms.

Weight, x Volume, y Weight, x Volume, y

17.1 16.7 15.8 15.2
10.5 10.4 15.1 14.8
13.8 13.5 12.1 11.9
15.7 15.7 18.4 18.3
11.9 11.6 17.1 16.7
10.4 10.2 16.7 16.6
15.0 14.5 16.5 15.9
16.0 15.8 15.1 15.1
17.8 17.6 15.1 14.5

11.3.17. Construct a 95% confidence interval for
E(Y |2.750) using the connecting rod data given in Case
Study 11.2.1.

11.3.18. For the CHD mortality data of Case Study 11.3.1,
construct a 99% confidence interval for the expected
death rate in a country where the cigarette consump-
tion is 2500 per adult per year. Is a public health official
more likely to be interested in a 99% confidence interval
for E(Y |2500) or a 99% prediction interval for Y when
x = 2500?

11.3.19. The Master of Business Administration (M.B.A.)
degree typically prepares its possessors for a high-salaried
position, most often in business or industry. So, a reason-
able measure of the effectiveness of an M.B.A. program
is the median salary of its graduates five years after grad-
uation. The table gives the tuition paid and the median
five-year-out salary for graduates of sixteen highly ranked
private M.B.A. programs.

University
Tuition

($ thousands)
Median Salary
($ thousands)

Wake Forest 71 108
Emory 81 121
SMU 81 122
Georgetown 83 147
USC 86 155
Vanderbilt 87 128
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NYU 89 170
Cornell 92 168
Yale 93 160
Duke 93 148
Dartmouth 94 205
Northwestern 96 165
MIT 96 190
Chicago 97 210
Carnegie Mellon 98 145
Columbia 99 182

Source: www.forbes.com/lists/2009/95/best-business-schools-09_Best-Business-
Schools.

Find the 95% confidence interval for E(Y |102). Harvard’s
tuition during this time period was $102,000. Does the
interval include the Harvard graduate median salary of
$215,000?

11.3.20. In the radioactive exposure example in Ques-
tion 11.2.9, find the 95% confidence interval for E(Y |9.00)

and the prediction interval for the value 9.00.

11.3.21. Attorneys representing a group of male buyers
employed by Flirty Fashions are filing a reverse discrim-
ination suit against the female-owned company. Central
to their case are the following data, showing the relation-
ship between years of service and annual salary for the
firm’s fourteen buyers, six of whom are men. The plain-
tiffs claim that the difference in slopes (0.606 for men
versus 1.07 for women) is prima facie evidence that the
company’s salary policies discriminate against men. As the
lawyer for Flirty Fashions, how would you respond? Use
the following sums:

6∑
i=1

(yi − 21.3 − 0.606xi )
2 = 5.983

and

8∑
i=1

(y∗
i
− 23.2 − 1.07x∗

i
)2 = 13.804

Also,
6∑

i=1
(xi − x̄)2 = 31.33 and

8∑
i=1

(x∗
i − x̄∗)2 = 46.
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11.3.22. Polls taken during a city’s last two administra-
tions (one Democratic, one Republican) suggested that
public support of the two mayors fell off linearly with
years in office. Can it be concluded from the following
data that the rates at which the two administrations lost
favor were significantly different? Let α = 0.05. (Note: y =
69.3077 − 3.4615x with an estimated standard deviation
of 0.9058 and y∗ = 59.9407 − 2.7373x∗ with an estimated
standard deviation of 1.2368.)

Democratic Mayor Republican Mayor

Years after Percent in Years after Percent in
Taking Office, x Support, y Taking Office, x∗ Support, y∗

2 63 1 58
3 58 2 55
5 52 4 47
7 46 6 43
8 41 7 41

8 39

11.3.23. Prove that the variance of Ŷ can also be written

Var(Ŷ )=
σ 2

n∑
i=1

(xi − x)2

n
n∑

i=1
(xi − x̄)2

11.3.24. Show that
n∑

i=1

(Yi − Ȳ )2 =
n∑

i=1

(Yi − Ŷi )
2 +

n∑
i=1

(Ŷi − Ȳ )2

for any set of points (xi ,Yi ), i = 1,2, . . . ,n.

11.4 Covariance and Correlation
Our discussion of xy-relationships in Chapter 11 began with the simplest possible
setup from a statistical standpoint—the case where the (xi , yi )’s are just numbers
and have no probabilistic structure whatsoever. Then we examined the more com-
plicated (and more “inference-friendly”) scenario where xi is a constant but Yi

www.forbes.com/lists/2009/95/best-business-schools-09_Best-Business-Schools
www.forbes.com/lists/2009/95/best-business-schools-09_Best-Business-Schools
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is a random variable. Introduced in this section is the next level of complexity—
problems where both Xi and Yi are assumed to be random variables. [Measurements
of the form (xi , yi ) or (xi ,Yi ) are typically referred to as regression data; observations
satisfying the assumptions made in this section—that is, measurements of the form
(Xi ,Yi )—are more commonly referred to as correlation data.]

Measuring the Dependence Between Two Random Variables

Given a pair of random variables, it makes sense to inquire how one varies with
respect to the other. If X increases, for example, does Y also tend to increase? And if
so, how strong is the dependence between the two?

The first step in addressing such questions was taken in Section 3.9 with the
definition of covariance. In that section, its role was primarily as a tool for finding the
variance of a sum of random variables. Here, it will serve as the basis for measuring
the relationship between X and Y .

The Correlation Coefficient

The covariance of X and Y necessarily reflects the units of both random variables,
which can make it difficult to interpret. In applied settings, it helps to have a dimen-
sionless measure of dependency so that one xy-relationship can be compared to
another. Dividing Cov(X,Y ) by σXσY accomplishes not only that objective but also
scales the quotient to be a number between −1 and +1.

Definition 11.4.1. Let X and Y be any two random variables. The correlation
coefficient of X and Y, denoted ρ(X,Y ), is given by

ρ(X,Y )= Cov(X,Y )

σxσY
= Cov(X∗,Y ∗)

where X∗ = (X −μX )/σX and Y ∗ = (Y −μY )/σY .

Theorem
11.4.1

For any two random variables X and Y ,

a. |ρ(X,Y )| ≤ 1.

b. |ρ(X,Y )|=1 if and only if Y =aX +b for some constants a and b (except possibly
on a set of probability zero).

Proof Following the notation of Definition 11.4.1, let X∗ and Y ∗ denote the
standardized transformations of X and Y . Then

0 ≤ Var(X∗ ± Y ∗)= Var(X∗)± 2 Cov(X∗,Y ∗)+ Var(Y ∗)

= 1 ± 2ρ(X,Y )+ 1

= 2 [1 ± ρ(X,Y )]

But 1 ±ρ(X,Y )≥ 0 implies that |ρ(X,Y )|≤ 1, and part (a) of the theorem is proved.
Next, suppose that ρ(X,Y )=1. Then Var(X∗ − Y ∗)=0; however, a random vari-

able with zero variance is constant, except possibly on a set of probability zero. From



11.4 Covariance and Correlation 577

the constancy of X∗ − Y ∗, it readily follows that Y is a linear function of X . The case
for ρ(X,Y )=−1 is similar.

The converse of part (b) is left as an exercise. �

Questions

11.4.1. Let X and Y have the joint pdf

fX,Y (x, y)=
{

x+2y
22

, for (x, y)= (1,1), (1,3), (2,1), (2,3)

0, elsewhere

Find Cov(X,Y ) and ρ(X,Y ).

11.4.2. Suppose that X and Y have the joint pdf

fX,Y (x, y)= x + y, 0 < x < 1,0 < y < 1

Find ρ(X,Y ).

11.4.3. If the random variables X and Y have the joint pdf

fX,Y (x, y)=
{

8xy, 0 ≤ y ≤ x ≤ 1

0, otherwise

show that Cov(X,Y )= 8
450

. Calculate ρ(X,Y ).

11.4.4. Suppose that X and Y are discrete random vari-
ables with the joint pdf

(x, y) fX,Y (x, y)

(1, 2) 1
2

(1, 3) 1
4

(2, 1) 1
8

(2, 4) 1
8

Find the correlation coefficient between Xand Y .

11.4.5. Prove that ρ(a + bX, c + dY ) = ρ(X,Y ) for con-
stants a,b, c, and d where b and d are positive. Note that
this result allows for a change of scale to one convenient
for computation.

11.4.6. Let the random variable X take on the values
1,2, . . . ,n, each with probability 1/n. Define Y to be X 2.
Find ρ(X,Y ) and lim

n→∞
ρ(X,Y ).

11.4.7. (a) For random variables X and Y , show that

Cov(X + Y, X − Y )= Var(X)− Var(Y )

(b) Suppose that Cov(X,Y )= 0. Prove that

ρ(X + Y, X − Y )= Var(X)− Var(Y )

Var(X)+ Var(Y )

Estimating ρ(X, Y): The Sample Correlation Coefficient

We conclude this section with an estimation problem. Suppose the correlation coef-
ficient between X and Y is unknown, but we have some relevant information about
its value in the form of n measurements (X1,Y1), (X2,Y2), . . ., and (Xn,Yn). How can
we use those data to estimate ρ(X,Y )?

Since the correlation coefficient can be written in terms of various theoretical
moments,

ρ(X,Y )= E(XY )− E(X)E(Y )√
Var(X)

√
Var(Y )

it would seem reasonable to estimate each component of ρ(X,Y ) with its corre-
sponding sample moment. That is, let X̄ and Ȳ approximate E(X) and E(Y ), replace
E(XY ) with

1

n

n∑
i=1

Xi Yi

and substitute
1

n

n∑
i=1

(Xi − X̄)2 and
1

n

n∑
i=1

(Yi − Ȳ )2

for Var(X) and Var(Y ), respectively.
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We define the sample correlation coefficient, then, to be the ratio

R =
1
n

n∑
i=1

Xi Yi − X̄ Ȳ√
1
n

n∑
i=1

(Xi − X̄)2

√
1
n

n∑
i=1

(Yi − Ȳ )2

(11.4.1)

or, equivalently,

R =
n

n∑
i=1

Xi Yi−
(

n∑
i=1

Xi

)(
n∑

i=1
Yi

)
√

n
n∑

i=1
X2

i −
(

n∑
i=1

Xi

)2
√

n
n∑

i=1
Y 2

i −
(

n∑
i=1

Yi

)2
(11.4.2)

(Sometimes R is referred to as the Pearson product-moment correlation coefficient,
in honor of the eminent British statistician Karl Pearson.)

Questions

11.4.8. Derive Equation 11.4.2 from Equation 11.4.1.

11.4.9. Let (x1, y1), (x2, y2), . . . , (xn, yn) be a set of mea-
surements whose sample correlation coefficient is r . Show
that

r = β̂1 ·

√
n

n∑
i=1

x2
i −
(

n∑
i=1

xi

)2

√
n

n∑
i=1

y2
i −
(

n∑
i=1

yi

)2

where β̂1 is the maximum likelihood estimate for the slope.

Interpreting R

The properties cited for ρ(X,Y ) in Theorem 11.4.1 are not sufficient to provide a
useful interpretation of R. What does it mean, for example, to say that the sample
correlation coefficient is 0.73, or 0.55, or −0.24? One way to answer such a question
focuses on the square of R, rather than on R itself.

We know from Equation 11.3.3 that
n∑

i=1

(yi − β̂0 − β̂1xi )
2 =

n∑
i=1

(yi − ȳ)2 − β̂2
1

n∑
i=1

(xi − x̄)2

Using the relationship between β̂1 and r in Question 11.4.9—together with the fact

that
n∑

i=1
(xi − x̄)2 =

n∑
i=1

x2
i −
(

n∑
i=1

xi

)2
/

n—we can write

n∑
i=1

(yi − β̂0 − β̂1xi )
2 =

n∑
i=1

(yi − ȳ)2 − r2 ·

n∑
i=1

(yi − ȳ)2

n∑
i=1

(xi − x̄)2

·
n∑

i=1

(xi − x̄)2

which reduces to

r2 =

n∑
i=1

(yi − ȳ)2 −
n∑

i=1
(yi − β̂0 − β̂1xi )

2

n∑
i=1

(yi − ȳ)2

(11.4.3)
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Equation 11.4.3 has a nice, simple interpretation. Notice that

1.
n∑

i=1
(yi − ȳ)2 represents the total variability in the dependent variable—that is,

the extent to which the yi ’s are not all the same.

2.
n∑

i=1
(yi − β̂0 − β̂1xi )

2 represents the variation in the yi ’s not explained (or

accounted for) by the linear regression with x .

3.
n∑

i=1
(yi − ȳ)2 −

n∑
i=1

(yi − β̂0 − β̂1xi )
2

represents the variation in the yi ’s that is

explained by the linear regression with x .

Therefore, r2 is the proportion of the total variation in the yi ’s that can be attributed
to the linear relationship with x . So, if r = 0.60, we can say that 36% of the variation
in Y is explained by the linear regression with X (and that 64% is associated with
other factors).

Comment The quantity r2 is sometimes called the coefficient of determination.

Case Study 11.4.1

The Scholastic Aptitude Test (SAT) is widely used by colleges and universities
to help choose their incoming classes. It was never designed to measure the
quality of education provided by secondary schools, but critics and supporters
alike seem increasingly intent on forcing it into that role. The problem is that
average SAT scores associated with schools or districts or states reflect a vari-
ety of factors, some of which have little or nothing to do with the quality of
instruction that students are receiving.

Table 11.4.1 shows one testing period’s average SAT scores (Y ), by state,
as a function of participation rate (X), where the SAT score is the sum of the
Critical Reading, Math, and Writing subtest scores. As Figure 11.4.1 suggests,
there appears to be a strong dependency between the two measurements—as
a state’s participation rate goes down, its average SAT score goes up. In South
Dakota, for example, only 3% of the students eligible to take the test actually
did; in New York, the participation rate was a dramatically larger 84%. The
average SAT score in New York was 1473; in South Dakota the average score
of 1766 was 20% higher.

A good way to quantify the overall relationship between test scores and
participation rates is to calculate the data’s sample correlation coefficient, r .

From Table 11.4.1, we can calculate the sums necessary to evaluate Equa-
tion 11.4.2:

51∑
i=1

xi = 1,891
51∑

i=1

yi = 81,396

51∑
i=1

x2
i = 114,983

51∑
i=1

y2
i = 130,597,738

51∑
i=1

xi yi = 2,863,056

(Continued on next page)
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(Case Study 11.4.1 continued)

Table 11.4.1

Participation Average Participation Average
State Rate, x SAT Score, y State Rate, x SAT Score, y

AL 8% 1676 MT 24% 1612
AK 45% 1533 NE 5% 1733
AZ 26% 1538 NV 40% 1482
AR 5% 1701 NH 74% 1555
CA 48% 1512 NJ 76% 1504
CO 21% 1687 NM 12% 1645
CT 83% 1535 NY 84% 1473
DE 70% 1487 NC 63% 1489
DC 84% 1390 ND 3% 1766
FL 54% 1474 OH 24% 1599
GA 70% 1466 OK 6% 1701
HI 58% 1453 OR 53% 1552
ID 18% 1597 PA 71% 1478
IL 7% 1762 RI 66% 1486
IN 62% 1485 SC 61% 1461
IA 3% 1797 SD 3% 1766
KS 7% 1733 TN 11% 1707
KY 8% 1692 TX 50% 1473
LA 7% 1688 UT 6% 1661
ME 87% 1396 VT 64% 1549
MD 69% 1498 VA 68% 1522
MA 83% 1552 WA 52% 1568
MI 6% 1751 WV 19% 1511
MN 8% 1784 WI 5% 1768
MS 3% 1696 WY 6% 1677
MO 5% 1775

Source: professionals.collegeboard.com/profdownload/cbs-08-Page-3-Table-3.pdf.
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Figure 11.4.1 (Continued on next page)
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Substituting the sums into the formula for r , then, shows that the sample
coefficient is −0.881:

r = 51(2,863,056)− (1,891)(81,396)√
51(114,983)− (1891)2

√
51(130,597,738)− (81,396)2

=−0.881

Since r2 = (−0.881)2 = 0.776, we can say that 77.6% of the variability in SAT
scores from state to state can be attributed to the linear relationship between
test scores and participation rates.

About the Data The magnitude of r2 for these data should be a clear warning that
comparing average SATs at face value from state to state or school system to school
system is largely meaningless. It would make more sense to examine the residuals
associated with y = β̂0 + β̂1x . States with particularly large positive values for y − ŷ
may be doing something that other states might be well advised to copy.

Questions

11.4.10. In Case Study 11.3.1, how much of the variability
in CHD mortality is explained by cigarette consumption?

11.4.11. Some baseball fans believe that the number of
home runs a team hits is markedly affected by the alti-
tude of the club’s home park. The rationale is that the
air is thinner at the higher altitudes, and balls would be
expected to travel farther. The following table shows the
altitudes (X) of American League ballparks and the num-
ber of home runs (Y ) that each team hit during a recent
season (172). Calculate the sample correlation coeffient,
r , using the sums below. What would you conclude?

12∑
i=1

xi = 4936
12∑

i=1
yi = 1175

12∑
i=1

x2
i = 3,071,116

12∑
i=1

y2
i = 123,349

12∑
i=1

xi yi = 480,565

Club Altitude, x Number of Home Runs, y

Cleveland 660 138
Milwaukee 635 81
Detroit 585 135
New York 55 90
Boston 21 120
Baltimore 20 84
Minnesota 815 106
Kansas City 750 57
Chicago 595 109

Texas 435 74
California 340 61
Oakland 25 120

11.4.12. The following table shows U.S. corn supplies (in
millions of bushels) and corn prices (dollars per bushel
rounded to the nearest $0.10) for the years 1999 through
2008. Calculate the sample correlation coefficient, r . The
sums for the data in the table are:

10∑
i=1

xi = 123.1
10∑

i=1
yi = 25.80

10∑
i=1

x2
i = 1529.63

10∑
i=1

y2
i = 74.00

10∑
i=1

xi yi = 325.08

Year Supply, x Price, y

1999 11.2 $1.70
2000 11.8 1.80
2001 11.5 2.00
2002 10.6 2.40
2003 11.2 2.50
2004 12.8 2.10
2005 13.1 2.00
2006 12.6 3.00
2007 14.5 4.20
2008 13.8 4.10

Source: USDA WASDE report 1.12.10, www.agmanager.info.

www.agmanager.info
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11.4.13. The extent to which stress is a contributing fac-
tor to the severity of chronic illnesses was the focus of the
study summarized in the following table (208). Seventeen
conditions were compared on a Seriousness of Illness Rat-
ing Scale (SIRS). Patients with each of these conditions
were asked to fill out a Schedule of Recent Experience
(SRE) questionnaire. Higher scores on the SRE reflect
presumably greater levels of stress. How much of the vari-
ation in the SIRS values can be attributed to the linear
regression with SRE?

Admitting Diagnosis Average SRE, x SIRS, y

Dandruff 26 21
Varicose veins 130 173
Psoriasis 317 174
Eczema 231 204
Anemia 325 312
Hyperthyroidism 816 393
Gallstones 563 454
Arthritis 312 468
Peptic ulcer 603 500
High blood pressure 405 520
Diabetes 599 621
Emphysema 357 636
Alcoholism 688 688
Cirrhosis 443 733
Schizophrenia 609 776
Heart failure 772 824
Cancer 777 1020

Use the following sums:
17∑

i=1
xi = 7,973

17∑
i=1

yi = 8,517

17∑
i=1

x2
i = 4,611,291

17∑
i=1

y2
i = 5,421,917

17∑
i=1

xi yi = 4,759,470

11.4.14. Among the many strategies that investors use
to try to predict trends in the stock market is the “early

warning” system, which is based on the premise that what
the market does in the first week in January is indicative
of what it will do over the next twelve months. Listed
in the following table for the eighteen years from 1991
through 2008 are x , the percentage change in the Dow
Jones Industrial Average for the first week in January, and
y, the percentage change for the entire year. Quantify the
strength of the linear relationship between X and Y . Use
the following sums:

18∑
i=1

xi =−0.9
18∑

i=1
y2

i = 160.2

18∑
i=1

x2
i = 92.63

18∑
i=1

y2
i = 6437.68

18∑
i=1

xi yi = 221.37

Year

% Change for
First Week in

January, x
% Change
for Year, y

1991 −2.6 24.8
1992 −0.1 1.6
1993 −1.5 15.7
1994 1.7 2.1
1995 0.9 33.5
1996 1.2 28.2
1997 2.4 21.7
1998 −5.1 21.1
1999 4.8 25.5
2000 0.2 −6.2
2001 −1.2 −6.0
2002 −2.7 −16.2
2003 2.1 21.0
2004 0.5 1.9
2005 −1.7 −0.6
2006 2.2 16.3
2007 −0.5 7.2
2008 −1.5 −31.4

Source: finance.yahoo.com/q/hp?s=%5EDJI.

11.5 The Bivariate Normal Distribution
The singular importance of the normal distribution in univariate inference proce-
dures should, by now, be abundantly clear. In dealing with problems that involve
two random variables—for example, the calculation of ρ(X,Y )—it should come as
no surprise that the most frequently encountered joint pdf, fX,Y (x, y), is a bivariate
version of the normal curve. Our objectives in this section are twofold: (1) to deduce
the form of the bivariate normal from basic principles and (2) to identify the partic-
ular properties of that pdf that pertain to the problem of assessing the nature of the
dependence between X and Y .
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Generalizing the Univariate Normal pdf

At this point, we know many things about the univariate normal pdf,

fY (y)= 1√
2πσ

e
− 1

2

(
y−μ
σ

)2

, −∞< y <∞

Sections upon sections have been devoted to estimating and testing its parameters,
studying its transformations, and learning about its role as an approximation to the
distribution of sums and averages. What has not been discussed is the generalization
of fY (y) itself, to a bivariate, trivariate, or multivariate pdf.

Given the mathematical complexities inherent in the univariate normal pdf, it
should come as no surprise that its extension to higher dimensions is not a simple
matter. In the bivariate case, for example, which is the only generalization we will
consider, fX,Y (x, y) has five different parameters and its functional form is decidely
unpleasant.

We will begin by “constructing” a bivariate normal pdf, fX,Y (x, y), using proper-
ties suggested by what we already know holds true for the univariate normal, fY (y).
As a first condition to impose, it seems reasonable to require that the marginal
pdfs associated with fX,Y (x, y) be univariate normal densities. It will be sufficient
to consider the case where the two marginals are standard normals.

If X and Y are independent standard normal random variables,

fX,Y (x, y)= 1

2π
e− 1

2 (x2 + y2),
−∞< x <∞
−∞< y <∞ (11.5.1)

Notice that the simplest extension of fX,Y (x, y) in Equation 11.5.1 is to replace
− 1

2 (x2 + y2) with − 1
2 c(x2 + uxy + y2), or, equivalently, with − 1

2 c(x2 − 2vxy + y2),
where c and v are constants. The desired joint pdf, then, would have the general
form

fX,Y (x, y)= K e− 1
2 c(x2−2vxy+y2) (11.5.2)

where K is the constant that makes the double integral of fX,Y (x, y) from −∞ to ∞
equal to 1.

Now, what must be true of K , c, and v if the marginal pdfs based on fX,Y (x, y)

are to be standard normals? Note, first, that completing the square in the exponent
makes

x2 −2vxy + y2 = x2 −v2x2 + (y2 −2vxy +v2x2)

= (1−v2)x2 + (y −vx)2

so

fX,Y (x, y)= K e− 1
2 c(1−v2)x2

e− 1
2 c(y−vx)2

The exponents, though, must be negative, which implies that 1−v2 > 0, or, equiva-
lently, |v| < 1.
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To find K , we start by calculating∫ ∞

−∞

∫ ∞

−∞
e−(1/2)c(1−v2)x2 · e−(1/2)c(y−vx)2

dy dx

=
∫ ∞

−∞
e−(1/2)c(1−v2)x2

[∫ ∞

−∞
e−(1/2)c(y−vx)2

dy

]
dx

=
∫ ∞

−∞
e−(1/2)c(1−v2)x2

(√
2π√
c

)
dx

=
√

2π√
c

√
2π√

c
√

1 − v2

= 2π

c
√

1 − v2

It follows that

K = c
√

1 − v2

2π

The constant c can be any positive value, but a convenient choice proves to be
c = 1/(1 − v2). Substituting K and c, then, into Equation 11.5.2 gives

fX,Y (x, y) = 1

2π
√

1 − v2
e−(1/2)[1/(1−v2)](x2−2vxy+y2)

= 1

2π
√

1 − v2
e−x2 · e−(1/2)[1/(1−v2)](y−vx)2

(11.5.3)

Recall that our choice of the form of fX,Y (x, y) was predicated on a wish for the
marginal pdfs to be normal. A simple integration shows that to be the case:

fX (x) =
∫ ∞

−∞
fX,Y (x, y)dy

= 1

2π
√

1 − v2
e−(1/2)x2

∫ ∞

−∞
e−(1/2)[1/(1−v2)](y−vx)2

dy

= 1

2π
√

1 − v2
e−(1/2)x2 ·√2π

√
1 − v2

= 1√
2π

e−(1/2)x2

Since fX,Y (x, y) is symmetric in x and y, fY (y) is also the standard normal.
The constant v is actually the correlation coefficient between X and Y . Since

E(X)= E(Y )= 0 and σX = σY = 1,

ρ(X,Y ) = E(XY )=
∫ ∞

−∞

∫ ∞

−∞
xy fX,Y (x, y)dx dy

= 1√
2π

∫ ∞

−∞
xe−(1/2)x2

[
1√

2π
√

1 − v2

∫ ∞

−∞
ye−(1/2)[1/(1−v2)](y−vx)2

dy

]
dx

= 1√
2π

∫ ∞

−∞
xe−(1/2)x2 · vx dx (why?)

= v
1√
2π

∫ ∞

−∞
x2e−(1/2)x2

dx = v Var(X)= v
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Finally, we can replace x with (x − μX )/σX and y with (y − μY )/σY . Doing
so requires that the original pdf be multiplied by the derivative of both the

X -transformation and the Y -transformation—that is, by
1

σXσY
[see (102)].

Definition 11.5.1. Let X and Y be random variables with joint pdf

fX,Y (x, y)= 1

2πσXσY

√
1−ρ2

· exp

{
−1

2

(
1

1−ρ2

)[
(x −μX )2

σ 2
X

−2ρ
x −μX

σX
· y −μY

σY
+ (y −μY )2

σ 2
Y

]}
for all x and y. Then X and Y are said to have the bivariate normal distribution
(with parameters μX , σ 2

X , μY , σ 2
Y , and ρ).

Comment For bivariate normal densities, ρ(X,Y ) = 0 implies that X and Y are
independent, a result not true in general.

Properties of the Bivariate Normal Distribution

Francis Galton, the renowned British biologist and scientist, perhaps more than
any other person was responsible for launching regression analysis as a worth-
while field of statistical inquiry. Galton was a redoubtable data analyst whose keen
insight enabled him to intuit much of the basic mathematical structure that we now
associate with correlation and regression.

One of his more famous endeavors (58) was an examination of the relation-
ship between parents’ heights (X) and their adult children’s heights (Y ). Those
particular variables have a bivariate normal distribution, the mathematical prop-
erties of which Galton knew nothing. Just by looking at cross-tabulations of X and
Y , though, Galton postulated that (1) the marginal distributions of X and Y are
both normal, (2) E(Y | x) is a linear function of x , and (3) Var(Y | x) is constant
with x . As Theorem 11.5.1 shows, all of his empirically based deductions proved to
be true.

Theorem
11.5.1

Suppose that X and Y are random variables having the bivariate normal distribution
given in Definition 11.5.1. Then

a. fX (x) is a normal pdf with mean μX and variance σ 2
X ; fY (y) is a normal pdf with

mean μY and variance σ 2
Y .

b. ρ is the correlation coefficient between X and Y .

c. E(Y | x)=μY + ρσY

σX
(x −μX ).

d. Var(Y | x)= (1 − ρ2)σ 2
Y .

Proof We have already established (a) and (b). Properties (c) and (d) will be exam-
ined for the special case μX = μY = 0 and σx = σy = 1. The extension to arbitrary
μX ,μY , σX , and σY is straightforward.
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First, note that

fY |x (y) = fX,Y (x, y)

fX (x)

=
1

2π
√

1−ρ2
e−(1/2)x2

e−(1/2)[1/(1−ρ2)](y−ρx)2

1√
2π

e−(1/2)x2

= 1√
2π
√

1 − ρ2
e−(1/2)[1/(1−ρ2)](y−ρx)2

(11.5.4)

By inspection, we see that Equation 11.5.4 is the pdf of a normal random variable
with mean ρx and variance 1−ρ2. Therefore, E(Y | x) = ρx and Var(Y | x) = 1−ρ2.
Replacing y with (y −μY )/σY and x with (x −μX )/σX gives the desired results. �

Comment The term regression line derives from a consequence of part (c) of The-
orem 11.5.1. Suppose we make the simplifying assumption that μX = μY = μ and
σX = σY . Then part (c) reduces to

E(Y | x)−μ= ρ(X,Y )(x −μ)

But recall that |ρ(X,Y )| ≤ 1—and, in this case, 0 < ρ(X,Y ) < 1. Here, the positive
sign of ρ(X,Y ) tells us that, on the average, tall parents have tall children. How-
ever, ρ(X,Y )< 1 means (again, on the average) that the children’s heights are closer
to the mean than are the parents’. Galton called this phenomenon “regression to
mediocrity.”

Questions

11.5.1. Suppose that X and Y have a bivariate normal
pdf with μX = 3, μY = 6, σ 2

X = 4, σ 2
Y = 10, and ρ = 1

2
. Find

P(5 < Y < 6 1
2
) and P(5 < Y < 6 1

2
| x = 2).

11.5.2. Suppose that X and Y have a bivariate normal
distribution with Var(X)= Var(Y ).

(a) Show that X and Y − ρX are independent.
(b) Show that X + Y and X − Y are independent. [Hint:

See Question 11.4.7(a).]

11.5.3. Suppose that X and Y have a bivariate normal
distribution.

(a) Prove that X + Y has a normal distribution when X
and Y are standard normal random variables.

(b) Find E(cX + dY ) and Var(cX + dY ) in terms of
μX ,μY , σX , σY , and ρ(X,Y ), where X and Y are arbi-
trary normal random variables.

11.5.4. Suppose that the random variables X and Y have a
bivariate normal pdf with μX = 56,μY = 11, σ 2

X = 1.2, σ 2
Y =

2.6, and ρ = 0.6. Compute P(10 < Y < 10.5 | x = 55). Sup-
pose that n = 4 values were to be observed with x fixed at
55. Find P(10.5 < Ȳ < 11 | x = 55).

11.5.5. If the joint pdf of the random variables X and Y is

fX,Y (x, y)= ke−(2/3)[(1/4)x2−(1/2)xy+y2]

find E(X), E(Y ), Var(X), Var(Y ), ρ(X,Y ), and k.

11.5.6. Give conditions on a > 0,b > 0, and u so that

fX,Y (x, y)= ke−(ax2−2uxy+by2)

is the bivariate normal density of random variables X and
Y each having expected value 0. Also, find Var(X), Var(Y ),
and ρ(X,Y ).

Estimating Parameters in the Bivariate Normal pdf

The five parameters in fX,Y (x, y) can be estimated in the usual way with the method
of maximum likelihood. Given a random sample of size n from fX,Y (x, y)—(x1, y1),
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(x2, y2), . . . , (xn, yn)—we define L =
n∏

i=1

fX,Y (xi , yi ) and take the derivatives of ln L

with respect to each of the parameters. Solved simultaneously, the resulting five
equations (each derivative set equal to 0) yield the maximum likelihood estimators
given in Theorem 11.5.2. Details of the derivation will be left as an exercise.

Theorem
11.5.2

Given that fX,Y (x, y) is a bivariate normal pdf, the maximum likelihood estima-
tors for μX , μY , σ 2

X , σ 2
Y , and ρ, assuming that all five are unknown, are X̄ , Ȳ ,(

1

n

)
n∑

i=1
(Xi − X̄)2,

(
1

n

)
n∑

i=1
(Yi − Ȳ )2, and R, respectively. �

Testing H0: ρ = 0

If X and Y have a bivariate normal distribution, testing whether the two variables
are independent is equivalent to testing whether their correlation coefficient, ρ,
equals 0 (recall the Comment following Definition 11.5.1). Two different procedures
are widely used for testing H0:ρ = 0. One is an exact test based on the Tn−2 random
variable given in Theorem 11.5.3; the other is an approximate test based on the
standard normal distribution.

Theorem
11.5.3

Let (X1,Y1), (X2,Y2), . . . , (Xn,Yn) be a random sample of size n drawn from a bivari-
ate normal distribution, and let R be the sample correlation coefficient. Under the null
hypothesis that ρ = 0, the statistic

Tn−2 =
√

n − 2 R√
1 − R2

has a Student t distribution with n −2 degrees of freedom.

Proof See (49). �

Example
11.5.1

Table 11.5.1 gives the mean temperature for twenty successive days in April and the
average daily butterfat content in the milk of ten cows (138). Can we conclude that
temperature and butterfat content have a nonzero correlation?

Let ρ denote the true correlation coefficient between X and Y . The hypotheses
to be tested are

H0: ρ = 0

versus

H1: ρ �= 0

Let α = 0.05. Given that n = 20, the statistic

t =
√

n − 2 · r√
1 − r2

follows a Student t distribution with 18 df (if H0: ρ = 0 is true). That being the case,
the null hypothesis will be rejected if t is either (1) ≤ −2.1009 (= −t0.025,18) or (2) ≥
+2.1009(= t0.025,18).
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Table 11.5.1

Date Temperature, x Percent Butterfat, y

April 3 64 4.65
4 65 4.58
5 65 4.67
6 64 4.60
7 61 4.83
8 55 4.55
9 39 5.14

10 41 4.71
11 46 4.69
12 59 4.65
13 56 4.36
14 56 4.82
15 62 4.65
16 37 4.66
17 37 4.95
18 45 4.60
19 57 4.68
20 58 4.65
21 60 4.60
22 55 4.46

For the data in Table 11.5.1,
20∑

i=1

xi =1,082
20∑

i=1

yi =93.5

20∑
i=1

x2
i =60,304

20∑
i=1

y2
i =437.6406

20∑
i=1

xi yi = 5,044.5

so

r = 20(5,044.5)− (1,082)(93.5)√
20(60,304)− (1,082)2

√
20(437.6406)− (93.5)2

=−0.453

Therefore,

t =
√

n − 2 · r√
1 − r2

=
√

18(−0.453)√
1 − (−0.453)2

=−2.156

and our conclusion is reject H0—it would appear that temperature and butterfat
content are not independent.

Comment An alternate approach to testing H0: ρ = 0 was given by Fisher (46). He
showed that the statistic

1

2
ln

1 + R

1 − R

is asymptotically normal with mean 1
2 ln[(1 + ρ)/(1 − ρ)] and variance approximately

1/(n − 3). Fisher’s formulation makes it relatively easy to determine the power of a
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correlation test—a computation that would be much more difficult if the inference
had to be based on

√
n − 2 R/

√
1 − R2.

Questions

11.5.7. What would the conclusion be for the test of
Example 11.5.1 if α = 0.01?

11.5.8. In a study of heart disease (73), the weight (in
pounds) and the blood cholesterol (in mg/dl) of four-
teen men without a history of coronary incidents were
recorded. At the α = 0.05 level, can we conclude from
these data that the two variables are independent?

Subject Weight, x Cholesterol, y

1 168 135
2 175 403
3 173 294
4 158 312
5 154 311
6 214 222
7 176 302
8 262 269
9 181 311

10 143 286
11 140 403
12 187 244
13 163 353
14 164 252

The data in the table give the following sums:

14∑
i=1

xi = 2,458
14∑

i=1
yi = 4,097

14∑
i=1

x2
i = 444,118

14∑
i=1

y2
i = 1,262,559

14∑
i=1

xi yi = 710,499

11.5.9. Recall the baseball data in Question 11.4.11. Test
whether home run frequency and home park altitude are
independent. Let α = 0.05.

11.5.10. Test H0: ρ = 0 versus H1: ρ �= 0 for the SRE/SIRS
data described in Question 11.4.13. Let 0.01 be the level of
significance.

11.5.11. The National Collegiate Athletic Association has
had a long-standing concern about the graduation rate
of athletes. Under the urging of the Association, some
prominent athletic programs increased the funds for tutor-
ing athletes. The table below gives the amount spent (in
millions of dollars) and the resulting percentage of ath-
letes graduating in 2007. Test H0 :ρ = 0 versus H1 :ρ > 0 at
the 0.10 level of significance.

Money Spent on Graduation
University Athletes Tutoring, x Rate 2007, y

Minnesota 1.61 72
Kansas 1.61 70
Florida 1.67 87
LSU 1.74 69
Georgia 1.77 70
Tennessee 1.83 78
Kentucky 1.86 73
Ohio St. 1.89 78
Texas 1.90 72
Oklahoma 2.45 69

Source: Pensacola News Journal (Florida), December 21, 2008.

11.6 Taking a Second Look at Statistics (How Not to
Interpret the Sample Correlation Coefficient)
Of all the “numbers” that statisticians and experimenters routinely compute, the
correlation coefficient is one of the most frequently misinterpreted. Two errors in
particular are common. First, there is a tendency to assume, either implicitly or
explicitly, that a high sample correlation coefficient implies causality. It does not.
Even if the linear relationship between x and y is perfect—that is, even if r = −1
or r = +1—we cannot conclude that X causes Y (or that Y causes X). The sample
correlation coefficient is simply a measure of the strength of a linear relationship.
Why the xy-relationship exists in the first place is a different question altogether.

George Bernard Shaw (an unlikely contributor to a mathematics text!)
described elegantly the fallacy of using statistical relationships to infer underlying
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causality. Commenting on the “correlations” that exist between lifestyle and health,
he wrote in The Doctor’s Dilemma (163):

It is easy to prove that the wearing of tall hats and the carrying of umbrellas enlarges
the chest, prolongs life, and confers comparative immunity from disease; for the
statistics show that the classes which use these articles are bigger, healthier, and live
longer than the class which never dreams of possessing such things. It does not take
much perspicacity to see that what really makes this difference is not the tall hat and
the umbrella, but the wealth and nourishment of which they are evidence, and that
a gold watch or membership of a club in Pall Mall might be proved in the same way
to have the like sovereign virtues. A university degree, a daily bath, the owning of
thirty pairs of trousers, a knowledge of Wagner’s music, a pew in church, anything, in
short, that implies more means and better nurture than the mass of laborers enjoy,
can be statistically palmed off as a magic-spell conferring all sorts of privileges.

Examples of “spurious” correlations similar to those cited by Shaw are dis-
turbingly commonplace. Between 1875 and 1920, for example, the correlation
between the annual birthrate in Great Britain and the annual production of pig
iron in the United States was an almost “perfect” −0.98. High correlations have
also been found between salaries of Presbyterian ministers in Massachusetts and the
price of rum in Havana and between the academic achievement of U.S. schoolchil-
dren and the number of miles they live from the Canadian border. All too often,
what looks like a cause is not a cause at all, but simply the effect of one or more fac-
tors that were not even measured. Researchers need to be very careful not to read
more into the value of r than the number legitimately implies.

The second error frequently made when interpreting sample correlation coeffi-
cients is to forget that r measures the strength of a linear relationship. It says nothing
about the strength of a curvilinear relationship. Computing r for the points shown
in Figure 11.6.1, for example, is totally inappropriate. The (xi , yi ) values in that scat-
terplot are clearly related but not in a linear way. Quoting the value of r would be
misleading.

Figure 11.6.1 y

x

The lesson to be learned from Figure 11.6.1 is clear—always graph the data!
No correlation coefficient should ever be calculated (much less interpreted) without
first plotting the (xi , yi )’s to make certain that the underlying relationship is linear.
Digital cameras have probably rendered photographs useless as evidence in a court
of law, but for a statistician, a picture is still worth a thousand words.

Appendix 11.A.1 Minitab Applications

If a set of xi ’s has been entered in Column C1 and the associated yi ’s in Column C2,
the Minitab command

MTB > regress c2 1 c1
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will compute the estimated regression line, y = β̂0 + β̂1x , and provide the calculations
for testing H0: β1 = 0 and H0: β0 = 0. Also printed out automatically will be r2 and s,
the square root of the unbiased estimate for σ 2 in the simple linear model. Subcom-
mands are available for plotting the data, calculating and graphing the residuals, and
constructing confidence intervals and prediction intervals.

Figure 11.A.1.1 is the printout of the REGRESS command applied to the Sales
versus Revenue data described in Case Study 11.3.2. Included is a listing of the
residuals (in Column C3).

The entries in the “SE Coef” column are based on parts (c) and (d) of Theo-
rem 11.3.2. The value 0.006677, for example, is the estimated standard deviation of
the estimated slope. That is,

0.006677 =
√√√√√√

s2

9∑
i=1

(xi − x̄)2

where s = 50.3489 (as listed on the printout). The last entry in the “T” column is the
value of Tn−2 from Theorem 11.3.4 when β1 = 0. That is,

61.93 = 0.413520 − 0

0.006677

As we have seen in earlier chapters, the “conclusions” of hypothesis tests per-
formed by computer software packages are invariably couched in terms of P-values.
Here, for example, the test of H0: β0 = 0 versus H1: β0 �= 0 yields an observed t ratio
of 0.52, for which the P-value is 0.621. Since the latter is so large, we would fail to
reject H0: β0 = 0 at any reasonable level of α.

Figure 11.A.1.1 MTB > set c1
DATA > 1687 2178 2649 3289 4076 5294 6369 7787 9411
DATA > end
MTB > set c1
DATA > 748 962 1113 1350 1686 2199 2605 3179 3999
DATA > end
MTB > regress c2 1 c1;
SUBC > residuals c3.

Regression Analysis: C2 versus C1

The regression equation is
C2 = 18.6 + 0.414 C1

Predictor Coef SE Coef T P
Constant 18.57 35.87 0.52 0.621
C1 0.413520 0.006677 61.93 0.000

S = 50.3489 R-Sq = 99.8% R-Sq(adj) = 99.8%

MTB > print c1 c2 c3

Data Display

Row C1 C2 C3
1 1687 748 31.8218
2 2178 962 42.7834
3 2649 1113 -0.9845
4 3289 1350 -28.6373
5 4076 1686 -18.0775
6 5294 2199 -8.7449
7 6369 2605 -47.2789
8 7787 3179 -59.6502
9 9411 3999 88.7933
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If SUBC > predict “x” is appended to the “regress c2 1 c1” command, Minitab
will print out the 95% confidence interval for E(Y | x) and the 95% prediction inter-
val for Y at the point x . Figure 11.A.1.2 shows the input and output that provide
these computations.

Figure 11.A.1.2 MTB > set c1
DATA > 1687 2178 2649 3289 4076 5294 6369 7787 9411
DATA > end
MTB > set c1
DATA > 748 962 1113 1350 1686 2199 2605 3179 3999
DATA > end
MTB > regress c2 1 c1;
SUBC > predict 9700.

Predicted Values for New Observations

New
Obs Fit SE Fit 95% CI 95% PI

1 4029.7 37.1 (3942.1, 4117.4) (3881.9, 4177.6)

Doing Linear Regression Using Minitab Windows

1. Enter the xi ’s in C1 and the yi ’s in C2.
2. Click on STAT, then on REGRESSION, then on second REGRESSION.
3. Type C2 in RESPONSE box. Then click on PREDICTOR box and type C1.
4. Click on OK.
5. To display the line, click on STAT, then on REGRESSION, then on FITTED

LINE PLOT.
6. Type C2 in RESPONSE box and C1 in PREDICTOR box.
7. Click on LINEAR; then click on OK.

Appendix 11.A.2 A Proof of Theorem 11.3.3

The strategy for the proof is to express nσ̂
2 in terms of the squares of normal ran-

dom variables and then apply Fisher’s Lemma (see Appendix 7.A.2). The random

variables to be used are β̂1 −β1, Wi = Yi −β0 −β1xi , i = 1, . . . ,n, and W̄ = 1

n

n∑
i=1

Wi =
Ȳ −β0 −β1 x̄ . Note that

Wi − W̄ = (Yi − Ȳ )−β1(xi − x̄)

or, equivalently,

Yi − Ȳ = (Wi − W̄ )+β1(xi − x̄)

Next, we express β̂1 − β1 as a linear combination of the Wi ’s. The argument
begins by using Equation 11.3.1 to express β̂1:

β̂1 −β1 =

n∑
i=1

(xi − x̄)(Yi − Ȳ )

n∑
i=1

(xi − x̄)2

−β1

=

n∑
i=1

(xi − x̄)(Yi − Ȳ ) −β1

n∑
i=1

(xi − x̄)2

n∑
i=1

(xi − x̄)2
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=

n∑
i=1

(xi − x̄)[(Wi − W̄ )+β1(xi − x̄)] −β1

n∑
i=1

(xi − x̄)2

n∑
i=1

(xi − x̄)2

=

n∑
i=1

(xi − x̄)(Wi − W̄ )

n∑
i=1

(xi − x̄)2

(11.A.2.1)

Recall from Equation 11.3.3 that

nσ̂
2 =

n∑
i=1

(Yi − Ȳ )2 − β̂
2

1

n∑
i=1

(xi − x̄)2 (11.A.2.2)

We need to express Equation 11.A.2.2 in terms of the Wi ’s—that is,

nσ̂
2 =

n∑
i=1

[(Wi − W̄ )+β1(xi − x̄)]2 − β̂
2

1

n∑
i=1

(xi − x̄)2

=
n∑

i=1

(Wi − W̄ )2 + 2β1

n∑
i=1

(xi − x̄)(Wi − W̄ )+β2
1

n∑
i=1

(xi − x̄)2

− β̂
2

1

n∑
i=1

(xi − x̄)2 (11.A.2.3)

From Equation 11.A.2.1, we can write

n∑
i=1

(xi − x̄)(Wi − W̄ )= (β̂1 −β1)

n∑
i=1

(xi − x̄)2

Substituting the right-hand side of the preceding expression for
n∑

i=1
(xi − x̄)(Wi − W̄ )

in Equation 11.A.2.3 gives

nσ̂
2 =

n∑
i=1

(Wi − W̄ )2 + 2β1(β̂1 −β1)

n∑
i=1

(xi − x̄)2

+β2
1

n∑
i=1

(xi − x̄)2 − β̂
2

1

n∑
i=1

(xi − x̄)2

=
n∑

i=1

(Wi − W̄ )2 +
n∑

i=1

(xi − x̄)2
[
2β1(β̂1 −β1)+β2

1 − β̂
2

1

]
=

n∑
i=1

(Wi − W̄ )2 −
n∑

i=1

(xi − x̄)2
[
β̂

2

1 − 2β̂1β1 +β2
1

]
=

n∑
i=1

(Wi − W̄ )2 −
n∑

i=1

(xi − x̄)2(β̂1 −β1)
2

=
n∑

i=1

W 2
i − nW̄ 2 −

n∑
i=1

(xi − x̄)2(β̂1 −β1)
2
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Now, choose an orthogonal matrix, M, whose first two rows are

x1 − x̄√
n∑

i=1
(xi − x̄)2

· · · xn − x̄√
n∑

i=1
(xi − x̄)2

and
1√
n

· · · 1√
n

Define the random variables Z1, . . . , Zn through the transformation⎛⎜⎝Z1
...

Zn

⎞⎟⎠= M

⎛⎜⎝W1
...

Wn

⎞⎟⎠
By Fisher’s Lemma, the Zi ’s are independent, normal random variables with

mean zero and variance σ 2, and
n∑

i=1

Z2
i =

n∑
i=1

W 2
i

Also, by Equation 11.A.2.1 and the choice of the first row of M,

Z2
1 =

n∑
i=1

(xi − x̄)2(β̂1 −β1)
2

and, by the selection of the second row of M,

Z2
2 = nW

2

Thus,

nσ̂
2 =

n∑
i=1

W 2
i − Z2

1 − Z2
2 =

n∑
i=3

Z2
i

From this follows the independence of nσ̂
2, β̂1, and Ȳ .

Finally, notice that

nσ̂
2

σ̂ 2
=

n∑
i=3

(
Zi

σ

)2

The fact that the sum has a chi square distribution with n − 2 degrees of freedom
proves the last part of the theorem.
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When H1 Is True

“No aphorism is more frequently repeated in connection with field trials, than that we
must ask Nature few questions or, ideally, one question, at a time. The writer is
convinced that this view is wholly mistaken. Nature, he suggests, will best respond to
a logical and carefully thought-out questionnaire; indeed, if we ask her a single
question, she will often refuse to answer until some other topic has been discussed.”

—Ronald A. Fisher

12.1 Introduction
In this chapter we take up an important extension of the two-sample location prob-
lem introduced in Chapter 9. The completely randomized one-factor design is a
conceptually similar k-sample location problem, but one that requires a substantially
different sort of analysis than its prototype. Here, the appropriate test statistic turns
out to be a ratio of variance estimates, the sampling behavior of which is described
by an F distribution rather than a Student t . The name attached to this procedure,
in deference to the form of its test statistic, is the analysis of variance (or ANOVA
for short). A very flexible method, the analysis of variance is applied to many other
experimental designs as well, a particularly important one being the randomized
block design covered in Chapter 13.

Comment Credit for much of the early development of the analysis of variance
goes to Sir Ronald A. Fisher. Shortly after the end of World War I, Fisher resigned
a public school teaching position that he was none too happy with and accepted a
post at the Rothamsted Agricultural Experiment Station, a facility heavily involved
in agricultural research. There he found himself entangled in problems where differ-
ences in the response variable (crop yields, for example) were constantly in danger
of being obscured by the high level of uncontrollable heterogeneity in the experi-
mental environment (different soil qualities, drainage gradients, and so on). Quickly

595
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seeing that traditional techniques were hopelessly inadequate under these condi-
tions, Fisher set out to look for alternatives and in just a few years succeeded
in fashioning an entirely new statistical methodology, a panoply of data-collecting
principles and mathematical tools that is today known as experimental design. The
centerpiece of Fisher’s creation—what makes it all work—is the analysis of variance.

Suppose an experimenter wishes to compare the average effects elicited by k
different levels of some given factor, where k is greater than or equal to 2. The
factor, for example, might be “stop-smoking” therapies and the levels, three spe-
cific methods. Or the factor might be crowdedness as it relates to aggression in
captive monkeys, with the levels being five different monkey-per-square-foot den-
sities in five separate enclosures. Still another example might be an engineering
study comparing the effectiveness of four kinds of catalytic converters in reducing
the concentrations of harmful emissions in automobile exhaust. Whatever the cir-
cumstances, data from a completely randomized one-factor design will consist of k
independent random samples of sizes n1,n2, . . . , and nk , the total sample size being

denoted n

(
=

k∑
j=1

n j

)
. We will let Yi j represent the ith observation recorded for the

jth level. Table 12.1.1 shows some additional terminology. (Note: To simplify nota-
tion in the next two chapters, data will always be written as random variables—that
is, as Yi j rather than yi j .)

The dot notation of Table 12.1.1 is standard in analysis of variance problems.
The presence of a dot in lieu of a subscript indicates that particular subscript has
been summed over. Thus the response total for the jth sample is written

T· j =
n j∑

i=1

Yi j (= Y1 j + Y2 j + · · ·+ Yn j j )

and the corresponding sample mean becomes Y . j , where

Y . j = 1

n j

n j∑
i=1

Yi j = T. j

n j

Table 12.1.1

Treatment Level

1 2 . . . k

Y11 Y12 Y1k

Y21 Y22
...

... . . .
...

Yn11 Yn22 Ynk k

Sample sizes: n1 n2 . . . nk

Sample totals: T.1 T.2 T.k

Sample means: Y .1 Y .2 Y .k

True means: μ1 μ2 μk
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By the same convention, T.. and Y .. will denote the overall total and overall mean,
respectively:

T.. =
k∑

j=1

n j∑
i=1

Yi j =
k∑

j=1

T. j

Y .. = 1

n

k∑
j=1

n j∑
i=1

Yi j = 1

n

k∑
j=1

n j Y . j = 1

n

k∑
j=1

T. j

Appearing at the bottom of Table 12.1.1 are a set of true means, μ1,μ2, . . . ,μk .
Each μ j is an unknown location parameter reflecting the true average response
characteristic of level j . Often our objective will be to test the equality of the
μ j ’s—that is,

H0: μ1 =μ2 = . . . =μk

versus

H1: not all theμj ’s are equal

In the next several sections we will propose a variance-ratio statistic for testing
H0, investigate its sampling behavior under both H0 and H1, and introduce a set of
computing formulas to simplify its evaluation. We will also explore the possibility of
testing subhypotheses about the μj ’s—for example, H0:μi = μj (irrespective of the
other μj ’s) or H0:μ3 = (μ4 +μ5)/2.

12.2 The F Test
To derive a procedure for testing H0:μ1 =μ2 = . . .=μk , we could once again invoke
the generalized likelihood ratio criterion, compute λ = L(ωe)/L(�e), and begin the
search for a monotonic function of λ having a known distribution. But since we have
already seen several examples of formal GLRT calculations in Chapters 7 and 9, the
benefits of doing another would be marginal. Deducing the test statistic on intuitive
grounds will be more instructive.

The data structure for a completely randomized one-factor design was outlined
in Section 12.1. To that basic setup we now add a distribution assumption: The Yi j ’s
will be presumed to be independent and normally distributed with mean μj , j =
1,2, . . . , k, and variance σ 2 (constant for all j)—that is,

fYi j (y)= 1√
2πσ

e
− 1

2

( y−μj
σ

)2

, −∞< y <∞

In analysis of variance problems—as was true in regression problems—
distribution assumptions are usually expressed in terms of model equations. In the
latter, the response variable is represented as the sum of one or more fixed com-
ponents and one or more random components. Here, one possible model equation
would be

Yi j =μj + εi j

where εi j denotes the “noise” associated with Yi j —that is, the amount by which Yi j

differs from its expected value. Of course, from the distribution assumption on Yi j ,
it follows that εi j is also normal with variance σ 2, but with mean zero.
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We will denote the overall average effect associated with the n observations in

the sample by the symbol μ, where μ = 1

n

k∑
j=1

n jμj . If H0 is true, of course, μ is the

value that each of the μj ’s equals.

Sums of Squares

To find an appropriate test statistic, we begin by estimating each of the μj ’s. For
each j , Y1 j ,Y2 j , . . . ,Yn j j is a random sample from a normal distribution. By Exam-

ple 5.2.4, the maximum likelihood estimator of μj is Y . j . Then
1

n

k∑
j=1

n j Y . j =Y .. is the

obvious choice to estimate μ. It follows that

SSTR =
k∑

j=1

n j∑
i=1

(
Y . j − Y ..

)2 =
k∑

j=1

n j
(
Y . j − Y ..

)2
which is called the treatment sum of squares, estimates the variation among the μj ’s.
[If all the μj ’s were equal, the Y . j ’s would be similar (to Y ..) and SSTR would be
small.]

Analyzing the behavior of SSTR requires an expression relating the Y . j ’s and
Y .. to the parameter μ. But

SSTR =
k∑

j=1

n j
(
Y . j − Y ..

)2 =
k∑

j=1

n j
[(

Y . j −μ
)− (Y .. −μ

)]2
=

k∑
j=1

n j
[(

Y . j −μ
)2 + (Y .. −μ

)2 − 2
(
Y . j −μ

)(
Y .. −μ

)]

=
k∑

j=1

n j
(
Y . j −μ

)2 +
k∑

j=1

n j
(
Y .. −μ

)2 − 2
(
Y .. −μ

) k∑
j=1

n j
(
Y . j −μ

)

=
k∑

j=1

n j
(
Y . j −μ

)2 + n
(
Y .. −μ

)2 − 2
(
Y .. −μ

)
n
(
Y .. −μ

)

=
k∑

j=1

n j
(
Y . j −μ

)2 − n
(
Y .. −μ

)2 (12.2.1)

Now, with Equation 12.2.1 as background, Theorem 12.2.1 states the connection we
are looking for—that the expected value of SSTR increases as the differences among
the μj ’s increase.

Theorem
12.2.1

Let SSTR be the treatment sum of squares defined for k independent random samples
of sizes n1,n2, . . . , and nk . Then

E(SSTR)= (k − 1)σ 2 +
k∑

j=1

n j (μ j −μ)2
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Proof From Equation 12.2.1,

E(SSTR)=
k∑

j=1

n j E
[(

Y . j −μ
)2]− nE

[(
Y .. −μ

)2]
Since μ is the mean of Y .., then E

[(
Y .. −μ

)2]= σ 2/n. Also,

E
[(

Y . j −μ
)2]= Var

(
Y . j −μ

)+ [E(Y . j −μ
)]2

by Theorem 3.6.1. But Theorem 3.6.2 implies that

Var
(
Y . j −μ

)= Var
(
Y . j
)= σ 2/n j

So, E
[(

Y . j −μ
)2]= σ 2/n j + (μj −μ

)2. Substituting these equalities into the expres-
sion for E(SSTR) yields

E(SSTR)=
k∑

j=1

n jσ
2/n j +

k∑
j=1

n j (μj −μ)2 − n(σ 2/n)

or

E(SSTR)= (k − 1)σ 2 +
k∑

j=1

n j (μj −μ)2

�

Testing H0: μ1 = μ2 = . . . = μk When σ 2 Is Known

Theorem 12.2.1 suggests that SSTR can be the basis for a test of the null hypothesis
that the treatment level means are all equal. When the μj ’s are the same, E(SSTR)=
(k − 1)σ 2. If the true means are not all equal, E(SSTR) will be larger than (k − 1)σ 2.
It follows that we should reject H0 if SSTR is “significantly large.” Of course, to
determine the exact location of the rejection region for a given α, we need to know
the pdf of SSTR, or some function of SSTR, when H0 is true.

Theorem
12.2.2

When H0:μ1 = μ2 = . . . = μk is true, SSTR/σ 2 has a chi square distribution with k − 1
degrees of freedom.

Proof The theorem can be proved directly at this point by an application of Fisher’s
Lemma, similar to the approaches taken in Appendices 7.A.2 and 11.A.2. Rather
than repeat those arguments, we will give a moment-generating function derivation
in Appendix 12.A.2. �

If α, then, is the level of significance, and if σ 2 is known, we should reject
H0:μ1 =μ2 = . . .=μk in favor of H1: Not all the μj ’s are equal if SSTR/σ 2 ≥χ2

1−α,k−1.
In practice, though, comparing a set of μj ’s is seldom that easy because σ 2 is rarely
known. Almost invariably, σ 2 needs to be estimated; doing so changes both the
nature and the distribution of the test statistic.
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Testing H0: μ1 = μ2 = . . . = μk When σ 2 Is Unknown

We know that each of the k samples can provide an independent, unbiased estimate
for σ 2 (recall Example 5.4.4 and see the following discussion). Using the notation of
Table 12.1.1, the j th sample variance is written

S2
j = 1

n j − 1

n j∑
i=1

(
Yi j − Y . j

)2
Multiplying each S2

j by n j − 1 and summing over j gives the numerator of the obvi-
ous “pooled” estimator for σ 2 (recall the way S2

p was defined in the two-sample t
test). We call this quantity the error sum of squares, or SSE:

SSE =
k∑

j=1

(n j − 1)S2
j =

k∑
j=1

n j∑
i=1

(
Yi j − Y . j

)2
Theorem

12.2.3
Whether or not H0:μ1 =μ2 = . . . =μk is true,

1. SSE/σ 2 has a chi square distribution with n − k degrees of freedom.
2. SSE and SSTR are independent.

Proof By Theorem 7.3.2, (n j − 1)S2
j /σ

2 has a chi square distribution with n j − 1
degrees of freedom. By the addition property, then, of the chi square distribution,

SSE/σ 2 is a chi square random variable with
k∑

j=1
(n j − 1)= n − k degrees of freedom.

Each S2
j is independent of Y .i for i �= j because the underlying samples are inde-

pendent. Also, each S2
j is independent of Y . j by Theorem 7.3.2. Therefore, SSE and

SSTR are independent. �

If we ignore the treatments and consider the data as one sample, then the vari-

ation about the parameter μ can be estimated by the double sum
k∑

j=1

n j∑
i=1

(Yi j − Y ..)
2.

This quantity is known as the total sum of squares and denoted SSTOT.

Theorem
12.2.4

If n observations are divided into k samples of sizes n1,n2, . . . , and nk ,

SSTOT = SSTR + SSE

Proof

SSTOT =
k∑

j=1

n j∑
i=1

(
Yi j − Y ..

)2 =
k∑

j=1

n j∑
i=1

[(
Y . j − Y ..

)+ (Yi j − Y . j
)]2 (12.2.2)

Expanding the right-hand side of Equation 12.2.2 gives

k∑
j=1

n j∑
i=1

(
Y . j − Y ..

)2 +
k∑

j=1

n j∑
i=1

(
Yi j − Y . j

)2
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since the cross-product term vanishes:

k∑
j=1

n j∑
i=1

(
Y . j − Y ..

)(
Yi j − Y . j

)= k∑
j=1

(
Y . j − Y ..

) n j∑
i=1

(
Yi j − Y . j

)

=
k∑

j=1

(
Y . j − Y ..

)
(0)= 0

Therefore,

k∑
j=1

n j∑
i=1

(
Yi j − Y ..

)2 =
k∑

j=1

n j∑
i=1

(
Y . j − Y ..

)2 +
k∑

j=1

n j∑
i=1

(
Yi j − Y . j

)2
That is, SSTOT = SSTR + SSE. �

Theorem
12.2.5

Suppose that each observation in a set of k independent random samples is nor-
mally distributed with the same variance, σ 2. Let μ1,μ2, . . . , and μk be the true means
associated with the k samples. Then

a. If H0:μ1 =μ2 = . . . =μk is true,

F = SSTR/(k − 1)

SSE/(n − k)

has an F distribution with k − 1 and n − k degrees of freedom.
b. At the α level of significance, H0:μ1 = μ2 = . . . = μk should be rejected if F ≥

F1−α,k−1,n−k .

Proof By Theorem 12.2.3, SSTR and SSE are independent. We also know that
SSTR/σ 2 and SSE/σ 2 are chi square random variables. Part (a), then, follows from
the definition of the F distribution.

To justify the location of the critical region cited in part (b), we need to examine
the behavior of the proposed test statistic when H1 is true. From Theorem 12.2.1, we
know the expected value of the numerator of F :

E[SSTR/(k − 1)] = σ 2 + 1

k − 1

k∑
j=1

(μj −μ)2 (12.2.3)

Moreover, from Theorem 12.2.3 it follows that the expected value of the denomina-
tor of the test statistic—that is, E[SSE/(n −k)]—is σ 2, regardless of which hypothesis
is true.

Now, if H0 is true, the expected values of both the numerator and the denom-
inator of F will be σ 2, so the ratio is likely to be close to 1. If H1 is true, though,
the expected value of SSTR/(k − 1) will be greater than the expected value of
SSE/(n − k), implying that the observed F ratio will tend to be larger than 1. The
critical region, therefore, should be in the right-hand tail of the Fk−1,n−k distribution.

That is, we should reject H0:μ1 =μ2 = . . .=μk if F = SSTR/(k − 1)

SSE/(n − k)
≥ F1−α,k−1,n−k . �
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ANOVA Tables

Computations for carrying out analyses of variance are typically presented in the
form of ANOVA tables. Highly structured, these tables are especially helpful in
identifying the various test statistics that arise in connection with complicated exper-
imental designs. Figure 12.2.1 shows the format of the ANOVA table for testing
H0:μ1 =μ2 = . . . =μk .

The rows in any ANOVA table correspond to the sources of variation singled
out in an observation’s model equation. More specifically, the last row always refers
to the data’s total variation (as measured by SSTOT); the preceding rows corre-
spond to the variations whose sum yields the total variation. For this particular
experimental design, the three rows are reflecting the fact that

SSTR + SSE = SSTOT

Figure 12.2.1 Source df SS MS F P

Treatment k − 1 SSTR MSTR MSTR
MSE P(Fk− 1,n− k ≥ observedF)

Error n − k SSE MSE
Total n − 1 SSTOT

Next to each “source” is the number of degrees of freedom (df) associated with
its sum of squares. Note that the df for total is the sum of the degrees of freedom for
treatments and error (n − 1 = k − 1 + n − k).

The SS column lists the sum of squares associated with each source of
variation—here, either SSTR, SSE, or SSTOT. The MS, or mean square, column is
derived by dividing each sum of squares by its degrees of freedom. The mean square
for treatments, then, is given by

MSTR = SSTR

k − 1

and the mean square for error becomes

MSE = SSE

n − k

No entry is listed as being the mean square for total.
The entry in the top row of the F column is the value of the test statistic:

F = MSTR

MSE
= SSTR/(k − 1)

SSE/(n − k)

The final entry, also in the top row, is the P-value associated with the observed F . If
P <α, of course, we can reject H0:μ1 =μ2 = . . . =μk at the α level of significance.

Case Study 12.2.1

Generations of athletes have been cautioned that cigarette smoking retards per-
formance. One measure of the truth of that warning is the effect of smoking
on heart rate. In one study (73) examining that impact, six each of nonsmok-
ers, light smokers, moderate smokers, and heavy smokers undertook sustained
physical exercise. Their heart rates were measured after resting for three

(Continued on next page)
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minutes. The results appear in Table 12.2.1. Are the differences among the Y . j ’s
statistically significant? That is, if μ1,μ2,μ3, and μ4 denote the true average
heart rates for the four groups of smokers, can we reject H0:μ1 =μ2 =μ3 =μ4?

Table 12.2.1

Nonsmokers Light Smokers Moderate Smokers Heavy Smokers

69 55 66 91
52 60 81 72
71 78 70 81
58 58 77 67
59 62 57 95
65 66 79 84

T. j 374 379 430 490

Y . j 62.3 63.2 71.7 81.7

Let α=0.05. For these data, k =4 and n =24, so H0:μ1 =μ2 =μ3 =μ4 should
be rejected if

F = SSTR/(4 − 1)

SSE/(24 − 4)
≥ F1−0.05,4−1,24−4 = F.95,3,20 = 3.10

(see Figure 12.2.2).

Reject H

Area = 0.05

0

3.10

f      (y)  F3, 20

0
y

Figure 12.2.2

The overall sample mean, Y .., is given by

Y .. = 1

n

k∑
j=1

T. j = 374 + 379 + 430 + 490

24

= 69.7

Therefore,

SSTR =
4∑

j=1

n j
(
Y . j − Y ..

)2 = 6[(62.3 − 69.7)2 + · · ·+ (81.7 − 69.7)2]

= 1464.125

(Continued on next page)
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(Case Study 12.2.1 continued)

Similarly,

SSE =
4∑

j=1

6∑
i=1

(
Yi j − Y . j

)2 =[(69 − 62.3)2 + · · ·+ (65 − 62.3)2]
+ · · ·+ [(91 − 81.7)2 + · · ·+ (84 − 81.7)2]

= 1594.833

The observed test statistic, then, equals 6.12:

F = 1464.125/(4 − 1)

1594.833/(24 − 4)
= 6.12

Since 6.12> F.95,3,20 =3.10, H0:μ1 =μ2 =μ3 =μ4 should be rejected. These data
support the contention that smoking influences a person’s heart rate.

Figure 12.2.3 shows the analysis of these data summarized in the ANOVA
table format. Notice that the small P-value (= 0.004) is consistent with the
conclusion that H0 should be rejected.

Source df SS MS F P

Treatment 3 1464.125 488.04 6.12 0.004
Error 20 1594.833 79.74
Total 23 3058.958

Figure 12.2.3

Computing Formulas

There are easier ways to compute an F statistic than by using the “defining”
formulas for SSTR and SSE. Let C = T 2

.. /n. Then

SSTOT =
k∑

j=1

n j∑
i=1

Y 2
i j − C (12.2.4)

SSTR =
k∑

j=1

T 2
. j

n j
− C (12.2.5)

and, from Theorem 12.2.4,

SSE = SSTOT − SSTR

(The proofs of Equations 12.2.4 and 12.2.5 are left as exercises.)

Example
12.2.1

For the data in Table 12.2.1,

C = T 2
.. /n = (374 + 379 + 430 + 490)2/24 = 116,622.04

and
4∑

j=1

6∑
i=1

Y 2
i j = (69)2 + (52)2 + · · ·+ (84)2 = 119,681
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in which case

SSTOT =
4∑

j=1

6∑
i=1

Y 2
i j − C = 119,681 − 116,622.04 = 3058.96

Also,

SSTR =
4∑

j=1

T 2
. j − C = (374)2/6 + (379)2/6 + (430)2/6 + (490)2/6 − 116,622.04

= 1464.13

so

SSE = SSTOT − SSTR = 3058.96 − 1464.13 = 1594.83

Notice that these sums of squares have the same numerical values that were found
earlier in Case Study 12.2.1 using the original formulas for SSTOT, SSTR, and SSE.

Questions

12.2.1. The following are the gas mileages recorded dur-
ing a series of road tests with four new models of Japanese
luxury sedans. Test the null hypothesis that all four mod-
els, on the average, give the same mileage. Let α = 0.05.
Will the conclusion change if α = 0.10?

Model

A B C D

22 28 29 23
26 24 32 24

29 28

12.2.2. Mount Etna erupted in 1669, 1780, and 1865.
When molten lava hardens, it retains the direction of the
Earth’s magnetic field. Three blocks of lava were exam-
ined from each of these eruptions and the declination of
the magnetic field in the block was measured (170). The
results are given in the following table. Do these data
suggest that the direction of the Earth’s magnetic field
shifted over the time period spanned by the eruptions? Let
α = 0.05.

1669 1780 1865

57.8 57.9 52.7
60.2 55.2 53.0
60.3 54.8 49.4

12.2.3. An indicator of the value of a stock relative to its
earnings is its price-earnings ratio: the average of a given
year’s high and low selling prices divided by its annual

earnings. The following table provides the price-earnings
ratios for a sample of thirty stocks, ten each from the
financial, industrial, and utility sectors of the New York
Stock Exchange. Test at the 0.01 level that the true mean
price-earnings ratios for the three market sectors are the
same. Use the computing formulas on p. 604 to find SSTR
and SSE. Use the ANOVA table format to summarize the
computations; omit the P-value column.

Financial Industrial Utility

7.1 26.2 14.0
9.9 12.4 15.5
8.8 15.2 11.9
8.8 28.6 10.9

20.6 10.3 14.3
7.9 9.7 11.0

18.8 12.5 9.7
17.7 16.7 10.8
15.2 19.7 16.0

6.6 24.8 11.3

12.2.4. Each of five varieties of corn are planted in three
plots in a large field. The respective yields, in bushels per
acre, are in the following table.

Variety 1 Variety 2 Variety 3 Variety 4 Variety 5

46.2 49.2 60.3 48.9 52.5
51.9 58.6 58.7 51.4 54.0
48.7 57.4 60.4 44.6 49.3
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Test whether the differences among the average yields are
statistically significant. Show the ANOVA table. Let 0.05
be the level of significance.

12.2.5. Three pottery shards from four widely scattered
and now-extinct Native American tribes have been col-
lected by a museum. Archaeologists were asked to esti-
mate the age of the shards. Based on the results shown in
the following table, is it conceivable that the four tribes
were contemporaries of one another? Let α = 0.01.

Estimated Ages of Shards (years)

Lakeside Deep Gorge Willow Ridge Azalea Hill

1200 850 1800 950
800 900 1450 1200
950 1100 1150 1150

12.2.6. Recall the teachers’ expectation data described in
Question 8.2.7. Let μj denote the true average IQ change
associated with group j, j = I, II, or III. Test H0:μI =μII =
μIII versus H1: not all μ j ’s are equal. Let α = 0.05.

12.2.7. Fill in the entries missing from the following
ANOVA table.

Source df SS MS F

Treatment 4 6.40
Error 10.60
Total 377.36

12.2.8. Do the following data appear to violate the
assumptions underlying the analysis of variance? Explain.

Treatment

A B C D

16 4 26 8
17 12 22 9
16 2 23 11
17 26 24 8

12.2.9. Prove Equations 12.2.4 and 12.2.5.

12.2.10. Use Fisher’s Lemma to prove Theorem 12.2.2.

Comparing the Two-Sample t Test with the Analysis of Variance

The analysis of variance was introduced in Section 12.1 as a k-sample extension of
the two-sample test. The two procedures overlap, though, when k is equal to 2. An
obvious question arises: Which procedure is better for testing H0:μX = μY ? The
answer, as Example 12.2.2 shows, is “neither.” The two test procedures are entirely
equivalent: If one rejects H0, so will the other.

Example
12.2.2

Suppose that X1, X2, . . . , Xn and Y1,Y2, . . . ,Ym are two sets of independent, normally
distributed random variables with the same variance, σ 2. Let μX and μY denote their
respective means. Show that the two-sample t test and the analysis of variance are
equivalent for testing H0:μX =μY .

If H0 were tested using the analysis of variance, the observed F ratio would be

F = SSTR/(k − 1)

SSE/(n + m − k)
= SSTR

SSE/(n + m − 2)
(12.2.6)

and it would have 1 and n + m − 2 degrees of freedom. The null hypothesis would
be rejected if F ≥ F1−α,1,n+m−2.

To compare the ANOVA decision rule with a two-sample t test requires that
SSTR and SSE be expressed in the “X and Y ” notation of t ratios. First, note that

SSTR = n1
(

Y .1 − Y ..

)2 + n2
(

Y .2 − Y ..

)2
= n
(

X − Y ..

)2 + m
(

Y − Y ..

)2
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In this case, Y .. = 1

n + m

(
nX + mY

)
, so

SSTR = n

[
X − 1

n + m

(
nX + mY

)]2

+ m

[
Y − 1

n + m

(
nX + mY

)]2

= n

[
m
(
X − Y

)
n + m

]2

+ m

[
n
(
X − Y

)
n + m

]2

=
[

nm2

(n + m)2
+ mn2

(n + m)2

](
X − Y

)2
= nm

n + m

(
X − Y

)2
Also,

SSE = (n1 − 1)S2
1 + (n2 − 1)S2

2

= (n − 1)S2
X + (m − 1)S2

Y

= (n + m − 2)S2
P

Substituting these expressions for SSTR and SSE into the F statistic of Equa-
tion 12.2.6 yields

F =
nm

n + m

(
X − Y

)2
(n + m − 2)S2

P

(n + m − 2)

=
nm

n + m

(
X − Y

)2
S2

P

=
(
X − Y

)2
S2

P

(
1

n
+ 1

m

) (12.2.7)

Notice that the right-hand expression in Equation 12.2.7 is the square of the
two-sample t statistic described in Theorem 9.2.2. Moreover,

α = P(T ≤−tα/2,n+m−2 or T ≥ tα/2,n+m−2)= P
(
T 2 ≥ t2

α/2,n+m−2

)
= P
(
F1,n+m−2 ≥ t2

α/2,n+m−2

)
But the unique value c such that P(F1,n+m−2 ≥ c) = α is c = F1−α,1,n+m−2, so
F1−α,1,n+m−2 = t2

α/2,n+m−2. Thus,

α = P(T ≤ −tα/2,n+m−2 or T ≥ tα/2,n+m−2)= P(F ≥ F1−α,1,n+m−2)

It follows that if one test statistic rejects H0 at the α level of significance, so will the
other.

Questions

12.2.11. Verify the conclusion of Example 12.2.2 by doing
a t test and an analysis of variance on the data of Ques-
tion 9.2.8. Show that the observed F ratio is the square
of the observed t ratio and that the F critical value is the
square of the t critical value.

12.2.12. Do an analysis of variance on the Mark Twain–
Quintus Curtius Snodgrass data of Case Study 9.2.1.

Verify that the observed F ratio is the square of the
observed t ratio.

12.2.13. Do an analysis of variance and a pooled two-
sample t test on the motorcycle data given in Ques-
tion 8.2.2. How are the observed F ratio and observed
t ratio related? How are the two critical values related?
Assume that α = 0.05.
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12.3 Multiple Comparisons: Tukey’s Method
The suspicion that smoking affects heart rates was borne out by the analysis done
in Case Study 12.2.1. In retrospect, the fact that H0:μ1 = μ2 = μ3 = μ4 was rejected
is not surprising, given the sizeable range in the Y . j ’s (from 62.3 for nonsmokers
to 81.7 for heavy smokers). But not all the treatment groups were far apart: The
heart rates for nonsmokers and light smokers were fairly close—62.3 versus 63.2.
That raises an obvious question: Is there some way to follow up an initial test of
H0:μ1 = μ2 = . . . = μk by looking at subhypotheses—that is, can we test hypotheses
that involve fewer than the full set of population means (for example, H0:μ1 =μ2)?

The answer is “yes,” but the solution is not as simple as it might appear at first
glance. In particular, it would be inappropriate to do a series of standard two-sample
t tests on different pairs of means—for example, applying Theorem 9.2.1 to μ1 ver-
sus μ2, then to μ2 versus μ3, and so on. If each of those tests was done at a certain
level of significance α, the probability that at least one Type I error would be com-
mitted would be much larger than α. That being the case, the “nominal” value for α

misrepresents the collective precision of the inferences.
Suppose, for example, we did ten independent tests of the form H0:μi =μj ver-

sus H1:μi �= μj , each at level α = 0.05, on a large set of population means. Even
though the probability of making a Type I error on any given test is only 0.05, the
chances of incorrectly rejecting a true H0 with at least one of the ten t tests increases
dramatically to 0.40:

P(at least one Type I error)= 1 − P(no Type I errors)

= 1 − (0.95)10

= 0.40

Addressing that concern, mathematical statisticians have paid a good deal of
attention to the so-called multiple comparison problem. Many different procedures,
operating under various sets of assumptions, have been developed. All have the
objective of keeping the probability of committing at least one Type I error small,
even when the number of tests performed is large (or even infinite). In this section,
we develop one of the earliest of these techniques, a still widely used method due to
John Tukey.

A Background Result: The Studentized Range Distribution

The simplest multiple comparison problem is to test the equality of all pairs of indi-
vidual means—that is, to test with one procedure H0:μi = μj versus H1:μi �= μj for
all i �= j . In Tukey’s method, these tests are performed using confidence intervals for
μi − μj . The derivation depends on knowing the probabilistic behavior of the ratio
R/S, where R is the range of a set of normally distributed random variables, and S
is an estimator for their true standard deviation.

Definition 12.3.1. Let W1, W2, . . . , and Wk be a set of k independent, normally
distributed random variables with mean μ and variance σ 2, and let R denote
their range:

R = max
i

Wi − min
i

Wi
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Suppose S2 is based on a chi square random variable with v degrees of freedom,
independent of the Wi ’s, where E(S2) = σ 2. The studentized range, Qk,v , is the
ratio

Qk,v = R

S

Table A.5 in the Appendix gives values of Qα,k,v , the 100(1 − α)th percentile of
Qk,v , for α = 0.05 and 0.01, and for various values of k and v. For example, if k = 4

and v = 8, Q.05,4,8 = 4.53, meaning that P

(
R

S
≥ 4.53

)
= 0.05, where R is the range

of four normally distributed random variables, whose true standard deviation, σ , is
being estimated by a sample standard deviation, S, having 8 degrees of freedom (see
Figure 12.3.1). (Note: For the applications of the studentized range in this chapter,
S2 will always be MSE and v will be n − k.)

Figure 12.3.1
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Theorem
12.3.1

Let Y . j , j = 1,2, . . . , k be the k sample means in a completely randomized one-factor
design. Let n j = r be the common sample size, and let μj be the true means, j =
1,2, . . . , k. The probability is 1−α that all

(
k
2

)
differences μi −μj will simultaneously

satisfy the inequalities

Y .i − Y . j − D
√

MSE <μi −μj < Y .i − Y . j + D
√

MSE

where D = Qα,k,rk−k/
√

r . If, for a given i and j , zero is not contained in the preced-
ing inequality, H0:μi = μj can be rejected in favor of H1:μi �= μj , at the α level of
significance.

Proof Let Wt = Y .t − μt . Then Wt is normally distributed with mean zero and vari-
ance σ 2/r . Let max Wt and min Wt denote the maximum and minimum values,
respectively, for Wt , where t ranges from 1 to k.

Take MSE/r to be the estimator for σ 2/r . From the definition of the studentized

range,
max Wt − min Wt√

MSE

r

has a Qk,rk−k pdf, which implies that

P

⎛⎝max Wt − min Wt√
MSE

r

< Qα,k,rk−k

⎞⎠= 1 −α

or, equivalently,

P
(

max Wt − min Wt < D
√

MSE
)= 1 −α (12.3.1)

where D = Qα,k,rk−k/
√

r .
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Now, if Equation 12.3.1 is true, it must also be true that

P
(|Wi − W j | < D

√
MSE
)= 1 −α for all i and j (12.3.2)

Rewriting Equation 12.3.2 gives

P
(−D

√
MSE < Wi − W j < D

√
MSE
)= 1 −α for all i and j (12.3.3)

Recall that Wt = Y .t − μt . Substituting the latter for Wi and W j into Equation 12.3.3
yields the statement of the theorem:

P
(
Y .i − Y . j − D

√
MSE <μi −μj < Y .i − Y . j + D

√
MSE
)= 1 −α

for all i and j . �

Case Study 12.3.1

A certain fraction of antibiotics injected into the bloodstream are “bound” to
serum proteins. This phenomenon bears directly on the effectiveness of the
medication, because the binding decreases the systemic uptake of the drug.
Table 12.3.1 lists the binding percentages in bovine serum measured for five
widely prescribed antibiotics (214). Which antibiotics have similar binding
properties, and which are different?

Table 12.3.1

Penicillin Tetra- Strepto- Erythro- Chloram-
G cycline mycin mycin phenicol

29.6 27.3 5.8 21.6 29.2
24.3 32.6 6.2 17.4 32.8
28.5 30.8 11.0 18.3 25.0
32.0 34.8 8.3 19.0 24.2

T. j 114.4 125.5 31.3 76.3 111.2
Y . j 28.6 31.4 7.8 19.1 27.8

To answer that question requires that we make all
(

5
2

)
= 10 pairwise com-

parisons of μi versus μj . First, MSE must be computed. From the entries in
Table 12.3.1,

SSE =
5∑

j=1

4∑
i=1

(
Yi j − Y . j

)2 = 135.83

so MSE = 135.83/(20 − 5) = 9.06. Let α = 0.05. Since n − k = 20 − 5 = 15, the
appropriate cutoff from the studentized range distribution is Q.05,5,15 = 4.37.
Therefore, D = 4.37/

√
4 = 2.185 and D

√
MSE = 6.58.

For each different pairwise subhypothesis test, H0:μi = μj versus
H1:μi �= μj , Table 12.3.2 lists the value of Y .i − Y . j , together with the corre-
sponding 95% Tukey confidence interval for μi − μj calculated from Theorem
12.3.1. As the last column indicates, seven of the subhypotheses are rejected
(those whose Tukey intervals do not contain zero) and three are not rejected.

(Continued on next page)
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Table 12.3.2

Pairwise Difference Y .i − Y . j Tukey Interval Conclusion

μ1 −μ2 −2.8 (−9.38, 3.78) NS
μ1 −μ3 20.8 (14.22, 27.38) Reject
μ1 −μ4 9.5 (2.92, 16.08) Reject
μ1 −μ5 0.8 (−5.78, 7.38) NS
μ2 −μ3 23.6 (17.02, 30.18) Reject
μ2 −μ4 12.3 (5.72, 18.88) Reject
μ2 −μ5 3.6 (−2.98, 10.18) NS
μ3 −μ4 −11.3 (−17.88, −4.72) Reject
μ3 −μ5 −20.0 (−26.58, −13.42) Reject
μ4 −μ5 −8.7 (−15.28, −2.12) Reject

Questions

12.3.1. Use Tukey’s method to make all the pairwise com-
parisons for the heart rate data of Case Study 12.2.1 at the
0.05 level of significance.

12.3.2. Construct 95% Tukey intervals for the three pair-
wise differences, μi −μ j , for the data of Question 12.2.3.

12.3.3. Intravenous infusion fluids produced by three dif-
ferent pharmaceutical companies (Cutter, Abbott, and
McGaw) were tested for their concentrations of particu-
late contaminants. Six samples were inspected from each
company. The figures listed in the table are, for each sam-
ple, the number of particles per liter greater than five
microns in diameter (183).

Number of Contaminant Particles

Cutter Abbott McGaw

255 105 577
264 288 515
342 98 214
331 275 413
234 221 401
217 240 260

Do the analysis of variance to test H0:μC = μA = μM and
then test each of the three pairwise subhypotheses by
constructing 95% Tukey intervals.

12.3.4. Construct 95% Tukey intervals for all ten pairwise
differences, μi − μ j , for the data of Question 12.2.4. Sum-
marize the results by plotting the five sample averages on
a horizontal axis and drawing straight lines under varieties
whose average yields are not significantly different.

12.3.5. Construct 95% Tukey confidence intervals for
the three pairwise differences associated with the mur-
der culpability scores described in Question 8.2.15. Which
differences are statistically significant?

12.3.6. If 95% Tukey confidence intervals tell us to reject
H0:μ1 = μ2 and H0:μ1 = μ3, will we necessarily reject
H0:μ2 =μ3?

12.3.7. The width of a Tukey confidence interval is

2
√

MSEQα,k,n−k

/√
n

k

If k increases, but
n

k
and MSE stay the same, will the

Tukey intervals get shorter or longer? Justify your answer
intuitively.

12.4 Testing Subhypotheses with Contrasts
There are two general ways to test a subhypothesis, the choice depending, strangely
enough, on when H0 can be fully specified. If a researcher wishes to do an experi-
ment first, and then let the results suggest a suitable subhypothesis, the appropriate
analysis is any of the various multiple comparison techniques—for example, the
Tukey method of Section 12.3.
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If, on the other hand, physical considerations, economic factors, past experi-
ence, or any other factors suggest a particular subhypothesis before any data are
taken, H0 can best be tested using a contrast. The advantage of the latter is that tests
based on contrasts have greater power than the analogous tests based on a multiple
comparison procedure would have.

Definition 12.4.1. Let μ1,μ2, . . . ,μk denote the true means of k factor levels
being sampled. A linear combination, C , of the μj ’s is said to be a contrast if the

sum of its coefficients is 0. That is, C is a contrast if C =
k∑

j=1
c jμj , where the c j ’s

are constants such that
k∑

j=1
c j = 0.

Contrasts have a direct connection with hypothesis tests. Suppose a set of data
consists of five treatment levels, and we wish to test the subhypothesis H0:μ1 = μ2.
The latter could also be written H0:μ1 − μ2 = 0, which is actually a statement about
a contrast—specifically, the contrast C , where

C =μ1 −μ2 = (1)μ1 + (−1)μ2 + (0)μ3 + (0)μ4 + (0)μ5

Or, suppose in Case Study 12.3.1, there was a good pharmacological reason for com-
paring the average level of serum binding for the first two antibiotics to the average
level for the last three. Written as a subhypothesis, the statement of no difference
would be

H0: μ1 +μ2

2
= μ3 +μ4 +μ5

3
As a contrast, it becomes

C = 1

2
μ1 + 1

2
μ2 − 1

3
μ3 − 1

3
μ4 − 1

3
μ5

In both these cases, the numerical value of the contrast will be 0 if H0 is true. This
suggests that the choice between H0 and H1 can be accomplished by first estimat-
ing C and then determining, via a significance test, whether that estimate is too far
from 0.

We begin by considering some of the mathematical properties of contrasts and
their estimates. Since Y . j is always an unbiased estimator for μj , it seems reason-
able to estimate C, a linear combination of population means, with Ĉ , a linear
combination of sample means:

Ĉ =
k∑

j=1

c j Y . j

(The coefficients appearing in Ĉ , of course, are the same as those that defined C .) It
follows that

E(Ĉ)=
k∑

j=1

c j E
(
Y . j
)= C

and

Var(Ĉ)=
k∑

j=1

c2
j Var
(
Y . j
)= σ 2

k∑
j=1

c2
j

n j
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Comment Replacing the unknown error variance, σ 2, by its estimate from the
ANOVA table—MSE—gives a formula for the estimated variance of the estimated
contrast:

S2
Ĉ

= MSE
k∑

j=1

c2
j

n j

The sampling behavior of Ĉ is easily derived. By Theorem 4.3.3, the normality
of the Yi j ’s ensures that Ĉ is also normal, and by the usual Z transformation, the
ratio

Ĉ − E(Ĉ)√
Var(Ĉ)

= Ĉ − C√
Var(Ĉ)

is a standard normal. Therefore, ⎡⎣ Ĉ − C√
Var(Ĉ)

⎤⎦2

is a chi square random variable with 1 degree of freedom. Of course, if H0:μ1 =
μ2 = . . . =μk is true, C is 0, and the ratio reduces to

Ĉ2

σ 2
k∑

j=1

c2
j

n j

One additional property of contrasts is worth noting because of its connection
to the treatment sum of squares in the analysis of variance. Two contrasts

C1 =
k∑

j=1

c1 jμj and C2 =
k∑

j=1

c2 jμj

are said to be orthogonal if

k∑
j=1

c1 j c2 j

n j
= 0

Similarly, a set of q contrasts, {Ci }q
i=1, are said to be mutually orthogonal if

k∑
j=1

cs j ct j

n j
= 0 for all s �= t

(The same definitions apply to estimated contrasts.)
Definition 12.4.2 and Theorems 12.4.1 and 12.4.2, both stated here without

proof, summarize the relationship between contrasts and the analysis of variance.
In short, the treatment sum of squares can be partitioned into k − 1 “contrast” sums
of squares, provided the contrasts are mutually orthogonal.
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Definition 12.4.2. Let Ci =
k∑

j=1
ci jμj be any contrast. The sum of squares

associated with Ci is given by

SSCi = Ĉ2
i

k∑
j=1

c2
i j

n j

where Ĉi =
k∑

j=1
ci j Y . j .

Theorem
12.4.1

Let

{
Ci =

k∑
j=1

ci jμj

}k−1

i=1

be a set of k − 1 mutually orthogonal contrasts. Let{
Ĉi =

k∑
j=1

ci j Y . j

}k−1

i=1

be their estimators. Then

SSTR =
k∑

j=1

n j∑
i=1

(
Y . j − Y ..

)2
= SSC1 + SSC2 + · · ·+ SSCk−1 �

Theorem
12.4.2

Let C be a contrast having the same coefficients as the subhypothesis H0: c1μ1 +
c2μ2 + · · ·+ ckμk = 0, where

k∑
j=1

c j = 0. Let n =
k∑

j=1
n j be the total sample size. Then

a. F = SSC/1

SSE/(n − k)
has an F distribution with 1 and n − k degrees of freedom.

b. H0: c1μ1 + c2μ2 + · · ·+ ckμk = 0 should be rejected at the α level of significance if
F ≥ F1−α,1,n−k . �

Comment Theorem 12.4.1 is not meant to imply that only mutually orthogonal
contrasts can, or should, be tested. It is simply a statement of a partitioning rela-
tionship that exists between SSTR and the sum of squares for mutually orthogonal
Ci ’s. In any given experiment, the contrasts that should be singled out are those the
experimenter has some prior reason to test.

Case Study 12.4.1

As a rule, infants are not able to walk by themselves until they are almost
fourteen months old. One study, however, investigated the possibility of reduc-
ing that time through the use of special “walking” exercises (212). A total of
twenty-three infants were included in the experiment—all were one-week-old
white males. They were randomly divided into four groups, and for seven weeks
each group followed a different training program. Group A received special

(Continued on next page)
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walking and placing exercises for twelve minutes each day. Group B also had
daily twelve-minute exercise periods but was not given the special walking and
placing exercises. Groups C and D received no special instruction. The progress
of groups A, B, and C was checked every week; the progress of group D was
checked only once, at the end of the study.

After seven weeks the formal training ended and the parents were told
they could continue with whatever procedure they desired. Table 12.4.1 lists the
ages (in months) at which each of the twenty-three children first walked alone.
Table 12.4.2 shows the analysis of variance computations. Based on 3 and 19
degrees of freedom, the α = 0.05 critical value is 3.13, so H0:μA =μB =μC =μD

is not rejected.

Table 12.4.1 Age When Infants First Walked Alone (Months)

Group A Group B Group C Group D

9.00 11.00 11.50 13.25
9.50 10.00 12.00 11.50
9.75 10.00 9.00 12.00

10.00 11.75 11.50 13.50
13.00 10.50 13.25 11.50

9.50 15.00 13.00

T. j 60.75 68.25 70.25 61.75
Y . j 10.12 11.38 11.71 12.35

Table 12.4.2 ANOVA Computations

Source df SS MS F

Exercises 3 14.77 4.92 2.14
Error 19 43.70 2.30
Total 22 58.47

At this point the analysis could end with the overall H0 not being rejected.
We will continue with the subhypothesis procedures, however, to illustrate the
application of Theorem 12.4.2.

Recall that groups A and B spent equal amounts of time exercising but
followed different regimens. Consequently, a test of H0:μA =μB versus H1:μA �=
μB would be an obvious way to assess the effectiveness of the special walking
and placing exercises. The associated contrast would be C1 =μA −μB . Similarly,
a test of H0:μC = μD (using C2 = μC − μD) would provide an evaluation of the
psychological effect of periodic progress checks.

From Definition 12.4.2 and the data in Table 12.4.1,

SSC1 =

[
1

(
60.75

6

)
− 1

(
68.25

6

)]2

12

6
+ (−1)2

6

= 4.68

(Continued on next page)
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(Case Study 12.4.1 continued)

and

SSC2 =

[
1

(
70.25

6

)
− 1

(
61.75

5

)]2

12

6
+ (−1)2

5

= 1.12

Dividing these sums of squares by the mean square for error (= 2.30) gives F
ratios of 4.68/2.30 = 2.03 and 1.12/2.30 = 0.49, neither of which is significant at
the α = 0.05 level (F.95,1,19 = 4.38) (see Table 12.4.3).

Table 12.4.3 Subhypothesis Computations

Subhypothesis Contrast SS F

H0:μA =μB C1 =μA −μB 4.68 2.03
H0:μC =μD C2 =μC −μD 1.12 0.49

Questions

12.4.1. The cathode warm-up time (in seconds) was deter-
mined for three different types of X-ray tubes using fifteen
observations of each type. The results are listed in the
following table.

Warm-Up Times (sec)

Tube Type

A B C

19 27 20 24 16 14
23 31 20 25 26 18
26 25 32 29 15 19
18 22 27 31 18 21
20 23 40 24 19 17
20 27 24 25 17 19
18 29 22 32 19 18
35 18 18

Do an analysis of variance on these data and test the
hypothesis that the three tube types require the same aver-
age warm-up time. Include a pair of orthogonal contrasts
in your ANOVA table. Define one of the contrasts so
it tests H0:μA = μC . What does the other contrast test?
Check to see that the sums of squares associated with your
two contrasts verify the statement of Theorem 12.4.1.

12.4.2. Test the hypothesis that the average of the true
yields for the first three varieties of corn described in

Question 12.2.4 is the same as the average for the last two.
Let α = 0.05.

12.4.3. In Case Study 12.2.1 test the hypothesis that the
average of the heart rates for light and moderate smok-
ers is the same as that for heavy smokers. Let the level of
significance be 0.05.

12.4.4. Large companies have the option of limiting their
growth, but does doing so lead to higher profitability?
The table below gives the profitability for a sample of
twenty-one top-ranked companies, where profitability is
expressed in terms of annual profit as a percentage of total
company assets. The firms are divided into three groups
by size of assets—$50 billion or less, between $51 and
$100 billion, and over $100 billion. Test the hypothesis
that small- and medium-size companies are as profitable
as large companies. Let α = 0.10.

Size of Assets (billions of $)

$50 or Less Between $51 and $100 Greater than $100

7.2 11.3 14.8
6.5 5.6 11.3
5.7 5.3 9.2
4.4 5.3 4.8
3.4 10.4 3.9
3.4 6.2 10.2
7.8 5.3 7.3

(Note: SSE = 147.17429)
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12.4.5. Verify that C3 = 11
12

μA + 11
12

μB −μC − 5
6
μD is orthog-

onal to the C1 and C2 of Case Study 12.4.1. Find SSC3 and
illustrate the statement of Theorem 12.4.1.

12.4.6. For many years sodium nitrite has been used as a
curing agent for bacon, and until recently it was thought
to be perfectly harmless. But now it appears that during
frying, sodium nitrite induces the formation of nitrosopy-
rrolidine (NPy), a substance suspected of being a carcino-
gen. In one study focusing on this problem, measurements
were made of the amount of NPy (in ppb) recovered after
the frying of three slices of four commercially available
brands of bacon (161). Do the analysis of variance for
the data in the table and partition the treatment sum of

squares into a complete set of three mutually orthogonal
contrasts. Let the first contrast test H0:μA = μB and the
second, H0: (μA + μB)/2 = (μC + μD)/2. Do all tests at the
0.05 level of significance.

NPy Recovered from Bacon (ppb)

Brand

A B C D

20 75 15 25
40 25 30 30
18 21 21 31

12.5 Data Transformations
The three assumptions required by the analysis of variance have already been men-
tioned: the Yi j ’s must be independent, normally distributed, and have the same
variance for all j . In practice, these three are not equally difficult to satisfy, nor
do their violations have the same consequences for the F test.

Independence is certainly a critical property for the Yi j ’s to have, but ran-
domizing the order in which observations are taken (relative to the different
treatment levels) tends to eliminate systematic bias—and achieve independence—
quite effectively. Normality is a much more difficult property to induce or even
to verify (recall Section 10.4). Fortunately, violations of that particular assump-
tion, unless extreme, do not seriously compromise the probabilistic integrity of the
analysis of variance (like the t test, the F test is robust against departures from
normality).

If the final assumption is violated, though, and the Yi j ’s do not all have the same
variance, the effect on certain inference procedures—for example, the construction
of confidence intervals for individual means—can be more unsettling. However, it
is possible in some situations to “stabilize” the level-to-level variances by a suitable
data transformation.

Suppose that Yi j has pdf fY (yi j ;μj ), i = 1,2, . . . ,n j ; j = 1,2, . . . , k, and a known
function g exists for which Var(Yi j ) = g(μj ). We wish to find a transformation, A,
that, when applied to the Yi j ’s, will generate a new set of variables having a constant
variance—that is, A(Yi j )= Wi j , where Var(Wi j )= c2

1, a constant.
By Taylor’s theorem,

Wi j
.= A(μj )+ (Yi j −μj )A′(μj )

Of course, E(Wi j )= A(μj ), since E(Yi j −μj )= 0. Also,

Var(Wi j )= E[Wi j − E(Wi j )]2

= E[(Yi j −μj )A′(μj )]2

=[A′(μj )]2Var(Yi j )=[A′(μj )]2g(μj )
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Solving for A′(μj ) gives

A′(μj )=
√

Var(Wi j )√
g(μi )

= c1√
g(μj )

For Yi j in the neighborhood of μj , it follows that

A(Yi j )= c1

∫
1√

g(yi j )
dyi j + c2 (12.5.1)

Example
12.5.1

Suppose the Yi j ’s are Poisson random variables with mean μ j , j = 1,2, . . . , k, so

fY (yi j ;μj )= e−μj μ
yi j

j

yi j !
In this case, the variance is equal to the mean (recall Theorem 4.2.2):

Var(Yi j )= E(Yi j )=μj = g(μj )

By Equation 12.5.1, then,

A(Yi j )= c1

∫
1√
yi j

dyi j + c2 = 2c1
√

yi j + c2

or, letting c1 = 1
2 and c2 = 0 to make the transformation as simple as possible,

A(Yi j )=√Yi j (12.5.2)

Equation 12.5.2 implies that if the data are known in advance to be Poisson,
each of the observations should be replaced by its square root before we proceed
with the analysis of variance.

Example
12.5.2

Suppose each Yi j is a binomial random variable with pdf

fY (yi j ;n, p j )=
(

n
yi j

)
p

yi j

j (1 − p j )
n−yi j

Here, E(Yi j )= np j =μj , which implies that

Var(Yi j )= np j (1 − p j )=μj

(
1 − μ j

n

)
= g(μj )

It follows that the variance-stabilizing transformation for this type of data is the
inverse sine:

A(Yi j )= c1

∫
1√

yi j (1 − yi j/n)
dyi j + c2

= c12
√

n arcsin

(
Yi j

n

)1/2

+ c2

or, what is equivalent,

A(Yi j )= arcsin

(
Yi j

n

)1/2
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Questions

12.5.1. A commercial film processor is experimenting
with two kinds of fully automatic color developers. Six
sheets of exposed film are put through each developer.
The number of flaws on each negative visible with the
naked eye is then counted.

Number of Visible Flaws

Developer A Developer B

1 8
4 6
5 4
6 9
3 11
7 10

Assume the number of flaws on a given negative is a
Poisson random variable. Make an appropriate data trans-
formation and do the indicated analysis of variance.

12.5.2. An experimenter wants to do an analysis of vari-
ance on a set of data involving five treatment groups, each
with three replicates. She has computed Y . j and Sj for
each group and gotten the results listed in the following
table.

Treatment Group

1 2 3 4 5

Y . j 9.0 4.0 16.0 9.0 1.0
Sj 3.0 2.0 4.0 3.0 1.0

What should the experimenter do before computing the
various sums of squares necessary to carry out the F test?
Be as quantitative as possible.

12.5.3. Three air-to-surface missile launchers are tested
for their accuracy. The same gun crew fires four rounds
with each launcher, each round consisting of twenty mis-
siles. A “hit” is scored if the missile lands within ten yards
of the target. The following table gives the number of hits
registered in each round.

Number of Hits per Round

Launcher A Launcher B Launcher C

13 15 9
11 16 11
10 18 10
14 17 8

Compare the accuracy of these three launchers by using
the analysis of variance after making a suitable data
transformation. Let α = 0.05.

12.6 Taking a Second Look at Statistics (Putting the
Subject of Statistics Together—The Contributions of
Ronald A. Fisher)

“The time has come,” the Walrus said
“To talk of many things:

Of shoes—and ships—and sealing wax
Of cabbages—and kings.

And why the sea is boiling hot
And whether pigs have wings.”

Lewis Carroll

Statistics, as we know it today, is very much a product of the twentieth century.
To be sure, its roots are centuries old. The Frenchmen Blaise Pascal and Pierre Fer-
mat did their protean work on probability in 1654. At about that same time, John
Graunt was studying Bills of Mortality in England and demonstrating a remarkable
flair for teasing out patterns and trends. Still, as the twentieth century dawned, there
was no real subject of statistics. There were bits and pieces of probability theory, and
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there were more than a few extremely capable observers of random phenomena—
Francis Galton and Adolphe Quetelet being among the most prominent—but there
was nothing resembling any general principles or formal methodology.

Perhaps the most serious “gap” at the turn of the century was the almost total
lack of information about sampling distributions. No one knew, for example, the

pdfs that described quantities such as
Y −μ0

S/
√

n
,
(n − 1)S2

σ 2
,

X − Y

Sp

√
1
n + 1

m

, or
S2

Y

S2
X

. These,

of course, turned up as test statistics in Chapters 6, 7, and 9. Not knowing their
pdfs meant that no inferences other than point estimates could be made about the
parameters of normal distributions. Moreover, there was very little known about
point estimates and, more generally, about the mathematical properties that should
be associated with the estimation process.

Two individuals who figured very prominently in the early efforts to put statistics
on a solid mathematical footing were Karl Pearson and W.S. Gossett (who published
under the pseudonym “Student”). In 1900, Pearson deduced the distribution of the
goodness-of-fit statistic, which appeared in Chapter 10. And Gossett, in 1908, came

up with the pdf for

(
Y −μo

S/
√

n

)
—that is, the t distribution. It was a third person,

though, Ronald A. Fisher, who stood tallest among his peers. He not only did much
of the early work in deriving sampling distributions and exploring the mathemati-
cal properties of estimation, he also created the critically important area of applied
statistics known as experimental design.

Born in 1890 in a suburb of London, Fisher was mathematically precocious
and particularly adept at visualizing complicated problems in his head, a talent
that some believe he developed to compensate for his congenitally poor eyesight.
He graduated with distinction from Cambridge in 1912, where his specialties were
physics and optics. During his time there, he also developed what would become
a lifelong interest in genetics. He was particularly intrigued with the possibility of
finding a mathematical justification for Darwin’s theory of evolution. (Almost two
decades later, he published a book on the subject, The Genetical Theory of Natural
Selection.)

In 1915, he derived the distribution of the sample correlation coefficient in a
paper that is often thought to mark the beginning of the modern theory of sam-
pling distributions. After teaching high school physics for several years (a job that
did not seem to suit him especially well), he accepted a position as a statistician at
the Rothamsted Agricultural Station. There he absolutely flourished as he immersed
himself in the pursuit of both applied and mathematical statistics. Among his accom-
plishments was a seminal paper published in 1921, “Mathematical Foundations of
Theoretical Statistics,” which provided the framework for generations of future
research.

The work at Rothamsted brought him face-to-face with the very difficult
problem of drawing inferences from field trials where biases of various sorts (dif-
ferent soil qualities, uneven drainage gradients, etc.) were the rule rather than the
exception. The strategies he devised for dealing with heterogeneous environments
eventually coalesced into what is now referred to as experimental design. Guided by
his twin principles of replication and randomization, he revolutionized the protocol
for setting up and conducting experiments. The mathematical techniques that sup-
ported his ideas on experimental design became known, of course, as the analysis of
variance. In 1925, Fisher published Statistical Methods for Research Workers, a clas-
sic text whose many subsequent editions helped countless scientists become more
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sophisticated in the ways of analyzing data. A decade later he wrote The Design of
Experiments, a second highly acclaimed guide for researchers.

Fisher was knighted in 1952, ten years before he died in Adelaide, Australia, at
the age of seventy-two (48).

Appendix 12.A.1 Minitab Applications

The Minitab command for doing the F test of Theorem 12.2.5 is

MTB > aovoneway c1-ck

where the Yi j ’s from the k samples have been entered in columns c1 through ck. The
output appears in the ANOVA table format of Figure 12.2.1.

Displayed in Figure 12.A.1.1 are the input and output for analyzing the
heart rate data described in Case Study 12.2.1. The program also prints out 95%
confidence intervals for each μj —that is,

(
Y · j − t.025,n j−1 · S√

n j
,Y · j + t.025,n j −1 · S√

n j

)

where S is the pooled standard deviation calculated from all k samples.

Figure 12.A.1.1 MTB > set c1
DATA > 69 52 71 58 59 65
DATA > end
MTB > set c2
DATA > 55 60 78 58 62 66
DATA > end
MTB > set c3
DATA > 66 81 70 77 57 79
DATA > end
MTB > set c4
DATA > 91 72 81 67 95 84
DATA > end
MTB > aovoneway c1-c4

One-way ANOVA: C1, C2, C3, C4

Source DF SS MS F P
Factor 3 1464.1 488.0 6.12 0.004
Error 20 1594.8 79.7
Total 23 3059.0

S = 8.930 R-Sq = 47.86% R-Sq (adj) = 40.04%

Individual 95% CIs For Mean Based on
Pooled StDev

Level N Mean StDev ------+---------+---------+---------+
C1 6 62.333 7.257 (------*------)
C2 6 63.167 8.159 (------*------)
C3 6 71.667 9.158 (------*------)

)------*------(467.01766.1864C
------+---------+---------+---------+

60 70 80 90
Pooled StDev = 8.930
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Testing H0: μ1 = . . . = μk Using Minitab Windows

1. Enter the k samples in columns C1 through Ck, respectively.
2. Click on STAT, then on ANOVA, then on ONE-WAY (UNSTACKED).
3. Type C1-Ck in RESPONSES box, and click on OK.

Pairwise comparisons are also available in Minitab, but the Tukey method
requires that the data be entered differently than how they were for the
AOVONEWAY command. First, the k samples are “stacked” in a single column—
say, c1. Then a second column, c2, is created whose entries identify the treatment
level to which each Yi j in Column 1 belongs. For example, c1 and c2 for the data

Level 1 Level 2 Level 3

4 −1 6
2 3 8

would be

c1 =

⎛⎜⎜⎜⎜⎜⎜⎝
4
2

−1
3
6
8

⎞⎟⎟⎟⎟⎟⎟⎠ and c2 =

⎛⎜⎜⎜⎜⎜⎜⎝
1
1
2
2
3
3

⎞⎟⎟⎟⎟⎟⎟⎠
The statements

MTB > oneway c1 c2;
SUBC > tukey.

will then produce a complete set of 95% Tukey confidence intervals.
Figure 12.A.1.2 shows the Minitab input, the ANOVA table output, and the

complete set of 95% Tukey confidence intervals for the serum binding data of Case
Study 12.3.1. Intervals not containing 0, of course, correspond to “pairwise” null
subhypotheses that should be rejected (at the α = 0.05 level of significance). For
example, the 95% Tukey confidence interval for μ3 − μ1 extends from −27.350 to
−14.200. Since 0 is not contained in that interval, the null subhypothesis H0:μ1 =μ3

should be rejected at the α = 0.05 level of significance.

Constructing Tukey Confidence Intervals Using Minitab Windows

1. Enter entire sample in column C1, beginning with the n1 observations in
Sample 1, followed by the n2 observations in Sample 2, and so on.

2. In column C2, enter n1 1’s, followed by n2 2’s, and so on.
3. Click on STAT, then on ANOVA, then on ONE-WAY.
4. Type C1 in RESPONSE box and C2 in FACTOR box.
5. Click on COMPARISONS, then on TUKEY’S FAMILY ERROR RATE.

Enter the desired value for 100 α.
6. Double click on OK.
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Figure 12.A.1.2 MTB > set c1
DATA > 29.6 24.3 28.5 32.0 27.3 32.6 30.8 34.8 5.8 6.2
DATA > 11.0 8.3 21.6 17.4 18.3 19.0 29.2 32.8 25.0 24.2
DATA > end
MTB > set c2
DATA > 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5
DATA > end
MTB > oneway c1 c2;
SUBC > tukey.

One-way ANOVA: C1 versus C2

Source DF SS MS F P
C2 4 1480.82 370.21 40.88 0.000
Error 15 135.82 9.05
Total 19 1616.65

S = 3.009 R-Sq = 91.60% R-Sq(adj) = 89.36%

Individual 95% CIs For Mean Based on
Pooled StDev

Level N Mean StDev ----+-------+--------+--------+-----
1 4 )---*---(812.3006.82
2 4 )---*---(171.3573.13
3 4 7.825 2.384 (---*---)
4 4 19.075 1.806 (---*---)
5 4 )---*---(099.3008.72

----+-------+--------+--------+-----
8.0 16.0 24.0 32.0

Pooled StDev = 3.009

Tukey 95% Simultaneous Confidence Intervals
All Pairwise Comparisons among Levels of C2

Individual confidence level = 99.25%

C2 = 1 subtracted from:

C2 Lower Center Upper -------+--------+---------+---------+
2 -3.800 2.775 9.350 (---*---)
3 -27.350 -20.775 -14.200 (---*---)
4 -16.100 -9.525 -2.950 (---*---)
5 -7.375 -0.800 5.775 (---*---)

-------+--------+---------+---------+
-16 0 16 32

C2 = 2 subtracted from:

C2 Lower Center Upper -------+--------+---------+---------+
3 -30.125 -23.550 -16.975 (---*---)
4 -18.875 -12.300 -5.725 (---*---)
5 -10.150 -3.575 3.000 (---*---)

-------+--------+---------+---------+
-16 0 16 32

C2 = 3 subtracted from:

C2 Lower Center Upper -------+--------+---------+---------+
4 )---*---(528.71052.11576.4
5 )---*---(055.62579.91004.31

-------+--------+---------+---------+
-16 0 16 32

C2 = 4 subtracted from:

C2 Lower Center Upper -------+--------+---------+---------+
5 2.150 8.725 15.300 (---*---)

-------+--------+---------+---------+
-16 0 16 32
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Appendix 12.A.2 A Proof of Theorem 12.2.2

To prove that SSTR/σ 2 has a chi square distribution with k −1 degrees of freedom, it

suffices to show that the moment-generating function of SSTR/σ 2 is
(

1

1 − 2t

)(k−1)/2

.

Note, first, that under the null hypothesis that μ1 =μ2 = . . . =μk ,

SSTOT = (n − 1)S2

where S2 is the sample variance of a set of n observations from a normal distribution.
Therefore, by Theorem 7.3.2,

MSSTOT/σ 2(t)=
(

1

1 − 2t

)(n−1)/2

Also, from Theorem 12.2.3, SSE/σ 2 is a chi square random variable with n − k
degrees of freedom, so

MSSE/σ 2(t)=
(

1

1 − 2t

)(n−k)/2

Since SSTOT/σ 2 is the sum of two independent random variables, SSTR/σ 2 and
SSE/σ 2, it follows that

MSSTOT/σ 2(t)= MSSTR/σ 2(t) · MSSE/σ 2(t)

or (
1

1 − 2t

)(n−1)/2

= MSSTR/σ 2(t) ·
(

1

1 − 2t

)(n−k)/2

which implies that

MSSTR/σ 2(t)=
(

1

1 − 2t

)(k−1)/2

Appendix 12.A.3 The Distribution of SSTR/(k−1)
SSE/(n−k) When H1 Is True

Theorem 12.2.5 gives the distribution of the test statistic

F = SSTR/(k − 1)

SSE/(n − k)

when the null hypothesis is true. To calculate either the power of the analysis of
variance or the probability of committing a Type II error, though, requires that we
know the pdf of the observed F when H1 is true.
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Definition 12.A.3.1. Let Vj have a normal pdf with mean μj and variance 1,
for j = 1, . . . , r , and suppose that the Vj ’s are independent. Then

V =
r∑

j=1

V 2
j

is said to have the noncentral χ2 distribution with r degrees of freedom and
noncentrality parameter γ , where

γ =
r∑

j=1

μ2
j

Theorem
12.A.3.1

The moment-generating function for a noncentral χ2 random variable, V , with r
degrees of freedom and noncentrality parameter γ is given by

MV (t)= (1 − 2t)−
r
2 e

γ t

1−2t , t <
1

2

Proof We begin by finding the moment-generating function for the special case
where r = 1.

Let V be a normal random variable with mean μ and variance 1, and let V =
Z + μ, where Z is a standard normal random variable. By definition, the moment-
generating function for V 2 can be written

MV 2(t)= E
(

etV 2
)

= E
[
et (Z+μ)2

]
= 1√

2π

∫ ∞

−∞
et (z+μ)2

e− 1
2 z2

dz = 1√
2π

∫ ∞

−∞
et (z+μ)2− 1

2 z2
dz

To evaluate the integral, we first complete the square in the exponent:

t z2 + 2t zμ+ tμ2 − 1

2
z2

=−1

2
[(1 − 2t)z2 − 4tμz] + tμ2

=−1

2
·

z2 − 4tμ

(1 − 2t)
z

1/(1 − 2t)
+ tμ2

=−1

2
·

z2 − 4tμ

(1 − 2t)
z + 4t2μ2

(1 − 2t)2

1/(1 − 2t)
+ tμ2 +

2t2μ2

(1 − 2t)2

1/(1 − 2t)

=−1

2
·

⎡⎢⎢⎣ z − 2tμ

(1 − 2t)

1/
√

1 − 2t

⎤⎥⎥⎦
2

+ tμ2 + 2t2μ2

(1 − 2t)

Therefore,

MV 2(t)= eμ2t+ 2μ2 t2

(1−2t)
1√
2π

∫ ∞

−∞
e
− 1

2 ·
[

z− 2tμ
(1−2t)

1/
√

1−2t

]2

dz

= (1 − 2t)−
1
2 eμ2 t

1−2t
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The general result, where r �= 1, follows from an application of Theorem

3.12.3(b). Let V =
r∑

j=1
V 2

j , where the Vj ’s are independent. Then

M r∑
j=1

V 2
j

(t)= (1 − 2t)−
r
2 e

r∑
j=1

μ2
j

t
1−2t = (1 − 2t)−

r
2 ·e

γ t
1−2t

�

Definition 12.A.3.2. Let V1 be a noncentral χ2 random variable with r1

degrees of freedom and noncentrality parameter γ . Suppose V2 is a (central)
χ2 random variable with r2 degrees of freedom and independent of V1. The
ratio

V1/r1

V2/r2

is said to have a noncentral F distribution with r1 and r2 degrees of freedom and
noncentrality parameter γ .

Theorem
12.A.3.2

The ratio

SSTR/(k − 1)

SSE/(n − k)

has a noncentral F distribution with k − 1 and n − k degrees of freedom and

noncentrality parameter γ = 1

σ 2

k∑
j=1

n j (μ j −μ)2.

Proof From Equation 12.2.1,

SSTR =
k∑

j=1

n j
(
Y · j −μ

)2 − n
(
Y ·· −μ

)2
so

SSTR

σ 2
=

k∑
j=1

(
Y · j −μ

σ/
√

n j

)2

−
(

Y ·· −μ

σ/
√

n

)2

(12.A.3.1)

Let W j = Y · j −μ

σ/
√

n j
, j = 1, . . . , k. Since E(Y · j ) = μj , E(W j ) = √

n j (μj − μ)/σ . Also,

Var(W j ) = Var(Y · j −μ)

σ 2/n j
= σ 2/n j

σ 2/n j
= 1. Thus, because Y · j is normal, each W j is nor-

mal with mean √
n j (μj − μ)/σ and variance 1. The second component of SSTR/σ 2,

Y ·· −μ

σ/
√

n
, is a standard normal random variable.

Now, recalling the transformation technique used in Appendix 7.A.2, choose an
orthogonal matrix A with first row (

√
n1/n,

√
n2/n, . . . ,

√
nk/n). Define the vector

→
V

of random variables by
→
V = A(W1, W2, . . . , Wk)

T . First note that
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V1 =
k∑

j=1

√
n j√
n

W j =
k∑

j=1

√
n j√
n

(
Y · j −μ

)
σ/

√
n j

= 1

σ
√

n

k∑
j=1

n j
(
Y · j −μ

)= 1

σ
√

n

⎡⎣ k∑
j=1

n j Y · j −
⎛⎝ k∑

j=1

n j

⎞⎠μ

⎤⎦
= 1

σ
√

n

(
nY ·· − nμ

)= Y ·· −μ

σ/
√

n

which gives V 2
1 =
(

Y ·· −μ

σ/
√

n

)2

.

Because of the orthogonality of the matrix,
k∑

j=1

V 2
j =

k∑
j=1

W 2
j or

k∑
j=2

V 2
j =

k∑
j=1

W 2
j − V 2

1

But
k∑

j=1
W 2

j − V 2
1 = SSTR/σ 2 by Equation 12.A.3.1. Moreover, each Vj is a normal

random variable for which Vj =
k∑

i=1
a ji Wi , where the a ji ’s are the entries in the jth

row of A. Therefore,

Var(Vj )=
k∑

i=1

Var(a ji Wi ) =
k∑

i=1

a2
j i Var(Wi )=

k∑
i=1

a2
j i

since each W j has variance 1. But the orthogonality of matrix A implies that
k∑

i=1
a2

j i = 1 for each j . So each Vj is normal with variance 1, and
k∑

j=2
V 2

j has a

noncentral χ2 distribution with k − 1 degrees of freedom.

From Question 12.A.3.4, the noncentrality parameter of
k∑

j=2
V 2

j is

E

⎛⎝ k∑
j=2

V 2
j

⎞⎠− (k − 1)= E

⎛⎝ k∑
j=1

W 2
j

⎞⎠− E
(
V 2

1

)− (k − 1)

=
k∑

j=1

[Var(W j )+[E(W j )]2]− [Var(V1)+ E(V1)
2] − (k − 1)

=
k∑

j=1

[
1 +[√n j (μj −μ)/σ ]2

]− (1 + 0)− (k − 1)

= 1

σ 2

k∑
j=1

n j (μj −μ)2

Therefore, since SSE/σ 2 has a χ2 distribution with n − k degrees of freedom, it
follows immediately from Definition 12.A.3.2 that, when H1 is true,

F =
SSTR

k − 1
SSE

n − k
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has a noncentral F distribution with k − 1 and n − k degrees of freedom and

noncentrality parameter γ = 1

σ 2

k∑
j=1

n j (μj −μ)2. �

Comment As H1 gets farther from H0, as measured by γ , the noncentral F will shift
more and more to the right of the central F . Accordingly, the power of the F test
will increase. That is,

P(F ≥ F1−α,k−1,n−k)→ 1 asγ → ∞
The pdf for the noncentral F is not very tractable, but its integral has been evaluated
by numerical approximation. This has allowed the power function for the F test to
be tabulated [see, for instance, (108)].

Questions

12.A.3.1. Suppose an experimenter has taken three inde-
pendent measurements on each of five treatment levels
and intends to use the analysis of variance to test

H0:μ1 =μ2 =μ3 =μ4 =μ5 (= 0)

versus

H1: not all theμ j ’s are equal

Two of the possible alternatives in H1 are

H ∗
1 :μ1 = −1, μ2 = 2,μ3 = 0,μ4 = 1,μ5 =−2

and

H ∗∗
1 :μ1 = −3, μ2 = 2,μ3 = 1,μ4 = 0,μ5 = 0

Against which alternative will the F test have the greater
power? Explain.

12.A.3.2. In the scenario of the previous question, is
H1:μ1 = 2, μ2 = 1,μ3 = 1,μ4 =−3, μ5 = 0 an “admissible”
alternative hypothesis?

12.A.3.3. If the random variable V has a noncentral
χ 2distribution with r degrees of freedom and noncentral-
ity parameter γ , use its moment-generating function to
find E(V ).

12.A.3.4. If the random variable V has a noncentral χ 2

distribution with r degrees of freedom and noncentrality
parameter γ , show that γ = E(V )− r .

12.A.3.5. Suppose V1, V2, . . . , Vn are independent non-
central χ 2 random variables having r1, r2, . . . , rn degrees of
freedom, respectively, and with noncentrality parame-
ters γ1, γ2, . . . , γn . Find the distribution of V = V1 +
V2 + · · · + Vn .
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Appendix 13.A.1 Minitab Applications

“. . . when I first came to study statistical methods, nothing was further from my
thoughts, or from those of my contemporaries, than that the art of experimental
design would ever come to be, as it now surely is, an integral part of the subject.”

—Ronald A. Fisher, 1947

13.1 Introduction
In any experiment, reducing the magnitude of the experimental error is a highly
desirable objective: The smaller σ 2 is, the better will be our chances of rejecting a
false null hypothesis. Basically, there are two ways to reduce experimental error. The
nonstatistical approach is simply to refine the experimental technique—use better
equipment, minimize subject error, and so on. The statistical method, which can
often produce results much more dramatic, is to collect the data in “blocks,” in what
is referred to as a randomized block design.

Historically, it was Fisher who first advanced the notion of blocking. He saw it
initially as a statistical defense against the obfuscating effects of soil heterogeneity in
agricultural experiments. Suppose, for example, a researcher wishes to compare the
yields of four different varieties of corn. Figure 13.1.1(a) shows the simplest exper-
imental layout: Variety A is planted in the leftmost portion of the field, variety B
is planted next to A, and so on. Even to a city slicker, though, the statistical haz-
ards in using this design should be obvious. Suppose, for example, there was a soil
gradient in the field, with the best soil being in the westernmost part (where variety
A was planted). Then if variety A achieved the highest yield, we would not know
whether to attribute its success to its inherent quality or to its location (or to some
combination of both).

A more sensible approach is pictured in Figure 13.1.1(b). There the field is
divided into a number of smaller “blocks,” each block being still further parceled
into four “plots.” All four varieties are planted in each block, one to a plot, with the
plot assignments being chosen at random. Notice that the geographical contiguity of
the four plots within a given block ensures that the environmental conditions from

629
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Figure 13.1.1 Two different
experimental designs.

A B C D

DB

CA

AC

DB

BC

AD
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plot to plot will be relatively uniform and will not lead to any biasing of the observed
yields. What the analysis of variance will then do is “pool” from block to block the
within-block information concerning the treatment differences while bypassing the
between-block differences—that is, the heterogeneity in the experimental environ-
ment. As a result, the treatment comparisons can be made with greater precision.
Analytically, where the total sum of squares was partitioned into two components in
a completely randomized one-factor design, it will be split into three separate sums
in a randomized block design: one for treatments, another for blocks, and a third for
experimental error.

It did not take long for scientists to realize that the benefits of blocking could
be extended well beyond the confines of agricultural experimentation. In medical
research, blocks are often made up of subjects of the same age, sex, and overall
physical condition. A common practice in animal studies is to form blocks out of
littermates. Industrial experiments often require that “time” be a blocking criterion:
Measurements taken by personnel on the day shift might be considered one block
and those taken by the night shift a second block. In some sense the ultimate form
of blocking, although one not always physically possible, is to apply the entire set of
treatment levels to each subject, thus making each subject its own block.

Section 13.2 begins with a development of the analysis of variance for the ran-
domized block design, where k treatment levels are administered within each of b
blocks. The observations within a given block, of course, are dependent. As was the
case in Chapter 12, the hypotheses to be tested are H0:μ1 = μ2 = . . . = μk versus
H1: not all the μ j ’s are equal. The section concludes with a pair of case studies that
illustrate the blocking concept in two very different settings.

We saw in the previous chapter that when k = 2, and the samples are indepen-
dent, the F test is equivalent to a two-sample t test. A similar duality exists here.
When k =2 treatment levels are compared within b blocks, H0:μ1 =μ2 can be tested
using either the analysis of variance or a paired t test. The latter is described in
Section 13.3.

13.2 The F Test for a Randomized Block Design
Superficially, the structure of randomized block data looks much like the format we
encountered in Chapter 12—associated with each of k treatment levels is a sam-
ple of measurements. Here, though, each column has exactly the same number of
observations—that is, n j = b for all j , so the data set is necessarily a b × k matrix
(see Table 13.2.1).

On the other hand, from a statistical standpoint randomized block data are fun-
damentally different from k-sample data (recall the discussion in Section 8.2). In
Chapter 12, the k samples were independent. Here, the observations within a given
row (which corresponds to a block) are dependent, since each reflects to some extent
the conditions inherent in that block. That distinction causes the analysis of variance
to proceed differently.
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Table 13.2.1

Block
Totals

Block
Means

True Block
Effects

Treatment Level

1 2 k

1 Y11 Y12 . . . Y1k T1. Y 1. β1

2 Y21 Y22 Y2k T2. Y 2. β2Blocks
...

...
...

...
...

...

b Yb1 Yb2 Ybk Tb. Y b. βb

Sample totals T.1 T.2 T.k T..

Sample means Y .1 Y .2 . . . Y .k Y ..

True means μ1 μ2 μk

Our objective is to test H0:μ1 = μ2 = . . . = μk , the same as it was in Chapter 12.
But here the mathematical model associated with Yi j has an additional term, rep-
resenting the effect of the ith block. If each “block effect,” βi , is assumed to be
additive, we can write

Yi j =μ j +βi + εi j

where εi j is normally distributed with mean zero and variance σ 2, for i = 1,2, . . . ,b
and j = 1,2, . . . , k. As before, we will let μ denote the overall average treatment

effect associated with the bk observations—that is, μ= 1

k

k∑
j=1

μ j .

The basic approach followed in Chapter 12 can still be taken here, but SSE
needs to be recalculated, because the “error” in a set of randomized block measure-
ments will reflect both the block effect and the random error. To separate the two
requires that we first estimate the set of block effects, β1, β2, . . ., and βb.

Let Y i. = 1
k

k∑
j=1

Yi j denote the sample average of the k observations in the ith

block. Suppose the data contained no random error—that is, εi j = 0 for all i and j .
Then

Y i. = 1

k

k∑
j=1

(μ j +βi )=
⎛⎝1

k

k∑
j=1

μ j

⎞⎠+ 1

k
kβi =μ+βi

If Y .. is substituted for μ, the estimate for βi becomes Y i. − Y ...
Now, adding and subtracting Y i. −Y .. in the expression for SSE from Chapter 12

gives

b∑
i=1

k∑
j=1

(
Yi j − Y . j

)2 =
b∑

i=1

k∑
j=1

[(
Yi j − Y . j

)+ (Y i. − Y ..

)− (Y i. − Y ..

)]2
=

b∑
i=1

k∑
j=1

[(
Y i. − Y ..

)+ (Yi j − Y . j − Y i. + Y ..

)]2
=

b∑
i=1

k∑
j=1

(
Y i. − Y ..

)2 +
b∑

i=1

k∑
j=1

(
Yi j − Y . j − Y i. + Y ..

)2
+ 2

b∑
i=1

k∑
j=1

(
Y i. − Y ..

)(
Yi j − Y . j − Y i. + Y ..

)
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Notice that the cross-product term can be written

2
b∑

i=1

(
Y i. − Y ..

) k∑
j=1

(
Yi j − Y . j − Y i. + Y ..

)
But

k∑
j=1

(
Yi j − Y . j − Y i. + Y ..

)= kY i. − kY i. −
k∑

j=1

(
Y . j − Y ..

)= 0

so

b∑
i=1

k∑
j=1

(
Yi j − Y . j

)2 =
b∑

i=1

k∑
j=1

(
Y i. − Y ..

)2 +
b∑

i=1

k∑
j=1

(
Yi j − Y . j − Y i. + Y ..

)2 (13.2.1)

Equation 13.2.1 is a key result. It shows that the “old” sum of squares for error

from Chapter 12—
b∑

i=1

k∑
j=1

(Yi j − Y . j )
2—can be partitioned into the sum of two other

sums of squares. The first,
b∑

i=1

k∑
j=1

(Y i. − Y ..)
2, is called the block sum of squares and

denoted SSB. The second is the “new” sum of squares measuring random error.
That is, for randomized block data,

SSE =
b∑

i=1

k∑
j=1

(
Yi j − Y . j − Y i. + Y ..

)2
The other sums of squares from Chapter 12 remain the same in the context of

the randomized block design. Specifically,

SSTOT = total sum of squares =
b∑

i=1

k∑
j=1

(
Yi j − Y ..

)2
and

SSTR = treatment sum of squares =
b∑

i=1

k∑
j=1

(
Y . j − Y ..

)2
Theorem

13.2.1
Suppose that k treatment levels are measured over a set of b blocks. Then

a. SSTOT = SSTR + SSB + SSE.
b. SSTR, SSB, and SSE are independent random variables.

Proof The independence of the three terms that combine to give SSTOT can be
established using the same approach that was taken in Chapter 12. The details will
be omitted. �

Theorem
13.2.2

Suppose that k treatment levels, with means μ1,μ2, . . . ,μk , are measured over a set of
b blocks, where the block effects are β1, β2, . . . , βb. Then

a. When H0:μ1 = μ2 = . . . = μk is true, SSTR/σ 2 has a chi square distribution with
k − 1 degrees of freedom.
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b. When H0:β1 =β2 = . . .=βb is true, SSB/σ 2 has a chi square distribution with b −1
degrees of freedom.

c. Regardless of whether the μ j ’s and/or the βi ’s are equal, SSE/σ 2 has a chi square
distribution with (b − 1)(k − 1) degrees of freedom.

Proof The proofs are similar to those for Theorems 12.2.2 and 12.2.3. �

Theorem
13.2.3

Suppose that k treatment levels with means μ1,μ2, . . . ,μk are measured over a set of
b blocks. Then

a. If H0:μ1 =μ2 = . . . =μk is true,

F = SSTR/(k − 1)

SSE/(b − 1)(k − 1)

has an F distribution with k − 1 and (b − 1)(k − 1) degrees of freedom.
b. At the α level of significance, H0:μ1 = μ2 = . . . = μk should be rejected if F ≥

F1−α,k−1,(b−1)(k−1). �

Theorem
13.2.4

Suppose that k treatment levels are measured over a set of b blocks, where the block
effects are β1, β2, . . ., and βb. Then

a. If H0:β1 =β2 = . . . =βb is true,

F = SSB/(b − 1)

SSE/(b − 1)(k − 1)

has an F distribution with b − 1 and (b − 1)(k − 1) degrees of freedom.
b. At the α level of significance, H0:β1 = β2 = . . . = βb should be rejected if F ≥

F1−α,b−1,(b−1)(k−1). �

Table 13.2.2 shows the ANOVA table entries for a randomized block analysis.
Notice that two F ratios are calculated, one for the treatment effect and one for the
block effect.

Table 13.2.2

Source df SS MS F P

Treatments k − 1 SSTR SST R/(k − 1)
SSTR/(k − 1)

SSE/(b − 1)(k − 1)
P[Fk−1,(b−1)(k−1) ≥ obs. F]

Blocks b − 1 SSB SSB/(b − 1)
SSB/(b − 1)

SSE/(b − 1)(k − 1)
P[Fb−1,(b−1)(k−1) ≥ obs. F]

Error (b − 1)(k − 1) SSE SSE/(b − 1)(k − 1)

Total n − 1 SSTOT
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Computing Formulas

Let C = T 2
.. /bk. Then

SSTR =
k∑

j=1

T 2
. j

b
− C (13.2.2)

SSB =
b∑

i=1

T 2
i.

k
− C (13.2.3)

SSTOT =
b∑

i=1

k∑
j=1

Y 2
i j − C (13.2.4)

and, by Theorem 13.2.1,

SSE = SSTOT − SSTR − SSB

Equations 13.2.2, 13.2.3, and 13.2.4 are considerably easier to evaluate than their
counterparts on p. 632. The proofs will be left as exercises.

Case Study 13.2.1

Acrophobia is a fear of heights. It can be treated in a number of different
ways. Using contact desensitization, a therapist demonstrates some task that
would be difficult for someone with acrophobia to do, such as looking over
a ledge or standing on a ladder. Then he guides the subject through the very
same maneuver, always keeping in physical contact. Another method of treat-
ment is demonstration participation. Here the therapist tries to talk the subject
through the task; no physical contact is made. A third technique, live modeling,
requires the subject simply to watch the task being done—he does not attempt it
himself.

These three techniques were compared in a study involving fifteen volun-
teers, all of whom had a history of severe acrophobia (144). It was realized at
the outset, though, that the affliction was much more incapacitating in some sub-
jects than in others, and that this heterogeneity might compromise the therapy
comparison. Accordingly, the experiment began with each subject being given
the Height Avoidance Test (HAT), a series of forty-four tasks related to ladder
climbing. A subject received a “point” for each task successfully completed. On
the basis of their final scores, the fifteen volunteers were divided into five blocks
(A, B, C, D, and E), each of size 3. The subjects in Block A had the lowest scores
(that is, the most severe acrophobia), those in Block B the second lowest scores,
and so on.

Each of the three therapies was then assigned at random to one of the three
subjects in each block. When the counseling sessions were over, the subjects
retook the HAT. Table 13.2.3 lists the changes in their scores (score after ther-
apy – score before therapy). Test the hypothesis that the therapies are equally
effective. Let α = 0.01.

(Continued on next page)
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Table 13.2.3 HAT Score Changes

Therapy

Contact Demonstration Live
Block Desensitization Participation Modeling Ti.

A 8 2 −2 8
B 11 1 0 12
C 9 12 6 27
D 16 11 2 29
E 24 19 11 54
T. j 68 45 17 130

Since C = (130)2/15 = 1126.7 and
5∑

i=1

3∑
j=1

Y 2
i j = 1894, it follows that

SSTOT = 1894 − 1126.7 = 767.3

SSB = (8)2

3
+ · · · + (54)2

3
− 1126.7 = 438.0

SSTR = (68)2

5
+ (45)2

5
+ (17)2

5
− 1126.7 = 260.9

giving an error sum of squares of:

SSE = 767.3 − 438.0 − 260.9 = 68.4

The analysis of variance is summarized in Table 13.2.4. Since the calculated
value of the F statistic, 15.260, exceeds F.99,2,8 = 8.65, H0:μ1 = μ2 = μ3 can be
rejected at the 0.01 level. In fact, the P-value of 0.0019 indicates that H0 can be
rejected for α as small as 0.0019.

Table 13.2.4

Source df SS MS F P

Therapies 2 260.93 130.47 15.260 0.0019
Blocks 4 438.00 109.50 12.807 0.0015
Error 8 68.40 8.55
Total 14 767.33

The small P-value for “Blocks” (=0.0015) implies that H0:β1 =β2 = . . .=β5

would also be rejected. Of course, that should come as no surprise: The
blocks were intentionally set up to be as different as possible. Indeed, if

F = SSB/(b − 1)

SSE/(b − 1)(k − 1)
had not been large, we would have questioned the

validity of using HAT scores to measure the severity of acrophobia.

Comment Using a randomized block design instead of a one-way design is a trade-
off. The blocks result in SSE being reduced (recall Equation 13.2.1), and that
increases the probability of rejecting H0 when H0 is false, provided everything else
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associated with the test is kept the same. But everything else is not kept the same:
The degrees of freedom associated with “error” in the randomized block analysis
[= (b − 1)(k − 1)] are fewer than the degrees of freedom associated with “error”
in the one-way analysis [= k(b − 1)]. That difference is an advantage of the one-
way analysis because the power of any hypothesis test diminishes as the number of
degrees of freedom associated with its test statistic decreases.

Ultimately, which design is preferable in a given situation depends on the mag-
nitude of SSB. If SSB were “large,” the advantage of a much smaller SSE would
more than compensate for the reduction in the degrees of freedom for “error,” and
the randomized block design would be a better choice than the one-way design. On
the other hand, if the block effects were essentially all the same (in which case SSB
would be small), then SSE for the randomized block design would not be much
smaller than the SSE for the one-way design. In that case, the degrees of freedom
for “error” becomes the key issue, and the one-way design would be considered
preferable.

If an experiment has already been done as a randomized block design, an F
test of H0:β1 =β2 = . . .=βb provides some guidance as to how the treatments might
best be compared if a follow-up study were to be done. If the F test of H0:β1 =β2 =
. . . = βb rejects H0, the decision to use the randomized block design was the right
one (especially if the P-value for Blocks is very small). If H0:β1 = β2 = . . . = βb is
not rejected, future experiments comparing those same treatments should probably
either (1) utilize a different blocking criterion or (2) be set up as a one-way design.

Case Study 13.2.2

Rat poison is normally made by mixing its active chemical ingredients with ordi-
nary cornmeal. In many urban areas, though, rats can find food that they prefer
to cornmeal, so the poison is left untouched. One solution is to make the corn-
meal more palatable by adding food supplements such as peanut butter or meat.
Doing that is effective, but the cost is high and the supplements spoil quickly.

In Milwaukee, a study was carried out to see whether artificial food sup-
plements might be a workable compromise (85). For five two-week periods,
thirty-two hundred baits were placed around garbage-storage areas—eight hun-
dred consisted of plain cornmeal; a second eight hundred had cornmeal mixed
with artificial butter-vanilla flavoring; a third eight hundred contained cornmeal
mixed with artificial roast beef flavoring; and the remaining eight hundred were
cornmeal mixed with artificial bread flavoring.

Table 13.2.5 lists, for each survey, the percentage of each type of bait that
was eaten. Do the rats show any preferences for the different flavors? Were the

Table 13.2.5

Survey Number Plain Butter-Vanilla Roast Beef Bread

1 13.8 11.7 14.0 12.6
2 12.9 16.7 15.5 13.8
3 25.9 29.8 27.8 25.0
4 18.0 23.1 23.0 16.9
5 15.2 20.2 19.0 13.7

(Continued on next page)
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blocks—in this case, the surveys—helpful in reducing the error sum of squares?
If a follow-up study were to be done comparing these same baits, should a
completely randomized design or a randomized block design be used?

All of these questions are answered by the F ratios shown in Table 13.2.6.
The P-values for H0:μ1 = μ2 = μ3 = μ4 (= 0.0042) and H0:β1 = β2 = β3 =
β4 = β5 (= 0.0000) are both extremely small, so both null hypotheses would be
rejected. Moreover, the fact that SSB is so very large indicates that consider-
able variation exists from survey to survey, irrespective of the baits. It follows
that any future studies should be set up in a similar fashion—that is, using a
randomized block design.

Table 13.2.6

Source df SS MS F P

Flavors 3 56.38 18.79 7.58 0.0042
Surveys 4 495.32 123.83 49.93 0.0000
Error 12 29.76 2.48
Total 19 581.46

Tukey Comparisons for Randomized Block Data

The Tukey pairwise comparison technique of Section 12.3 can also be applied
to a randomized block design. The definition of D is slightly different, since
the associated studentized range is no longer Qk,rk−k but rather Qk,(b−1)(k−1),
a change reflecting the number of degrees of freedom available for MSE in
estimating σ 2.

Theorem
13.2.5

Let Y . j , j = 1,2, . . . , k, be the sample means in a b × k randomized block design. Let
μ j be the true treatment means, j = 1,2, . . . , k. The probability is 1 − α that all

(k
2

)
pairwise subhypotheses H0:μs =μt will simultaneously satisfy the inequalities

Y .s − Y .t − D
√

M SE <μs −μt < Y .s − Y .t + D
√

M SE

where D = Qα,k,(b−1)(k−1)/
√

b. If, for a given s and t , zero is not contained in the pre-
ceding inequality, H0:μs = μt can be rejected in favor of H1:μs �= μt at the α level of
significance.

Example
13.2.1

Recall the comparison of the three acrophobia therapies in Case Study 13.2.1. The
F test in Table 13.2.4 showed that H0:μ1 =μ2 =μ3 can be rejected at the α =0.05 (or
even 0.005) level of significance. Should all three therapies, though, be considered
different, or is one of them simply different from the other two?

That question can be answered by constructing the set of 95% Tukey confidence
intervals for the three pairwise comparisons. Here,

D = Q.05,3,8√
5

= 4.04

2.24
= 1.81
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and the radius of the Tukey intervals is

D
√

M SE = 1.81
√

8.55 = 5.3

Table 13.2.7 summarizes the calculations called for in Theorem 13.2.5.
Now we have a much better picture of the relative values of these three

therapies. Based on the Tukey intervals, the difference in the means for contact
desensitization (μ1) and demonstration participation (μ2) is not statistically signifi-
cant. However, the increases in both the contact desensitization mean (μ1) and the
demonstration participation mean (μ2) relative to the live modeling mean (μ3) are
statistically significant.

Table 13.2.7

Pairwise Difference Y ·s − Y ·t Tukey Interval Conclusion

μ1 −μ2 4.6 (−0.7, 9.9) Not significant
μ1 −μ3 10.2 (4.9, 15.5) Reject
μ2 −μ3 5.6 (0.3, 10.9) Reject

Contrasts for Randomized Block Data

The techniques we learned in Section 12.4 for testing contrasts can be readily
adapted to randomized block designs. If C is the contrast associated with the null
hypothesis, the appropriate test statistic is

F = SSC/1

SSE/(b − 1)(k − 1)

where F has 1 and (b − 1)(k − 1) degrees of freedom and SSE is the error sum of
squares defined for randomized block data.

Case Study 13.2.3

In folklore, the full moon is often portrayed as something sinister, a kind of evil
force possessing the power to control our behavior. Over the centuries, many
prominent writers and philosophers have shared this belief (126). Milton, in
Paradise Lost, refers to

Demoniac frenzy, moping melancholy
And moon-struck madness.

And Othello, after the murder of Desdemona, laments:

It is the very error of the moon,
She comes more near the earth than she was wont
And makes men mad.

On a more scholarly level, Sir William Blackstone, the renowned eighteenth-
century English barrister, defined a “lunatic” as

(Continued on next page)
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one who hath . . . lost the use of his reason and who hath lucid intervals, some-
times enjoying his senses and sometimes not, and that frequently depending
upon changes of the moon.

The possibility of lunar phases influencing human affairs is a theory not
without supporters among the scientific community. Studies by reputable medi-
cal researchers have attempted to link the “Transylvania effect,” as it has come
to be known, with higher suicide rates, pyromania, and even epilepsy.

The relationship between lunar cycles and mental breakdowns has also
been studied. Table 13.2.8 shows the admission rates to the emergency room
of a Virginia mental health clinic before, during, and after the twelve full moons
from August 1971 to July 1972 (11). Here, “time,” as expressed in months, is
acting as the blocking variable.

Table 13.2.8

Admission Rates (patients/day)

(1) (2) (3)
Before Full During Full After Full

Month Moon Moon Moon Y i ·

Aug. 6.4 5.0 5.8 5.73
Sept. 7.1 13.0 9.2 9.77
Oct. 6.5 14.0 7.9 9.47
Nov. 8.6 12.0 7.7 9.43
Dec. 8.1 6.0 11.0 8.37
Jan. 10.4 9.0 12.9 10.77
Feb. 11.5 13.0 13.5 12.67
Mar. 13.8 16.0 13.1 14.30
Apr. 15.4 25.0 15.8 18.73
May 15.7 13.0 13.3 14.00
June 11.7 14.0 12.8 12.83
July 15.8 20.0 14.5 16.77
Y · j 10.92 13.33 11.46

Table 13.2.9 summarizes the ANOVA calculations. For 2 and 22 degrees of
freedom, the 0.05 critical value for the lunar cycle effect is 3.44, which is greater
than the observed F (=3.22). Therefore, we would fail to reject H0:μ1 =μ2 =μ3,
and the conclusion would be that a lunar effect has not been demonstrated.

Table 13.2.9

Source df SS MS F

Lunar cycles 2 38.59 19.30 3.22
Months 11 451.08 41.01
Error 22 132.08 6.00
Total 35 621.75

(Continued on next page)
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(Case Study 13.2.3 continued)

Testing the overall H0:μ1 =μ2 =μ3 is not the only appropriate way to ana-
lyze these data, though. An a priori subhypothesis is clearly suggested by the
circumstances of the problem—specifically, it would make sense to test whether
the admission rate during the full moon is different from the average rate dur-
ing the rest of the month. The null subhypothesis corresponding to such a test
would be H0:μ2 = (μ1 +μ3)/2.

Following the procedure outlined in Section 12.4, the contrast associated
with H0 is

C =−1

2
μ1 +μ2 − 1

2
μ3

and its estimate is

Ĉ =−1

2
(10.92)+ 1(13.3)− 1

2
(11.46)

= 2.11

From Definition 12.4.2, the sum of squares associated with C is:

SSC = (2.11)2

1/4

12
+ 1

12
+ 1/4

12

= 35.62

Dividing SSC by the mean square for error gives an F ratio of 5.93 (with 1
and 22 degrees of freedom):

35.62/1

132.08/22
= 5.93

For α = 0.05, though, F.95,1,22 = 4.30. Therefore, contrary to our acceptance of
H0: μ1 = μ2 = μ3, we would reject H0:μ2 = (μ1 + μ3)/2 and conclude that the
Transylvania effect does exist.

Comment It is always more than a little disconcerting when two statistical tech-
niques applied to the same data lead to opposite conclusions. That such apparent
contradictions occur, though, should not be unexpected. Different methods of anal-
ysis simply utilize the data in different ways. Disagreements from time to time are
inevitable.

Questions

13.2.1. In recent years a number of research projects
in extrasensory perception have examined the possibil-
ity that hypnosis may be helpful in bringing out ESP
in persons who did not think they had any. The obvi-
ous way to test such a hypothesis is with a self-paired
design: the ESP ability of a subject when he is awake is
compared to his ability when hypnotized. In one study
of this sort, fifteen college students were each asked to
guess the identity of 200 Zener cards (see Case Study

4.3.1). The same “sender”—that is, the person concentrat-
ing on the card—was used for each trial. For 100 of the
trials both the student and the sender were awake; for the
other 100 both were hypnotized. If chance were the only
factor involved, the expected number of correct identifi-
cations in each set of 100 trials would be 20. The observed
average numbers of correct guesses for subjects awake
and subjects hypnotized were 18.9 and 21.7, respectively
(21). Use the analysis of variance to determine whether
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that difference is statistically significant at the 0.05
level.

Number of Correct Responses (out of 100) in ESP
Experiment

Sender and Student Sender and Student
Student in Waking State in Hypnotic State

1 18 25
2 19 20
3 16 26
4 21 26
5 16 20
6 20 23
7 20 14
8 14 18
9 11 18

10 22 20
11 19 22
12 29 27
13 16 19
14 27 27
15 15 21
Y . j 18.9 21.7

13.2.2. The following table shows the audience shares of
the three major networks’ evening news broadcasts in four
major cities as reported by Arbitron. Test at the α = 0.10
level of significance the null hypothesis that viewing levels
for news are the same for ABC, CBS, and NBC.

City ABC CBS NBC

A 19.7 16.1 18.2
B 18.6 15.8 17.9
C 19.1 14.6 15.3
D 17.9 17.1 18.0

13.2.3. A paint manufacturer is experimenting with an
additive that might make the paint less chalky. To ensure
that the additive does not affect the tint, a quality-control
engineer takes a sample from each of seven batches
of Osage Orange. Each sample is split in half, and the

Batch Without Additive With Additive

1 1.10 1.06
2 1.05 1.02
3 1.08 1.17
4 0.98 1.21
5 1.01 1.01
6 0.96 1.23
7 1.02 1.19

additive is put into one of the two. Both samples are
examined with a spectroscope, with the output read in
standardized lumen units. If the tint were exactly correct,
the reading would be 1.00. Test that the mean spectro-
scope readings are the same for the two versions of Osage
Orange. Let α = 0.05.

13.2.4. The number of new building permits can be a
good indicator of the strength of a region’s economic
growth. The following table gives percentage increases
over a four-year period for three geographical areas. Ana-
lyze the data. Let α = 0.05 . What are your conclusions?

Year Eastern North Central Southwest

2000 1.1 0.1 0.9
2001 1.3 0.8 1.0
2002 2.9 1.1 1.4
2003 3.5 1.3 1.5

13.2.5. Analyze the Transylvania effect data in Case
Study 13.2.3 by calculating 95% Tukey confidence inter-
vals for the pairwise differences among the admission
rates for the three different phases of the moon. How do
your conclusions agree with (or differ from) those already
discussed on p. 640? Let Q .05,3,22 = 3.56.

13.2.6. The table below gives a stock fund’s quarterly
returns for the years 2003 to 2007. Are the results affected
by the quarter of the year? Is the variability in the return
from year to year statistically significant? State your con-
clusions using the α = 0.05 level of significance.

Quarter

Year First Second Third Fourth

2003 −5.29 8.62 5.23 6.44
2004 4.96 1.06 −0.25 6.32
2005 0.11 0.58 5.46 3.01
2006 5.30 0.82 4.81 6.54
2007 1.71 5.41 −1.92 −4.78

13.2.7. Find the 95% Tukey intervals for the data of
Question 13.2.2, and use them to test the three pairwise
comparisons of ABC, CBS, and NBC.

13.2.8. A comparison was made of the efficiency of four
different unit-dose injection systems. A group of pharma-
cists and nurses were the “blocks.” For each system, they
were to remove the unit from its outer package, assemble
it, and simulate an injection. In addition to the standard
system of using a disposable syringe and needle to draw
the medication from a vial, the other systems tested were
Vari-Ject (CIBA Pharmaceutical), Unimatic (Squibb), and
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Tubex (Wyeth). Listed in the following table are the aver-
age times (in seconds) needed to implement each of the
systems (149).

Average Times (sec) for Implementing Injection
Systems

Subject Standard Vari-Ject Unimatic Tubex Ti.

1 35.6 17.3 24.4 25.0 102.3
2 31.3 16.4 22.4 26.0 96.1
3 36.2 18.1 22.8 25.3 102.4
4 31.1 17.8 21.0 24.0 93.9
5 39.4 18.8 23.3 24.2 105.7
6 34.7 17.0 21.8 26.2 99.7
7 34.1 14.5 23.0 24.0 95.6
8 36.5 17.9 24.1 20.9 99.4
9 32.2 14.6 23.5 23.5 93.8

10 40.7 16.4 31.3 36.9 125.3
T. j 351.8 168.8 237.6 256.0 1014.2

(a) Test the equality of the means at the 0.05 level.
(b) Use Tukey’s method to test all six pairwise differ-

ences of the four μ j ’s. Let α = 0.05.

(Note: SSTOT = 2056.10, SST R = 1709.60, and SSB =
193.53; Q .05,4,27 = 4.34.)

13.2.9. Heart rates were monitored (10) for six tree
shrews (Tupaia glis) during three different stages of sleep:
LSWS (light slow-wave sleep), DSWS (deep slow-wave
sleep), and REM (rapid-eye-movement sleep).

Heart Rates (beats/5 seconds)

Tree Shrew LSWS DSWS REM

1 14.1 11.7 15.7
2 26.0 21.1 21.5
3 20.9 19.7 18.3
4 19.0 18.2 17.0
5 26.1 23.2 22.5
6 20.5 20.7 18.9

(a) Do the analysis of variance to test the equality of the
heart rates during these three phases of sleep. Let
α = 0.05.

(b) Because of the marked physiological difference
between REM sleep and LSWS and DSWS sleep, it
was decided before the data were collected to test
the REM rate against the average of the other two.
Test the appropriate subhypothesis with a contrast.
Use the 0.05 level of significance. Also, find a sec-
ond contrast orthogonal to the first and verify that
the sum of the sum of squares for the two contrasts
equals SSTR.

13.2.10. Refer to the rat poison data of Case Study 13.2.2.
Partition the treatment sum of squares into three orthogo-
nal contrasts. Let one contrast test the hypothesis that the
true acceptance percentage for the plain cornmeal is equal
to the true acceptance percentage for the cornmeal with
artificial roast beef flavoring. Let a second contrast com-
pare the effectiveness of the “butter-vanilla” and “bread”
baits. What does the third contrast test? Do all testing at
the α = 0.10 level of significance.

13.2.11. Prove the computing formulas given in Equa-
tions 13.2.2, 13.2.3, and 13.2.4.

13.2.12. Differentiate the function

L =
b∑

i=1

k∑
j=1

(yi j −βi −μ j )
2

with respect to all bk parameters and calculate the least
squares estimates for the βi ’s and μ j ’s.

13.2.13. True or false:

(a)
b∑

i=1
Y i. =

k∑
j=1

Y . j

(b) Either MSTR or MSB or both are greater than or
equal to MSE.

13.2.14. For a set of randomized block data comparing k
treatments within b blocks, find

(a) E(SSB)
(b) E(SSE)

13.3 The Paired t Test
The randomized block design is typically used when three or more treatment levels
are to be compared within a set of b blocks. If an experiment involves b blocks but
only two treatment levels, the ANOVA described in Table 13.2.2 can still be used,
but a computationally simpler (and equivalent) approach is to do a paired t test.
The latter has the additional advantage in that it shows more clearly how the use of
blocks can facilitate the comparison of treatments.
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By definition, a “pair” represents a more or less constant set of conditions under
which one measurement can be made on Treatment X and one measurement on
Treatment Y . Paired data, then, consist of measurements taken on Treatment X and
Treatment Y within each of b pairs. In effect, the paired t test pools the treatment
response differences within each pair from pair to pair.

Recall Figure 8.2.4. The two observations recorded for the ith pair can be
written

Xi =μX + Bi + εi

and

Yi =μY + Bi + ε′
i

where

1. μX and μY are the true means associated with Treatment X and Treatment Y ,
respectively

and

2. Bi is the effect—that is, the numerical contribution to the measurement—
resulting from the conditions defining Pair i (Bi may be positive, negative, or
zero).

For the purposes of this section, it will also be assumed that εi and ε′
i are inde-

pendent, normally distributed random variables, each having mean zero, but with
variances σ 2

X and σ 2
Y , respectively.

Notice that Bi “disappears” when the two measurements within a pair are
subtracted:

Di =μX + Bi + εi − (μY + Bi + ε′
i )

=μX −μY + εi − ε′
i (13.3.1)

Moreover, it follows that

1. E(Di )=μD =μX −μY

2. Var(Di )= σ 2
D = σ 2

X + σ 2
Y

and

3. Di is normally distributed

Equation 13.3.1 is the key to understanding how the paired-data design works.
Suppose an experimenter recognizes that taking a measurement on Treatment X
(under the conditions present in, say, Pair i) will result in a possibly sizeable Bi

being included in the observation. Since the actual magnitude of Bi is unknown, its
presence complicates the interpretation of what the observed measurement is telling
us about the effect of Treatment X . What the experimenter should do in that situa-
tion is take a measurement on Treatment Y under the same conditions that prevailed
for the measurement on Treatment X . That measurement, then, will also include the
component Bi , but if the two observations are subtracted, Equation 13.3.1 shows
that the resulting difference (1) will be free of Bi and (2) will be an estimate for
μD = μX − μY . In effect, the paired-data design allows for the comparison of Treat-
ment X and Treatment Y to be made unencumbered by whatever differences might
exist in the experimental environment. (A more specific example of this important
idea will be described at length in Section 13.4.)

Since μD =μX −μY , testing H0:μD = 0 is equivalent to testing H0:μX =μY . The
procedure for doing the former is known as a paired t test. The statistic for testing
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H0:μD = 0 is a special case of Theorem 7.3.5. If Di = Xi − Yi , i = 1,2, . . . ,b, is a set
of within-pair treatment differences, where D and SD denote the sample mean and
sample standard deviation of the Di ’s, respectively, then

D −μD

SD/
√

b

will have a Student t distribution with b − 1 degrees of freedom.

Theorem
13.3.1

Let d1,d2, . . . ,db be a random sample of within-pair treatment differences from a nor-
mal distribution whose mean is μD . Let d and sD denote the sample mean and sample
standard deviation of the di ’s, and define t = d/(sD/

√
b).

a. To test H0:μD = 0 versus H1:μD < 0 at the α level of significance, reject H0 if
t ≤ −tα,b−1.

b. To test H0:μD = 0 versus H1:μD > 0 at the α level of significance, reject H0 if
t ≥ tα,b−1.

c. To test H0:μD = 0 versus H1:μD �= 0 at the α level of significance, reject H0 if t is
either (1) ≤ −tα/2,b−1 or (2) ≥ tα/2,b−1. �

Case Study 13.3.1

Prior to the 1968 appearance of Kenneth Cooper’s book entitled Aerobics, the
word did not appear in Webster’s Dictionary. Now the term is commonly under-
stood to refer to sustained exercises intended to strengthen the heart and lungs.
The actual benefits of such physical activities, as well as their possible detri-
mental effects, have spawned a great deal of research in human physiology as it
relates to exercise.

One such study (73) concerned changes in the blood, specifically in
hemoglobin levels before and after a prolonged brisk walk. Hemoglobin helps
red blood cells transport oxygen to tissues and then remove carbon dioxide.
Given the stress that exercise places on the need for that particular exchange, it
is not unreasonable to suspect that aerobics might alter the blood’s hemoglobin
levels.

Ten athletes had their hemoglobin levels measured (in g/dl) prior to
embarking on a sixty-kilometer walk. After they finished, their levels were
measured again (see Table 13.3.1). Set up and test an appropriate H0 and H1.

If μX and μY denote the true average hemoglobin levels before and after
walking, respectively, and if μD =μX −μY , then the hypotheses to be tested are

H0:μD = 0

versus

H1:μD �= 0

Let 0.05 be the level of significance.
From Table 13.3.1,

10∑
i=1

di = 4.7 and
10∑

i=1

d2
i = 8.17

(Continued on next page)



13.3 The Paired t Test 645

Table 13.3.1

Subject Before Walk, xi After Walk, yi di = xi − yi

A 14.6 13.8 0.8
B 17.3 15.4 1.9
C 10.9 11.3 −0.4
D 12.8 11.6 1.2
E 16.6 16.4 0.2
F 12.2 12.6 −0.4
G 11.2 11.8 −0.6
H 15.4 15.0 0.4
I 14.8 14.4 0.4
J 16.2 15.0 1.2

Therefore,

d = 1

10
(4.7)= 0.47

and

s2
D = 10(8.17)− (4.7)2

10(9)
= 0.662

Since n = 10, the critical values for the test statistic will be the 2.5th and
97.5th percentiles of the Student t distribution with 9 degrees of freedom:
±t.025,9 = ±2.2622. The appropriate decision rule from Theorem 13.3.1,
then, is

Reject H0:μD = 0 if
d

sD/
√

10
is either

⎧⎨⎩
≤−2.2622
or
≥ 2.2622

In this case the t ratio is
0.47√

0.662/
√

10
= 1.827

and our conclusion is to fail to reject H0: The difference between d(= 0.47) and
the H0 value for μD(= 0) is not statistically significant.

Case Study 13.3.2

Some rental car agencies promise to offer lower-cost rentals. Among them are
the aptly named Budget and Thrifty. But is Thrifty really thriftier? Table 13.3.2
shows the rates charged by these two companies for a midsize sedan rented
midweek with a month’s notice at each of eleven major airports. According to
the di ’s listed in the last column, d = $6.29 (= average Budget rate – average
Thrifty rate). The parameter of interest here is μD , the true average difference
between the Budget and Thrifty rates. One question to be answered is whether

(Continued on next page)
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(Case Study 13.3.2 continued)

Table 13.3.2

Airport Budget, xi Thrifty, yi di = xi − yi

Atlanta 93.74 88.54 5.20
Baltimore 129.75 125.00 4.75
Charlotte 100.33 99.03 1.30
Chicago 111.04 104.14 6.90
Dallas–Ft. Worth 167.15 162.08 5.07
Denver 149.56 141.41 8.15
Los Angeles 124.26 122.99 1.27
Miami 108.57 102.51 6.06
New Orleans 118.62 117.44 1.18
Seattle 129.81 121.76 8.05
St. Louis 98.58 77.32 21.26
Source: www.expedia.com

the sample mean of d =$6.29 is sufficiently positive to overturn the presumption
that μD = 0.

Notice first of all that these xi ’s and yi ’s are dependent: the $93.74 and
$88.54 in first row, for example, are lower than most of the rates at other air-
ports and may reflect lower operating costs or less demand in Atlanta. That
is, included in the $93.74 and $88.54 is the B1 referenced in Equation 13.3.1.
Similarly, a portion of the $129.75 and $125.00 is the B2 for Baltimore; and
so on.

A confidence interval for μD will provide an estimate of the savings asso-
ciated with renting Thrifty midsize sedans and also give us a way of testing the
two-sided hypothesis that μD = 0.

Theorem 7.4.1 applies to the di ’s, so the form of the 100(1 −α)% confidence
interval is (

d − tα/2,b−1
s√
n
,d + tα/2,b−1

s√
n

)
The average of the figures in the last column is d = $6.29 and the sample
standard deviation is s = $5.59. For α = 0.05, the Student t value is

−t.025,b−1 =−t.025,10 = 2.2281

so the 95% confidence interval reduces to(
6.29 − 2.2281

5.59√
11

, 6.29 + 2.2281
5.59√

11

)
= ($2.53, $10.05)

Moreover, since 0 is not in the confidence interval, we can reject the null
hypothesis that μD = 0.

About the Data The difference in rental costs in St. Louis is clearly an “outlier”
and possibly results from a Thrifty promotion of some kind. The distortion that such
a deviant quantity introduces suggests that a better strategy would be to compare
average rental costs over an extended period of time.

www.expedia.com
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Criteria for Pairing

The Comment following Case Study 13.2.1 discusses the issues an experimenter
needs to consider in deciding whether the comparison of k treatment levels should
be done as a k-sample design or a randomized block design. When two treatment
levels are to be compared, similar questions need to be addressed:

1. Should the comparison be done with independent samples (and the two-sample
t test) or with dependent samples (and the paired t test)?

2. If the paired-data model is the experimental design chosen, what criterion
should be used to define the pairs?

The pros and cons of using dependent samples will be discussed in Section 13.4.
Here we want to focus on some of the ways pairs are defined in real-world appli-
cations. A representative sampling of blocking criteria in general is reflected in the
five Case Studies appearing earlier in Chapter 13.

The ultimate pairing criterion is to use each subject twice. Then the exper-
imenter can be confident that whatever “contribution” a subject makes to the
numerical value for Treatment X is exactly the same as the contribution made to
the numerical value for Treatment Y . Over the years, “before and after” studies of
this sort have become very popular with researchers. The aerobics/hemoglobin data
described in Case Study 13.3.1 are a typical example.

Not every experimental protocol, though, lends itself to the possibility of test-
ing both treatments on each subject. Suppose the objective of a study is to compare
two methods of teaching fractions to third graders. Once a subject is exposed to
one method (and learns something about fractions), assessing the effectiveness of
the second treatment would be problematic. Clearly, such a study needs to be
done with pairs of two (similar) subjects, one being taught with Method X , and
the other with Method Y . Defining what “similar” means in this case could be
done in a variety of ways. The closest approximation to the “before and after” for-
mat would be to use twins as subjects. If the number of twins available, though,
was insufficient, “similar” could be defined in terms of IQ scores or previous math
grades.

Another widely used strategy for creating dependent observations is to pair up
measurements taken close together in time and/or space. The rationale, of course, is
that measurements sharing a variety of environmental characteristics will be inflated
(or deflated) by similar amounts for both Treatment X and Treatment Y . The data
in Tables 13.2.5, 13.2.8, and 13.3.2 are all cases in point.

Probably the most challenging scenarios faced by experimenters are situations
where there are no obvious pairing criteria of the sort just described. Rather,
some sort of “pre-test” needs to be derived that would serve as a mechanism
for identifying subjects likely to respond in similar ways to the two treatments.
Recall, for example, the blocks defined in Case Study 13.2.1. There, the Height
Avoidance Test (HAT) was used as a way of categorizing the severity of a sub-
ject’s initial level of acrophobia. By defining blocks to be subjects with similar
HAT scores, a set of relatively homogeneous experimental environments were cre-
ated (Blocks A through E) within which all the competing therapies could be
compared.

It would be difficult to overestimate the importance of choosing the block-
ing and pairing criteria carefully whenever the randomized block and paired-data
designs are being used. Whatever can be done to minimize the additional variation
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in the measurements due to specific environmental effects will allow the treatments
to be compared with that much more precision.

The Equivalence of the Paired t Test and the Randomized Block
ANOVA When k = 2

Example 12.2.2 showed that the analysis of variance done on a set of k-sample data
when k =2 is equivalent to a (pooled) two-sample t test of H0:μX =μY against a two-
sided alternative. Although the numerical values of the observed t and observed F
will be different, as will be the locations of the two critical regions, the final inference
will necessarily be the same. A similar equivalence holds for the paired t test and the
randomized block ANOVA (when k = 2).

Recall Case Study 13.3.1. Analyzed with a paired t test, H0:μD = 0 should be
rejected in favor of H1:μD �= 0 at the α = 0.05 level of significance if

t ≤ −tα/2,b−1 =−t0.025,9 =−2.2622 or if t ≥ tα/2,b−1 = 2.2622

But t = d

sD/
√

10
= 1.83, so the conclusion is “fail to reject H0.”

Table 13.3 shows the Minitab input and output for doing the analysis of variance
on those same observations. The observed F ratio for “Treatments” is 3.34, and the
corresponding α = 0.05 critical value is F0.95,1,9 = 5.12.

Table 13.3.3

MTB > set c1
DATA > 14.6 17.3 10.9 12.8 16.6 12.2 11.2 15.4 14.8 16.2
DATA > 13.8 15.4 11.3 11.6 16.4 12.6 11.8 15.0 14.4 15.0
DATA > end
MTB > set c2
DATA > 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2
DATA > end
MTB > set c3
DATA > 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
DATA > end
MTB > name c1 ’Hemglb’ c2 ’Activ’ c3 ’Blocks’
MTB > twoway c1 c2 c3

Two-way ANOVA: Hemglb versus Activ, Blocks
Source DF SS MS F P
Activ 1 1.1045 1.10450 3.34 0.101
Blocks 9 73.2405 8.13783 24.57 0.000
Error 9 2.9805 0.33117
Total 19 77.3255

Notice that (1) the observed F is the square of the observed t and (2) the F critical
value is the square of the t critical value:

3.34 = (1.827)2 and 5.12 = (2.2622)2

It follows, then, that the paired t test will reject the null hypothesis that μD = 0 if
and only if the randomized block ANOVA rejects the null hypothesis that the two
Treatment means (μX and μY ) are equal.
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Questions

13.3.1. Case Study 7.5.2 compared the volatility of Global
Rock Funds’ return on investments to that of the bench-
mark Lipper fund. But can it be said that the returns
themselves beat the benchmark? The table below gives
the annual returns of the Global Rock Fund for the years
1989 to 2007 and the corresponding Lipper averages. Test
the hypothesis that μD > 0 for these data at the 0.05 level
of significance.

Investment
return %

Investment
return %

Global Lipper Global Lipper
Year Rock, x Avg., y Year Rock, x Avg., y

1989 15.32 14.76 1999 27.43 34.44
1990 1.62 −1.91 2000 8.57 1.13
1991 28.43 20.67 2001 1.88 −3.24
1992 11.91 6.18 2002 −7.96 −8.11
1993 20.71 22.97 2003 35.98 32.57
1994 −2.15 −2.44 2004 14.27 15.37
1995 23.29 20.26 2005 10.33 11.25
1996 15.96 14.79 2006 15.94 12.70
1997 11.12 14.27 2007 16.71 9.65
1998 0.37 6.25

Note that
19∑

i=1
di = 28.17

19∑
i=1

d2
i = 370.8197

13.3.2. Recall the depth perception data described in
Question 8.2.6. Use a paired t test with α = 0.05 to
compare the numbers of trials needed to learn depth
perception for Mothered and Unmothered lambs.

13.3.3. Blood coagulates as a result of a complex
sequence of chemical reactions. The protein thrombin trig-
gers the clotting of blood under the influence of another
protein called prothrombin. One measure of a person’s
blood clotting ability is expressed in prothrombin time,
which is defined to be the interval between the initiation of
the thrombin-prothrombin reaction and the formation of
the clot. One study (209) looked at the effect of aspirin on
prothrombin time. The preceding table gives, for each of
twelve subjects, the prothrombin time (in seconds) before

and three hours after taking two aspirin tablets (650 mg).
Test the hypothesis that aspirin influences prothrombin
times. Perform the test at both the α = 0.05 and α = 0.01
levels.

Subject Before Aspirin, x After Aspirin, y

1 12.3 12.0
2 12.0 12.3
3 12.0 12.5
4 13.0 12.0
5 13.0 13.0
6 12.5 12.5
7 11.3 10.3
8 11.8 11.3
9 11.5 11.5

10 11.0 11.5
11 11.0 11.0
12 11.3 11.5

13.3.4. Use a paired t test to analyze the hypnosis/ESP
data given in Question 13.2.1. Let α = 0.05.

13.3.5. Perform the hypothesis test indicated in Question
13.2.3 at the 0.05 level using a paired t test. Compare the
square of the observed t with the observed F . Do the same
for the critical values associated with the two procedures.
What would you conclude?

13.3.6. Let D1, D2, . . . , Db be the within-block differences
as defined in this section. Assume that the Di ’s are normal
with mean μD and variance σ 2

D , for i = 1,2, . . . ,b. Derive
a formula for a 100(1 − α)% confidence interval for μD .
Apply this formula to the data of Case Study 13.3.1 and
construct a 95% confidence interval for the true average
hemoglobin difference (“before walk” − “after walk”).

13.3.7. Construct a 95% confidence interval for μD in the
prothrombin time data described in Question 13.3.3. See
Question 13.3.6.

13.3.8. Show that the paired t test is equivalent to the
F test in a randomized block design when the number of
treatment levels is two. (Hint: Consider the distribution of
T 2 = bD

2
/S2

D .)

13.4 Taking a Second Look at Statistics (Choosing
between a Two-Sample t Test and a Paired t Test)
Suppose that the means μX and μY associated with two treatments X and Y are to
be compared. Theoretically, two “design” options are available:

1. test H0:μX = μY with independent samples (using Theorem 9.2.2 or Theorem
9.2.3) or

2. test H0:μD = 0 with dependent samples (using Theorem 13.3.1).
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Does it make a difference which design is used? Yes. Which one is better? That
depends on the nature of the subjects, and how likely they are to respond to the
treatments—neither design is always superior to the other.

The two hypothetical examples described in this section illustrate the pros and
cons of each approach. In the first case, the paired-data model is clearly preferable;
in the second case, μX and μY should be compared using a two-sample format.

Example
13.4.1

Comparing two weight loss plans
Suppose that Treatment X and Treatment Y are two diet regimens. A comparison
of the two is to be done by looking at the weight losses recorded by subjects who
have been using one of the two diets for a period of three months. Ten people have
volunteered to be subjects. Table 13.4.1 gives the gender, age, height, and initial
weight for each of the ten.

Table 13.4.1

Subject Gender Age Height Weight (in pounds)

HM M 65 5′8′′ 204
HW F 41 5′4′′ 165
JC M 23 6′0′′ 260
AF F 63 5′3′′ 207
DR F 59 5′2′′ 192
WT M 22 6′2′′ 253
SW F 19 5′1′′ 178
LT F 38 5′5′′ 170
TB M 62 5′7′′ 212
KS F 23 5′3′′ 195

Option A: Compare Diet X and Diet Y Using Independent Samples If the two-
sample design is to be used, the first step would be to divide the ten subjects at
random into two groups of size 5. Table 13.4.2 shows one such set of independent
samples.

Table 13.4.2

Diet X Diet Y

HW (F, middle-aged, slightly overweight) JC (M, young, very overweight)
AF (F, elderly, very overweight) WT (M, young, very overweight)
SW (F, young, very overweight) HM (M, elderly, quite overweight)
TB (M, elderly, quite overweight) KS (F, young, very overweight)
DR (F, elderly, very overweight) LT (F, middle-aged, slightly overweight)

Notice that each of the two samples contains individuals who are likely to
respond very differently to whichever diet they are on simply because of the huge
disparities in their physical profiles. Included among the subjects representing Diet
X , for example, are HW and TB; HW is a slightly overweight, middle-aged female,
while TB is a quite overweight, elderly male. More than likely, their weight losses
after three months will be considerably different.
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If some of the subjects in Diet X lose relatively few pounds (which will proba-
bly be the case for HW) while others record sizeable reductions (which is likely to
happen for AF, SW, and DR, all of whom are initially very overweight), the effect
will be to inflate the numerical value of s2

X . Similarly, the value of s2
Y will be inflated

by the inherent differences among the subjects in Diet Y .
Now, recall the formula for the two-sample t statistic,

t = x − y

sp
√

1/n + 1/m

If s2
X and s2

Y are large, sp will also be large. But if sp (in the denominator of the t ratio)
is very large, the t statistic itself may be fairly small even if x − y is substantially
different from zero—that is, the considerable variation within the samples has the
potential to “obscure” the variation between the samples (as measured by x − y).
In effect, H0:μX = μY might not be rejected (when it should be) only because the
variation from subject to subject is so large.

Option B: Compare Diet X and Diet Y Using Dependent Samples The same dif-
ferences from subject to subject that undermine the two-sample t test provide some
obvious criteria for setting up a paired t test. Table 13.4.3 shows a grouping into five
pairs of the ten subjects profiled in Table 13.4.2, where the two members of each pair
are as similar as possible with respect to the amount of weight they are likely to lose:
for example, Pair 2—(JC, WT)—is comprised of two very overweight, young males.
In the terminology of Equation 13.3.1, the B2 that measures the subject effect of
persons fitting that description will be present in the weight losses reported by both
JC and WT. When their responses are subtracted, d2 = x2 − y2 will, in effect, be free
of the subject effect and will be a more precise estimate of the intrinsic difference
between the two diets. It follows that differences between the pairs—no matter how
sizeable those differences may be—are irrelevant because the comparisons of Diet
X and Diet Y (that is, the di ’s) are made within the pairs, and then pooled from pair
to pair.

Table 13.4.3

Pair Characteristics

(HW, LT) Female, middle-aged, slightly overweight
(JC, WT) Male, young, very overweight
(SW, KS) Female, young, very overweight
(HM, TB) Male, elderly, quite overweight
(AF, DR) Female, elderly, very overweight

The potential benefit here of using a paired-data design should be readily
apparent. Recall that the paired t statistic has the form

t = d

sD/
√

b
= x − y

sD/
√

b
(13.4.1)

For the reasons just cited, sD/
√

5 is likely to be much smaller than the two-sample

sp

√
1
5 + 1

5 , thus reducing the likelihood that the paired t test’s denominator will
“wash out” its numerator.
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Example
13.4.2

Comparing two eye surgery techniques
Suppose the ten subjects profiled in Table 13.4.2 are all nearsighted and have volun-
teered to participate in a clinical trial comparing two laser surgery techniques. The
basic plan is to use Surgery X on five of the subjects, and Surgery Y on the other
five. A month later, each participant will be asked to rate (on a scale of 0 to 100) his
or her satisfaction with the operation.

Option A: Compare Surgery X and Surgery Y Using Independent Samples
Unlike the situation encountered in the diet study, none of the information recorded
on the volunteers (gender, age, height, weight) has any bearing on the measurements
to be recorded here: a very overweight, young male is no more or no less likely to
be satisfied with corrective eye surgery than is a slightly overweight, middle-aged
female. That being the case, there is no way to group the ten subjects into five pairs
in such a way that the two members of a pair are uniquely similar in terms of how
they are likely to respond to the satisfaction question.

To compare Surgery X and Surgery Y , then, using the two-sample format, we
would simply divide the ten subjects—at random—into two groups of size 5, and
choose between H0:μX = μY and H1:μX �= μY on the basis of the two-sample t
statistic, which would have 8 (= n + m − 2 = 5 + 5 − 2) degrees of freedom.

Option B: Compare Surgery X and Surgery Y Using Dependent Samples Given
the absence of any objective criteria for linking one subject with another in any
meaningful way, the pairs would have to be formed at random. Doing that would
have some serious negative consequences that would definitely argue against using
the paired-data format. Suppose, for example, HW was paired with LT, as was the
case in the diet study. Since the information in Table 13.4.2 has nothing to do with
a person’s reaction to eye surgery, subtracting LT’s response from HW’s response
would not eliminate the “subject” effect as it did in the diet study, because the
“personal” contribution of LT to the observed x could be entirely different than
the “personal” contribution of HW to the observed y. In general, the within-pair
differences—di = xi − yi , i = 1,2, . . . ,5—would still reflect the subject effects, so the
value of sD would not be reduced (relative to sp) as it was in the diet study.

Is a lack of reduction in the magnitude of sD a serious problem? Yes, because
the paired-data format intentionally sacrifices degrees of freedom for the express
purpose of reducing sD . If the latter does not occur, those degrees of freedom are
wasted. Here, given a total of ten subjects, a two-sample t test would have 8 degrees
of freedom (=n +m −2=5+5−2); a paired t test would have 4 degrees of freedom
(= b − 1 = 5 − 1). When a t test has fewer degrees of freedom, the critical values for
a given level of significance move farther away from zero, which means that the test
with the smaller number of degrees of freedom will have a greater probability of
committing a Type II error.

Table 13.4.4 shows a comparison of the two-sided critical values for t ratios with
4 degrees of freedom and with 8 degrees of freedom for α equal to either 0.10, 0.05,

Table 13.4.4

α tα/2,4 tα/2,8

0.10 2.1318 1.8595
0.05 2.7764 2.3060
0.01 4.6041 2.3554
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or 0.01. Clearly, the same value of x − y that would reject H0:μX = μY with a t test
having 8 df may not be large enough to reject H0:μD = 0 with a t test having 4 df.

Appendix 13.A.1 Minitab Applications

To produce the information in a randomized block ANOVA table, Minitab uses the
command TWOWAY C1 C2 C3. First, the data are “stacked,” treatment level over
treatment level, into a single column—say, c1 (similar to the way the yi j ’s in a Tukey
analysis are entered). Then two auxiliary columns must be created. The first, call it
c2, gives the column number for each entry in c1. The second—say, c3—gives the
block number (i.e., the row number) for each entry in c1.

Consider, again, the data in Case Study 13.2.1. Figure 13.A.1.1 is the Minitab
syntax for outputting the calculations that appear in Table 13.2.4. Notice that the
Windows version reverses columns C1 and C2.

Figure 13.A.1.1 MTB > set c1

DATA > 8 11 9 16 24 2 1 12 11 19 -2 0 6 2 11

DATA > end

MTB > set c2

DATA > 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

DATA > end

MTB > set c3

DATA > 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

DATA > end

MTB > name c1 ’HAT’ c2 ’Therapy’ c3 ’Blocks’
MTB > twoway c1 c2 c3

Two-way ANOVA: HAT versus Therapy, Blocks

Analysis of variance for HAT

Source DF SS MS F P

Therapy 2 260.93 130.47 15.26 0.002

Blocks 4 438.00 109.50 12.81 0.001

Error 8 68.40 8.55

Total 14 767.33

Doing a Randomized Block Analysis of Variance Using Minitab Windows

1. Enter the entire data set in column C1, beginning with Treatment level 1,
followed by Treatment level 2, and so on.

2. In column C2, enter the block number of each data point in C1; in column C3,
enter the column number of each data point in C1.

3. Click on STAT, then on ANOVA, then on TWO-WAY.
4. Type C1 in RESPONSE box, C2 in ROW FACTOR box, and C3 in COLUMN

FACTOR box.
5. Click on OK.

There is no special command in Minitab for doing a paired t test, but none
is necessary. The appropriate P-value can be found by simply applying the (one-
sample) MTB > ttest command to the within-pair differences (and setting μo
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equal to 0). Figure 13.A.1.2 shows the syntax for doing the paired t test on the
aerobics data described in Case Study 13.3.1.

Figure 13.A.1.2 MTB > set c1

DATA > 14.6 17.3 10.9 12.8 16.6 12.2 11.2 15.4 14.8 16.2

DATA > end

MTB > set c2

DATA > 13.8 15.4 11.3 11.6 16.4 12.6 11.8 15.0 14.4 15.0

DATA > end

MTB > let c3 = c1 - c2

MTB > name c3’di’
MTB > ttest 0 c3

One-Sample T: di

Test of mu = 0 vs not = 0

Variable N Mean StDev SE Mean 95% CI T P

0.10110di 0.470 0.814 0.257 (-0.112, 1.052) 1.83
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Critical to the justification of replacing a parametric test with a nonparametric test is
a comparison of the power functions for the two procedures. The figures above
illustrate the types of information that researchers have compiled–shown are the
power functions of the one-sample t test (solid line) and the sign test (dashed lines)
for three different sets of hypotheses, various degrees of nonnormality, a sample size
of 10, and a level of significance of 0.05. (The parameter ρn measures the shift from
H0 to H1; κ3 and κ4 measure the extent of nonnormality in the sampled population.)

655



656 Chapter 14 Nonparametric Statistics

14.1 Introduction
Behind every confidence interval and hypothesis test we have studied thus far have
been very specific assumptions about the nature of the pdf that the data presum-
ably represent. For instance, the usual Z test for proportions—H0:pX = pY versus
H1:pX �= pY —is predicated on the assumption that the two samples consist of inde-
pendent and identically distributed Bernoulli random variables. The most common
assumption in data analysis, of course, is that each set of observations is a random
sample from a normal distribution. This was the condition specified in every t test
and F test that we have done.

The need to make such assumptions raises an obvious question: What changes
when these assumptions are not satisfied? Certainly the statistic being calculated
stays the same, as do the critical values that define the rejection region. What does
change, of course, is the sampling distribution of the test statistic. As a result, the
actual probability of committing, say, a Type I error will not necessarily equal the
nominal probability of committing a Type I error. That is, if W is the test statistic
with pdf fW (w | H0) when H0 is true, and C is the critical region,

“true”α =
∫

C
fW (w | H0)dw

is not necessarily equal to the “nominal” α, because fW (w | H0) is different (because
of the violated assumptions) from the presumed sampling distribution of the
test statistic. Moreover, there is usually no way to know the “true” functional
form of fW (w | H0) when the underlying assumptions about the data have not
been met.

Statisticians have sought to overcome the problem implicit in not knowing the
true fW (w | H0) in two very different ways. One approach is the idea of robustness,
a concept that was introduced in Section 7.4. The Monte Carlo simulations illus-
trated in Figure 7.4.6, for example, show that even though a set of Yi ’s deviates from
normality, the distribution of the t ratio,

t = Y −μo

s/
√

n

is likely to be sufficiently close to fTn−1(t) that the true α, for all practical purposes,
is about the same as the nominal α. The one-sample t test, in other words, is often
not seriously compromised when normality fails to hold.

A second way of dealing with the additional uncertainty introduced by violated
assumptions is to use test statistics whose pdfs remain the same regardless of how the
population sampled may change. Inference procedures having this sort of latitude
are said to be nonparametric or, more appropriately, distribution free.

The number of nonparametric procedures proposed since the early 1940s has
been enormous and continues to grow. It is not the intention of Chapter 14 to survey
this multiplicity of techniques in any comprehensive fashion. Instead, the objec-
tive here is to introduce some of the basic methodology of nonparametric statistics
in the context of problems whose “parametric” solutions have already been dis-
cussed. Included in that list will be nonparametric treatments of the paired-data
problem, the one-sample location problem, and both of the analysis of variance
models covered in Chapters 12 and 13.
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14.2 The Sign Test
Probably the simplest—and most general—of all nonparametric procedures is the
sign test. Among its many applications, testing the null hypothesis that the median
of a distribution is equal to some specific value is perhaps its most important.

By definition, the median, μ̃, of a continuous pdf fY (y) is the value for which
P(Y ≤ μ̃) = P(Y ≥ μ̃) = 1

2 . Suppose a random sample of size n is taken from fY (y).
If the null hypothesis H0: μ̃ = μ̃0 is true, the number of observations, X , exceeding
μ̃0 is a binomial random variable with p = P(Yi ≥ μ̃0) = 1

2 . Moreover, E(X) = n/2,
Var(X) = n · 1

2 · 1
2 = n/4, and X−n/2√

n/4
would have approximately a standard normal

distribution (by virtue of the DeMoivre-Laplace theorem), provided n is sufficiently
large. Intuitively, values of X too much larger or too much smaller than n/2 would
be evidence that μ̃ �= μ̃0.

Theorem
14.2.1

Let y1, y2, . . . , yn be a random sample of size n from any continuous distribution
having median μ̃, where n ≥ 10. Let k denote the number of yi ’s greater than μ̃0, and
let z = k−n/2√

n/4
.

a. To test H0: μ̃= μ̃0 versus H1: μ̃>μ̃0 at the α level of significance, reject H0 if z ≥ zα .
b. To test H0: μ̃ = μ̃0 versus H1: μ̃ < μ̃0 at the α level of significance, reject H0 if

z ≤ −zα .
c. To test H0: μ̃ = μ̃0 versus H1: μ̃ �= μ̃0 at the α level of significance, reject H0 if z is

either (1)≤−zα/2 or (2)≥ zα/2. �

Comment Sign tests are designed to draw inferences about medians. If the under-
lying pdf being sampled, though, is symmetric, the median is the same as the mean,
so concluding that μ̃ �= μ̃0 is equivalent to concluding that μ �= μ̃0.

Case Study 14.2.1

Synovial fluid is the clear, viscid secretion that lubricates joints and tendons.
Researchers have found that certain ailments can be diagnosed on the basis of
a person’s synovial fluid hydrogen-ion concentration (pH). In healthy adults,
the median pH for synovial fluid is 7.39. Listed in Table 14.2.1 are the pH values
measured from fluids drawn from the knees of forty-three patients with arthritis
(181). Does it follow from these data that synovial fluid pH can be useful in
diagnosing arthritis?

Let μ̃ denote the median synovial fluid pH for adults suffering from
arthritis. Testing

H0: μ̃ = 7.39
versus
H1: μ̃ �= 7.39

then becomes a way of quantifying the potential usefulness of synovial fluid pH
as a way of diagnosing arthritis.

By inspection, a total of k =4 of the n =43 yi ’s exceed μ̃0 =7.39. Let α=0.01.
The test statistic is

z = 4 − 43/2√
43/4

=−5.34

(Continued on next page)
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(Case Study 14.2.1 continued)

Table 14.2.1

Subject Synovial Fluid pH Subject Synovial Fluid pH

HW 7.02 BG 7.34
AD 7.35 GL 7.22
TK 7.32 BP 7.32
EP 7.33 NK 7.40
AF 7.15 LL 6.99
LW 7.26 KC 7.10
LT 7.25 FA 7.30
DR 7.35 ML 7.21
VU 7.38 CK 7.33
SP 7.20 LW 7.28
MM 7.31 ES 7.35
DF 7.24 DD 7.24
LM 7.34 SL 7.36
AW 7.32 RM 7.09
BB 7.34 AL 7.32
TL 7.14 BV 6.95
PM 7.20 WR 7.35
JG 7.41 HT 7.36
DH 7.77 ND 6.60
ER 7.12 SJ 7.29
DP 7.45 BA 7.31
FF 7.28

which lies well past the left-tail critical value (= −zα/2 = −z0.005 = −2.58). It fol-
lows that H0: μ̃ = 7.39 should be rejected, a conclusion suggesting that arthritis
should be added to the list of ailments that can be detected by the pH of a
person’s synovial fluid.

A Small-Sample Sign Test

If n < 10, the decision rules given in Theorem 14.2.1 for testing H0: μ̃ = μ̃0 are
inappropriate because the normal approximation is not entirely adequate. Instead,
decision rules need to be determined using the exact binomial distribution.

Case Study 14.2.2

Instant coffee can be formulated several different ways—freeze-drying and
spray-drying being two of the most common. From a health standpoint, the
most important difference from method to method is the amount of caffeine
that is left as a residue. It has been shown that the median amount of caffeine
left by the freeze-drying method is 3.55 grams per 100 grams of dry matter.

(Continued on next page)
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Listed in Table 14.2.2 are the caffeine residues recorded for eight brands of
coffee produced by the spray-dried method (182).

Table 14.2.2

Brand Caffeine Residue (gms/100 gms dry weight)

A 4.8
B 4.0
C 3.8
D 4.3
E 3.9
F 4.6
G 3.1
H 3.7

If μ̃ denotes the median caffeine residue characteristic of the spray-dried
method, we compare the two methods by testing

H0: μ̃ = 3.55
versus
H1: μ̃ �= 3.55

By inspection, k = 7 of the n = 8 spray-dried brands left caffeine residues
in excess of μ̃0 = 3.55. Given the discrete nature of the binomial distribution,
simple decision rules yielding specific α values are not likely to exist, so small-
sample tests of this sort are best couched in terms of P-values. Figure 14.2.1
shows Minitab’s printout of the binomial pdf when n = 8 and p = 1

2 . Since H1

here is two-sided, the P-value associated with k = 7 is the probability that the
corresponding binomial random variable would be greater than or equal to 7
plus the probability that it would be less than or equal to 1. That is,

P-value = P(X ≥ 7)+ P(X ≤ 1)

= P(X = 7)+ P(X = 8)+ P(X = 0)+ P(X = 1)

= 0.031250 + 0.003906 + 0.003906 + 0.031250

= 0.070

The null hypothesis, then, can be rejected for any α ≥ 0.07.
MTB > pdf;
SUBC > binomial 8 0.5.

Probability Density Function

Binomial with n=8 and p=0.5

x P(X=x)
0 0.003906
1 0.031250
2 0.109375
3 0.218750
4 0.273438
5 0.218750
6 0.109375
7 0.031250
8 0.003906

Figure 14.2.1
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Using the Sign Test for Paired Data

Suppose a set of paired data—(x1, y1), (x2, y2), . . . , (xb, yb)—has been collected, and
the within-pair differences—di = xi − yi i =1,2, . . . ,b—have been calculated (recall
Theorem 13.3.1). The sign test becomes a viable alternative to the paired t test if
there is reason to believe that the di ’s do not represent a random sample from a
normal distribution. Let

p = P(Xi > Yi ), i = 1,2, . . . ,b

The null hypothesis that the xi ’s and yi ’s are representing distributions with the same
median is equivalent to the null hypothesis H0: p = 1

2 .
In the analysis of paired data, the generality of the sign test becomes especially

apparent. The distribution of Xi need not be the same as the distribution of Yi , nor
do the distributions of Xi and X j or Yi and Y j need to be the same. Furthermore,
none of the distributions has to be symmetric, and they could all have different
variances. The only underlying assumption is that X and Y have continuous pdfs. The
null hypothesis, of course, adds the restriction that the median of the distributions
within each pair be equal.

Let U denote the number of (xi , yi ) pairs for which di = xi − yi > 0. The statistic
appropriate for testing H0: p = 1

2 is either an approximate Z ratio, U−b/2√
b/4

, or the value

of U itself, which has a binomial distribution with parameters b and 1
2 (when the null

hypothesis is true). As before, the normal approximation is adequate if b ≥ 10.

Case Study 14.2.3

One reason frequently cited for the mental deterioration often seen in the
very elderly is the reduction in cerebral blood flow that accompanies the aging
process. Addressing that concern, a study was done (5) in a nursing home to
see whether cyclandelate, a drug that widens blood vessels, might be able to
stimulate cerebral circulation and retard the onset of dementia.

The drug was given to eleven subjects on a daily basis. To measure its phys-
iological effect, radioactive tracers were used to determine each subject’s mean
circulation time (MCT) at the start of the experiment and four months later,
when the regimen was discontinued. [The MCT is the length of time (in sec) it
takes blood to travel from the carotid artery to the jugular vein.] Table 14.2.3
summarizes the results.

If cyclandelate has no effect on cerebral circulation, p = P(Xi > Yi ) = 1
2 .

Moreover, it seems reasonable here to discount the possibility that the drug
might be harmful, which means that a one-sided alternative is warranted. To be
tested, then, is

H0: p = 1
2

versus
H1: p > 1

2

where H1 is one-sided to the right because increased cerebral circulation would
result in the MCT being reduced, which would produce more patients for whom
xi was larger than yi .

(Continued on next page)
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Table 14.2.3

Subject Before, xi After, yi xi > yi ?

J.B. 15 13 yes
M.B. 12 8 yes
A.B. 12 12.5 no
M.B. 14 12 yes
J.L. 13 12 yes
S.M. 13 12.5 yes

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
u = 9

M.M. 13 12.5 yes
S.McA. 12 14 no
A.McL. 12.5 12 yes
F.S. 12 11 yes
P.W. 12.5 10 yes

As Table 14.2.3 indicates, the number of subjects showing improvement in
their MCTs was u =9 (as opposed to the H0 expected value of 5.5). Let α =0.05.
Since n =11, the normal approximation is adequate, and H0 should be rejected if

u − b/2√
b/4

≥ zα = z0.05 = 1.64

But

u − b/2√
b/4

= 9 − 11
2√

11
4

= 2.11

so the evidence here is fairly convincing that cyclandelate does speed up
cerebral blood flow.

Questions

14.2.1. Recall the data in Question 8.2.9 giving the sizes of
10 gorilla groups studied in the Congo. Is it believable that
the true median size, μ̃, of all such groups is 9? Answer
the question by finding the P-value associated with the
null hypothesis H0: μ̃ = 9. Assume that H1 is two-sided.
(Note: Tabulated on the right is the binomial pdf for the
case where n = 10 and p = 1

2
.)

MTB > pdf;
SUBC > binomial 10 0.5.

Probability Density Function

Binomial with n = 10 and p = 0.5

x P( X = x )
0 0.000977
1 0.009766
2 0.043945
3 0.117188
4 0.205078
5 0.246094
6 0.205078
7 0.117188
8 0.043945
9 0.009766

10 0.000977
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14.2.2. Test H0: μ̃ = 0.12 versus H1: μ̃ < 0.12 for the
release chirp data given in Question 8.2.12. Compare the
P-value associated with the large-sample test described
in Theorem 14.2.1 with the exact P-value based on the
binomial distribution.

14.2.3. Below are n = 50 observations generated by
Minitab’s RANDOM command that are presumably a
random sample from the exponential pdf, fY (y) = e−y,

y ≥ 0. Use Theorem 14.2.1 to test whether the difference
between the sample median for these yi ’s (= 0.604) and
the true median of fY (y) is statistically significant. Let
α = 0.05.

0.27187 0.46495 0.19368 0.80433 1.25450 0.62962 1.88300
1.31951 2.53918 1.21187 0.95834 0.49017 0.87230 0.88571
1.41717 1.75994 0.60280 2.19654 0.00594 4.11127 0.24130
0.16473 0.08178 1.01424 0.60511 0.87973 0.06127 0.24758
0.54407 0.05267 0.75210 0.13538 0.42956 0.02261 1.20378
1.09271 1.88705 0.17500 0.50194 0.52122 0.02915 0.27348
0.08916 0.72997 0.37185 0.06500 1.47721 4.02733 0.64003
0.05603

14.2.4. Let Y1,Y2, . . . ,Y22 be a random sample of normally
distributed random variables with an unknown mean μ

and a known variance of 6.0. We wish to test

H0: μ= 10
versus
H1: μ> 10

Construct a large-sample sign test having a Type I error
probability of 0.05. What will the power of the test be if
μ= 11?

14.2.5. Suppose that n = 7 paired observations, (Xi ,Yi ),
are recorded, i = 1,2, . . . ,7. Let p = P(Yi > Xi ). Write
out the entire probability distribution for Y+, the num-
ber of positive differences among the set of Yi − Xi ’s,

i = 1,2, . . . ,7, assuming that p = 1
2
. What α levels are

possible for testing H0: p = 1
2

versus H1: p > 1
2
?

14.2.6. Analyze the Shoshoni rectangle data (Case
Study 7.4.2) with a sign test. Let α = 0.05.

14.2.7. Recall the FEV1/VC data described in Ques-
tion 5.3.2. Test H0: μ̃ = 0.80 versus H0: μ̃ < 0.80 using a
sign test. Compare this conclusion with that of a t test of
H0: μ=0.80 versus H1: μ<0.80. Let α =0.10. Assume that
σ is unknown.

14.2.8. Do a sign test on the ESP data in Question 13.2.1.
Define H1 to be one-sided, and let α = 0.05.

14.2.9. In a marketing research test, twenty-eight adult
males were asked to shave one side of their face with one
brand of razor blade and the other side with a second
brand. They were to use the blades for seven days and then
decide which was giving the smoother shave. Suppose that
nineteen of the subjects preferred blade A. Use a sign test
to determine whether it can be claimed, at the 0.05 level,
that the difference in preferences is statistically significant.

14.2.10. Suppose that a random sample of size 36,
Y1,Y2, . . . ,Y36, is drawn from a uniform pdf defined over
the interval (0, θ), where θ is unknown. Set up a large-
sample sign test for deciding whether or not the 25th
percentile of the Y -distribution is equal to 6. Let α = 0.05.
With what probability will your procedure commit a
Type II error if 7 is the true 25th percentile?

14.2.11. Use a small-sample sign test to analyze the aero-
bics data given in Case Study 13.3.1. Use the binominal
distribution displayed in Question 14.2.1. Let α = 0.05.
Does your conclusion agree with the inference drawn
from the paired t test?

14.3 Wilcoxon Tests
Although the sign test is a bona fide nonparametric procedure, its extreme simplicity
makes it somewhat atypical. The Wilcoxon signed rank test introduced in this section
is more representative of nonparametric procedures as a whole. Like the sign test,
it can be adapted to several different data structures. It can be used, for instance, as
a one-sample test for location, where it becomes an alternative to the t test. It can
also be applied to paired data, and with only minor modifications it can become a
two-sample test for location and a two-sample test for dispersion (provided the two
populations have equal locations).

Testing H0: μ= μo

Let y1, y2, . . . , yn be a set of independent observations drawn from the pdfs
fY1(y), fY2(y), . . . , fYn (y), respectively, all of which are continuous and symmetric
(but not necessarily the same). Let μ denote the (common) mean of the fYi (y)’s. We
wish to test
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H0: μ=μ0

versus
H1: μ �=μ0

where μ0 is some prespecified value for μ.
For an application of this sort, the signed rank test is based on the magnitudes,

and directions, of the deviations of the yi ’s from μ0. Let |y1 −μ0|, |y2 −μ0|, . . . , |yn −
μ0| be the set of absolute deviations of the yi ’s from μ0. These can be ordered from
smallest to largest, and we can define ri to be the rank of |yi −μ0|, where the smallest
absolute deviation is assigned a rank of 1, the second smallest a rank of 2, and so on,
up to n. If two or more observations are tied, each is assigned the average of the
ranks they would have otherwise received.

Associated with each ri will be a sign indicator, zi , where

zi =
{

0 if yi −μ0 < 0

1 if yi −μ0 > 0

The Wilcoxon signed rank statistic, w, is defined to be the linear combination

w =
n∑

i=1

ri zi

That is, w is the sum of the ranks associated with the positive deviations (from μ0).
If H0 is true, the sum of the ranks of the positive deviations should be roughly the
same as the sum of the ranks of the negative deviations.

To illustrate this terminology, consider the case where n =3 and y1 =6.0, y2 =4.9,
and y3 = 11.2. Suppose the objective is to test

H0: μ= 10.0
versus
H1: μ �= 10.0

Note that |y1 − μ0| = 4.0, |y2 − μ0| = 5.1, and |y3 − μ0| = 1.2. Since 1.2 < 4.0 < 5.1, it
follows that r1 = 2, r2 = 3, and r3 = 1. Also, z1 = 0, z2 = 0, and z3 = 1. Combining the
ri ’s and the zi ’s we have that

w =
n∑

i=1

ri zi

= (0)(2)+ (0)(3)+ (1)(1)

= 1

Comment Notice that w is based on the ranks of the deviations from μ0 and not on
the deviations themselves. For this example, the value of w would remain unchanged
if y2 were 4.9, 3.6, or −10,000. In each case, r2 would be 3 and z2 would be 0. If the
test statistic did depend on the magnitude of the deviations, it would have been
necessary to specify a particular distribution for fY (y), and the resulting procedure
would no longer be nonparametric.

Theorem
14.3.1

Let y1, y2, . . . , yn be a set of independent observations drawn, respectively, from the
continuous and symmetric (but not necessarily identical) pdfs fYi (y), i = 1,2, . . . ,n.
Suppose that each of the fYi (y)’s has the same mean μ. If H0: μ=μ0 is true, the pdf of
the data’s signed rank statistic, pW (w), is given by
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pW (w)= P(W =w)=
(

1

2n

)
· c(w)

where c(w) is the coefficient of ewt in the expansion of
n∏

i=1

(
1 + eit

)
Proof The statement and proof of Theorem 14.3.1 are typical of many nonparamet-
ric results. Closed-form expressions for sampling distributions are seldom possible:
The combinatorial nature of nonparametric test statistics lends itself more readily
to a generating function format.

To begin, note that if H0 is true, the distribution of the signed rank statistic is

equivalent to the distribution of U =
n∑

i=1
Ui , where

Ui =
{

0 with probability 1
2

i with probability 1
2

Therefore, W and U have the same moment-generating function. Since the data are
presumed to be a random sample, the Ui ’s are independent random variables, and
from Theorem 3.12.3,

MU (t)= MW (t)

=
n∏

i=1

MUi (t)

=
n∏

i=1

E
(
eUi t
)

=
n∏

i=1

(
1

2
eot + 1

2
eit

)

=
(

1

2n

) n∏
i=1

(
1 + eit

)
(14.3.1)

Now, consider the structure of pW (w), the pdf for the signed rank statistic. In
the formation of w, r1 can be prefixed by either a plus sign or zero; similarly for
r2, r3, . . ., and rn . It follows that since each ri can take on two different values, the
total number of ways to “construct” signed rank sums is 2n . Under H0, of course,
all of those scenarios are equally likely, so the pdf for the signed rank statistic must
necessarily have the form

pW (w)= P(W =w)= c(w)

2n
(14.3.2)

where c(w) is the number of ways to assign pluses and zeros to the first n integers so

that
n∑

i=1
ri zi has the value w.

The conclusion of Theorem 14.3.1 follows immediately by comparing the form
of pW (w) to Equation 14.3.1 and to the general expression for a moment-generating
function. By definition,

MW (t)= E
(
eW t
)= n(n+1)/2∑

w=1

ewt pW (w)
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but from Equations 14.3.1 and 14.3.2 we can write

n(n+1)/2∑
w=1

ewt pW (w)=
(

1

2n

) n∏
i=1

(
1 + eit

)= n(n+1)/2∑
w=1

ewt · c(w)

2n

It follows that c(w) must be the coefficient of ewt in the expansion of
n∏

i=1
(1 + eit ), and

the theorem is proved. �

Calculating pW(w)

A numerical example will help clarify the statement of Theorem 14.3.1. Suppose
n = 4. By Equation 14.3.1, the moment-generating function for the signed rank
statistic is the product

MW (t)=
(

1 + et

2

)(
1 + e2t

2

)(
1 + e3t

2

)(
1 + e4t

2

)
=
(

1

16

){
1 + et + e2t + 2e3t + 2e4t + 2e5t + 2e6t + 2e7t + e8t + e9t + e10t

}
Thus, the probability that W equals, say, 2 is 1

16 (since the coefficient of e2t is 1); the
probability that W equals 7 is 2

16 ; and so on. The first two columns of Table 14.3.1
show the complete probability distribution of W , as given by the expansion of
MW (t). The last column enumerates the particular assignments of pluses and zeros
that generate each possible value w.

Tables of the cdf, FW(w)

Cumulative tail area probabilities,

P
(
W ≤w∗

1

)= w∗
1∑

w =0

pW (w) and P
(
W ≥w∗

2

)= n(n+1)/2∑
w =w∗

2

pW (w)

are listed in Table A.6 of the Appendix for sample sizes ranging from n =4 to n =12.
[Note: The smallest possible value for w is 0, and the largest possible value is the
sum of the first n integers, n(n + 1)/2.] Based on these probabilities, decision rules
for testing H0: μ = μ0 can be easily constructed. For example, suppose n = 7 and we
wish to test

H0: μ=μ0

versus
H1: μ �=μ0

at the α = 0.05 level of significance. The critical region would be the set of w values
less than or equal to 2 or greater than or equal to 26—that is, C ={w:w≤2 or w≥26}.
That particular choice of C follows by inspection of Table A.6, because∑

w∈C

pW (w)= 0.023 + 0.023
.= 0.05
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Table 14.3.1 Probability Distribution of W

ri

w pW (w)= P(W =w) 1 2 3 4

0
1

16
0 0 0 0

1
1

16
+ 0 0 0

2
1

16
0 + 0 0

3
2

16

{+ + 0 0

0 0 + 0

}

4
2

16

{+ 0 + 0

0 0 0 +

}

5
2

16

{+ 0 0 +
0 + + 0

}

6
2

16

{+ + + 0

0 + 0 +

}

7
2

16

{+ + 0 +
0 0 + +

}

8
1

16
+ 0 + +

9
1

16
0 + + +

10
1

16
+ + + +

1

Case Study 14.3.1

Swell sharks (Cephaloscyllium ventriosum) are small, reef-dwelling sharks that
inhabit the California coastal waters south of Monterey Bay. There is a second
population of these fish living nearby in the vicinity of Catalina Island, but it
has been hypothesized that the two populations never mix. In between Santa
Catalina and the mainland is a deep basin, which, according to the “separation”
hypothesis, is an inpenetrable barrier for these particular fish (66).

One way to test this theory would be to compare the morphology of sharks
caught in the two regions. If there were no mixing, we would expect a certain
number of differences to have evolved. Table 14.3.2 lists the total length (TL),
the height of the first dorsal fin (HDI), and the ratio TL/HDI for ten male swell
sharks caught near Santa Catalina.

It has been estimated on the basis of past data that the true average TL/HDI
ratio for male swell sharks caught off the coast is 14.60. Is that figure consistent

(Continued on next page)
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with the data of Table 14.3.2? In more formal terms, if μ denotes the true mean
TL/HDI ratio for the Santa Catalina population, can we reject H0:μ=14.60, and
thereby lend support to the separation theory?

Table 14.3.3 gives the values of TL/HDI (= yi ), yi − 14.60, |yi − 14.60|, ri , zi ,
and ri zi for the ten Santa Catalina sharks. Recall that when two or more num-
bers being ranked are equal, each is assigned the average of the ranks they
would otherwise have received; here, |y6 − 14.60| and |y10 − 14.60| are both
competing for ranks for 4 and 5, so each is assigned a rank of 4.5 [= (4 + 5)/2].

Table 14.3.2 Measurements Made on Ten Sharks Caught Near
Santa Catalina

Total Length (mm) Height of First Dorsal Fin (mm) TL/HDI

906 68 13.32
875 67 13.06
771 55 14.02
700 59 11.86
869 64 13.58
895 65 13.77
662 49 13.51
750 52 14.42
794 55 14.44
787 51 15.43

Table 14.3.3 Computations for Wilcoxon Signed Rank Test

TL/HDI (= yi ) yi − 14.60 |yi − 14.60| ri zi ri zi

13.32 −1.28 1.28 8 0 0
13.06 −1.54 1.54 9 0 0
14.02 −0.58 0.58 3 0 0
11.86 −2.74 2.74 10 0 0
13.58 −1.02 1.02 6 0 0
13.77 −0.83 0.83 4.5 0 0
13.51 −1.09 1.09 7 0 0
14.42 −0.18 0.18 2 0 0
14.44 −0.16 0.16 1 0 0
15.43 +0.83 0.83 4.5 1 4.5

Summing the last column of Table 14.3.3, we see that w = 4.5. According to
Table A.6 in the Appendix, the α = 0.05 decision rule for testing

H0:μ= 14.60
versus
H1:μ �= 14.60

requires that H0 be rejected if w is either less than or equal to 8 or greater than
or equal to 47. (Why is the alternative hypothesis two-sided here?)
(Note: The exact level of significance associated with C = {w:w ≤ 8 or w ≥ 47} is
0.024 + 0.024 = 0.048.) Thus we should reject H0, since the observed w was less
than 8. These particular data, then, would support the separation hypothesis.
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About the Data If data came equipped with alarm bells, the measurements in
Table 14.3.3 would be ringing up a storm. The cause for concern is the fact that the
yi ’s being analyzed are the quotients of random variables (TL/HDI). A quotient can
be difficult to interpret. If its value is unusually large, for example, does that imply
that the numerator is unusually large or that the denominator is unusually small, or
both? And what does an “average” value for a quotient imply?

Also troublesome is the fact that distributions of quotients sometimes violate
critical assumptions that we typically take for granted. Here, for example, both
TL and HDI might conceivably be normally distributed. If they were indepen-
dent standard normal random variables (the simplest possible case), their quotient
Q = TL/HDI would have a Cauchy distribution with pdf

fQ(q)= 1

π(1 + q2)
,−∞< q <∞

Although harmless looking, fQ(q) has some highly undesirable properties: neither
its mean nor its variance is finite. Moreover, it does not obey the central limit
theorem—the average of a random sample from a Cauchy distribution,

Q = 1

n
(Q1 + Q2 + · · ·+ Qn)

has the same distribution as any single observation, Qi [see (92)]. Making matters
worse, the data in Table 14.3.3 do not even represent the simplest case of a quotient
of normal random variables—here the means and variances of both TL and HDI
are unknown, and the two random variables may not be independent.

For all these reasons, using a nonparametric procedure on these data is clearly
indicated, and the Wilcoxon signed rank test is a good choice (because the assump-
tions of continuity and symmetry are likely to be satisfied). The broader lesson,
though, for experimenters to learn from this example is to think twice—maybe three
times—before taking data in the form of quotients.

Questions

14.3.1. The average energy expenditures for eight elderly
women were estimated on the basis of information
received from a battery-powered heart rate monitor that
each subject wore. Two overall averages were calculated
for each woman, one for the summer months and one for
the winter months (154), as shown in the following table.
Let μD denote the location difference between the sum-
mer and winter energy expenditure populations. Compute
yi − xi , i = 1,2, . . . ,8, and use the Wilcoxon signed rank
procedure to test

H0:μD = 0
versus
H1:μD �= 0

Let α = 0.15.

Average Daily Energy Expenditures (kcal)

Subject Summer, xi Winter, yi

1 1458 1424
2 1353 1501
3 2209 1495
4 1804 1739
5 1912 2031
6 1366 934
7 1598 1401
8 1406 1339

14.3.2. Use the expansion of
n∏

i=1

(
1 + eit

)
to find the pdf of W when n =5. What α levels are available
for testing H0: μ̃ = μ̃0 versus H1: μ̃ > μ̃0?
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A Large-Sample Wilcoxon Signed Rank Test

The usefulness of Table A.6 in the Appendix for testing H0:μ = μ0 is limited
to sample sizes less than or equal to 12. For larger n, an approximate signed
rank test can be constructed, using E(W ) and Var(W ) to define an approximate
Z ratio.

Theorem
14.3.2

When H0:μ = μ0 is true, the mean and variance of the Wilcoxon signed rank statistic,
W, are given by

E(W )= n(n + 1)

4

and

Var(W )= n(n + 1)(2n + 1)

24

Also, for n > 12, the distribution of

W − [n(n + 1)]/4√
[n (n + 1)(2n + 1 )]/24

can be adequately approximated by the standard normal pdf, fZ (z).

Proof We will derive E(W ) and Var(W ); for a proof of the asymptotic normality, see

(80). Recall that W has the same distribution as U =
n∑

i=1
Ui , where

Ui =
{

0 with probability 1
2

i with probability 1
2

Therefore,

E(W )= E

(
n∑

i=1

Ui

)
=

n∑
i=1

E(Ui )

=
n∑

i=1

(
0 · 1

2
+ i · 1

2

)
=

n∑
i=1

i

2

= n(n + 1)

4

Similarly,

Var(W )= Var(U )=
n∑

i=1

Var(Ui )
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since the Ui ’s are independent. But

Var(Ui )= E
(
U 2

i

)− [E(Ui )]
2

= i2

2
−
(

i

2

)2

= i2

4

making

Var(W )=
n∑

i=1

i2

4
=
(

1

4

) [
n(n + 1)(2n + 1)

6

]
= n(n + 1)(2n + 1)

24
�

Theorem
14.3.3

Let w be the signed rank statistic based on n independent observations, each drawn
from a continuous and symmetric pdf, where n > 12. Let

z = w − [n(n + 1)]/4√
[n(n + 1)(2n + 1)]/24

a. To test H0:μ = μ0 versus H1:μ > μ0 at the α level of significance, reject H0 if
z ≥ zα .

b. To test H0:μ = μ0 versus H1:μ < μ0 at the α level of significance, reject H0 if
z ≤ −zα .

c. To test H0:μ = μ0 versus H1:μ �= μ0 at the α level of significance, reject H0 if z is
either (1)≤ −zα/2 or (2)≥ zα/2. �

Case Study 14.3.2

Cyclazocine, along with methadone, are two of the drugs widely used in the
treatment of heroin addiction. Some years ago, a study was done (141) to
evaluate the effectiveness of the former in reducing a person’s psychological
dependence on heroin. The subjects were fourteen males, all chronic addicts.
Each was asked a battery of questions that compared his feelings when he
was using heroin to his feelings when he was “clean.” The resultant Q-scores
ranged from a possible minimum of 11 to a possible maximum of 55, as
shown in Table 14.3.4. (From the way the questions were worded, higher scores
represented less psychological dependence.)

The shape of the histogram for these data suggests that a normality assump-
tion may not be warranted—the weaker assumption of symmetry is more
believable. That said, a case can be made for using a signed rank test on these
data, rather than a one-sample t test.

(Continued on next page)
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Table 14.3.4 Q-Scores of Heroin Addicts
after Cyclazocine Therapy

51 43
53 45
43 27
36 21
55 26
55 22
39 43

The mean score for addicts not given cyclazocine is known from past expe-
rience to be 28. Can we conclude on the basis of the data in Table 14.3.4 that
cyclazocine is an effective treatment?

Since high Q-scores represent less dependence on heroin (and assuming
cyclazocine would not tend to worsen an addict’s condition), the alternative
hypothesis should be one-sided to the right. That is, we want to test

H0:μ= 28
versus
H1:μ> 28

Let α be 0.05.
Table 14.3.5 details the computations showing that the signed rank statis-

tic, w—that is, the sum of the ri zi column—equals 95.0. Since n = 14, E(W ) =
[14(14 + 1)]/4 = 52.5 and Var(W ) = [14(14 + 1)(28 + 1)]/24 = 253.75, so the
approximate Z ratio is

z = 95.0 − 52.5√
253.75

= 2.67

Table 14.3.5 Computations to Find w

Q-Score, yi (yi − 28) |yi − 28| ri zi ri zi

51 +23 23 11 1 11
53 +25 25 12 1 12
43 +15 15 8 1 8
36 +8 8 5 1 5
55 +27 27 13.5 1 13.5
55 +27 27 13.5 1 13.5
39 +11 11 6 1 6
43 +15 15 8 1 8
45 +17 17 10 1 10
27 −1 1 1 0 0
21 −7 7 4 0 0
26 −2 2 2 0 0
22 −6 6 3 0 0
43 +15 15 8 1 8

95.0

(Continued on next page)
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(Case Study 14.3.2 continued)

The latter considerably exceeds the one-sided 0.05 critical value identified in
part (a) of Theorem 14.3.3 (= z0.05 = 1.64), so the appropriate conclusion is to
reject H0—it would appear that cyclazocine therapy is helpful in reducing heroin
dependence.

Testing H0 :μD = 0 (Paired Data)

A Wilcoxon signed rank test can also be used on paired data to test H0:μD = 0,
where μD =μX −μY (recall Section 13.3). Suppose that responses to two treatment
levels (X and Y ) are recorded within each of n pairs. Let di = xi − yi be the response
difference recorded for Treatment X and Treatment Y within the ith pair, and let ri

be the rank of |xi − yi | in the set |x1 − y1|, |x2 − y2|, . . . , |xn − yn|. Define

zi =
{

1 if xi − yi > 0

0 if xi − yi < 0

and let w =
n∑

i=1
ri zi .

If n < 12, critical values for testing H0:μD = 0 are gotten from Table A.6 in the
Appendix in exactly the same way that decision rules were determined for using the
signed rank test on H0:μ = μ0. If n > 12, an approximate Z test for H0:μD = 0 can
be carried out using the formulas given in Theorem 14.3.2.

Case Study 14.3.3

Until recently, all evaluations of college courses and instructors have been done
in class using questionnaires that were filled out in pencil. But as administrators
well know, tabulating those results and typing the students’ written comments
(to preserve anonymity) take up a considerable amount of secretarial time. To
expedite that process, some schools have considered doing evaluations online.
Not all faculty support such a change, though, because of their suspicion that
online evaluations might result in lower ratings (which, in turn, would affect
their chances for reappointment, tenure, or promotion).

To investigate the merits of that concern, one university (104) did a pilot
study where a small number of instructors had their courses evaluated online.
Those same teachers had taught the same course the previous year and had been
evaluated the usual way in class. Table 14.3.6 shows a portion of the results. The
numbers listed are the responses on a 1- to 5-point scale (“5” being the best) to
the question “Overall Rating of the Instructor.” Here, xi and yi denote the ith
instructor’s ratings “in-class” and “online,” respectively.

To test H0:μD = 0 versus H1:μD �= 0, where μD = μX − μY , at the α = 0.05
level of significance requires that H0 be rejected if the approximate Z ratio in
Theorem 14.3.2 is either (1) ≤−1.96 or (2) ≥+1.96. But

(Continued on next page)
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z = w −[n(n + 1)/4]√[n(n + 1)(2n + 1)]/24
= 70 −[15(16)/4]√[15(16)(31)]/24

= 0.57

so the appropriate conclusion is to “fail to reject H0.” The results in Table 14.3.6
are entirely consistent, in other words, with the hypothesis that the mode of
evaluation—in-class or online—has no bearing on an instructor’s rating.

Table 14.3.6

Obs. # Instr. In-Class, xi Online, yi |xi − yi | ri zi ri zi

1 EF 4.67 4.36 0.31 7 1 7
2 LC 3.50 3.64 0.14 3 0 0
3 AM 3.50 4.00 0.50 11 0 0
4 CH 3.88 3.26 0.62 12 1 12
5 DW 3.94 4.06 0.12 2 0 0
6 CA 4.88 4.58 0.30 6 1 6
7 MP 4.00 3.52 0.48 10 1 10
8 CP 4.40 3.66 0.74 13 1 13
9 RR 4.41 4.43 0.02 1 0 0

10 TB 4.11 4.28 0.17 4 0 0
11 GS 3.45 4.25 0.80 15 0 0
12 HT 4.29 4.00 0.29 5 1 5
13 DW 4.25 5.00 0.75 14 0 0
14 FE 4.18 3.85 0.33 8 1 8
15 WD 4.65 4.18 0.47 9 1 9

w = 70

About the Data Theoretically, the fact that all of the in-class evaluations were
done first poses some problems for the interpretation of the ratings in Table 14.3.6. If
instructors tend to receive higher (or lower) ratings on successive attempts to teach
the same course, then the differences xi − yi would be biased by a time effect. How-
ever, when instructors have already taught a course several times (which was true
for the faculty included in Table 14.3.6), experience has shown that trends in future
attempts are not what tend to happen—instead, ratings go up and down, seemingly
at random.

Testing H0 : μX = μY (The Wilcoxon Rank Sum Test)

Another redefinition of the statistic w =∑
t

ri zi allows ranks to be used as a way of

testing the two-sample hypothesis, H0:μX = μY , where μX and μY are the means
of two continuous distributions, fX (x) and fY (y). It will be assumed that fX (x) and
fY (y) have the same shape and the same standard deviation, but they may differ with
respect to location—that is, Y = X − c, for some constant c. When those restrictions
are met, the Wilcoxon rank sum test can appropriately be used as a nonparametric
alternative to the pooled two-sample t test.
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Let x1, x2, . . . , xn and yn+1, yn+2, . . . , yn+m be two independent random samples
of sizes n and m from fX (x) and fY (y), respectively. Define ri to be the rank of
the ith observation in the combined sample (so ri ranges from 1 for the smallest
observation to n + m for the largest observation).
Let

zi =
{1 if the ith observation came from fX (x)

0 if the ith observation came from fY (y)

and define

w′ =
n+m∑
i=1

ri zi

Here, w′ denotes the sum of the ranks in the combined sample of the n observations
coming from fX (x). Clearly, w′ is capable of distinguishing between H0 and H1. If,
for example, fX (x) has shifted to the right of fY (y), the sum of the ranks of the x
observations would tend to be larger than if fX (x) and fY (y) had the same location.

For small values of n and m, critical values for w′ have been tabulated [see, for
example, (81)]. When n and m both exceed 10, a normal approximation can be used.

Theorem
14.3.4

Let x1, x2, . . . , xn and yn+1, yn+2, . . . , yn+m be two independent random samples from
fX (x) and fY (y), respectively, where the two pdfs are the same except for a possible
shift in location. Let ri denote the rank of the i th observation in the combined sample
(where the smallest observation is assigned a rank of 1 and the largest observation, a
rank of n + m). Let

w′ =
n+m∑
i=1

ri zi

where zi is 1 if the i th observation comes from fX (x) and 0, otherwise. Then

E(W ′)= n(n + m + 1)

2

Var(W ′)= nm(n + m + 1)

12
and

W ′ − n(n + m + 1)/2√
nm(n + m + 1)/12

has approximately a standard normal pdf if n > 10 and m > 10.

Proof See (102). �

Case Study 14.3.4

In Major League Baseball, American League teams have the option of using a
“designated hitter” to bat for a particular position player, typically the pitcher.
In the National League, no such substitutions are allowed, and every player
must bat for himself (or be removed from the game). As a result, batting and
base-running strategies employed by National League managers are much dif-
ferent than those used by their American League counterparts. What is not

(Continued on next page)
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so obvious is whether those differences in how games are played have any
demonstrable effect on how long it takes games to be played.

Table 14.3.7. shows the average home-game completion time (in minutes)
reported by the twenty-six Major League teams for the 1992 season. The Amer-
ican League average was 173.5 minutes; the National League average, 165.8
minutes. Is the difference between those two averages statistically significant?

The entry at the bottom of the last column is the sum of the ranks of

the American League times—that is, w′ =
26∑

i=1
ri zi = 240.5. Since the American

League and National League had n =14 and m =12 teams, respectively, in 1992,
the formulas in Theorem 14.3.3 give

E(W ′)= 14(14 + 12 + 1)

2
= 189

and

Var(W ′)= 14 · 12(14 + 12 + 1)

12
= 378

Table 14.3.7

Obs. # Team Time (min) ri zi ri zi

1 Baltimore 177 21 1 21
2 Boston 177 21 1 21
3 California 165 7.5 1 7.5
4 Chicago (AL) 172 14.5 1 14.5
5 Cleveland 172 14.5 1 14.5
6 Detroit 179 24.5 1 24.5
7 Kansas City 163 5 1 5
8 Milwaukee 175 18 1 18
9 Minnesota 166 9.5 1 9.5

10 New York (AL) 182 26 1 26
11 Oakland 177 21 1 21
12 Seattle 168 12.5 1 12.5
13 Texas 179 24.5 1 24.5
14 Toronto 177 21 1 21
15 Atlanta 166 9.5 0 0
16 Chicago (NL) 154 1 0 0
17 Cincinnati 159 2 0 0
18 Houston 168 12.5 0 0
19 Los Angeles 174 16.5 0 0
20 Montreal 174 16.5 0 0
21 New York (NL) 177 21 0 0
22 Philadelphia 167 11 0 0
23 Pittsburgh 165 7.5 0 0
24 San Diego 161 3.5 0 0
25 San Francisco 164 6 0 0
26 St. Louis 161 3.5 0 0

w′ = 240.5

(Continued on next page)
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(Case Study 14.3.4 continued)

The approximate Z statistic, then, is:

z = w′ − E(W ′)√
Var(W ′)

= 240.5 − 189√
378

= 2.65

At the α = 0.05 level, the critical values for testing H0:μX = μY versus H1:
μX �= μY would be ±1.96. The conclusion, then, is to reject H0—the difference
between 173.5 and 165.8 is statistically significant.

(Note: When two or more observations are tied, they are each assigned the
average of the ranks they would have received had they been slightly different.
There were five observations that equaled 177, and they were competing for
the ranks 19, 20, 21, 22, and 23. Each, then, received the corresponding average
value of 21.)

Questions

14.3.3. Two manufacturing processes are available for
annealing a certain kind of copper tubing, the primary
difference being in the temperature required. The criti-
cal response variable is the resulting tensile strength. To
compare the methods, fifteen pieces of tubing were bro-
ken into pairs. One piece from each pair was randomly
selected to be annealed at a moderate temperature, the
other piece at a high temperature. The resulting tensile
strengths (in tons/sq in.) are listed in the following table.
Analyze these data with a Wilcoxon signed rank test. Use
a two-sided alternative. Let α = 0.05.

Tensile Strengths (tons/sq in.)

Moderate High
Pair Temperature Temperature

1 16.5 16.9
2 17.6 17.2
3 16.9 17.0
4 15.8 16.1
5 18.4 18.2
6 17.5 17.7
7 17.6 17.9
8 16.1 16.0
9 16.8 17.3

10 15.8 16.1
11 16.8 16.5
12 17.3 17.6
13 18.1 18.4
14 17.9 17.2
15 16.4 16.5

14.3.4. To measure the effect on coordination associated
with mild intoxication, thirteen subjects were each given
15.7 mL of ethyl alcohol per square meter of body sur-
face area and asked to write a certain phrase as many
times as they could in the space of one minute (119).
The number of correctly written letters was then counted
and scaled, with a scale value of 0 representing the score
a subject not under the influence of alcohol would be
expected to achieve. Negative scores indicate decreased
writing speeds; positive scores, increased writing speeds.

Subject Score Subject Score

1 −6 8 0
2 10 9 −7
3 9 10 5
4 −8 11 −9
5 −6 12 −10
6 −2 13 −2
7 20

Use the signed rank test to determine whether the level
of alcohol provided in this study had any effect on writing
speed. Let α=0.05. Omit Subject 8 from your calculations.

14.3.5. Test H0: μ̃ = 0.80 versus H1: μ̃ < 0.80 for the
FEV1/VC ratio data of Question 5.3.2 using a Wilcoxon
signed rank test. Let α = 0.10. Compare this test to the
sign test of Question 14.2.7.

14.3.6. Do a Wilcoxon signed rank test on the
hemoglobin data summarized in Case Study 13.3.1. Let α
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be 0.05. Compare your conclusion with the outcome of the
sign test done in Question 14.2.11.

14.3.7. Suppose that the population being sampled is
symmetric and we wish to test H0: μ̃ = μ̃0. Both the sign
test and the signed rank test would be valid. Which
procedure, if either, would you expect to have greater
power? Why?

14.3.8. Use a signed rank test to analyze the depth
perception data given in Question 8.2.6. Let α = 0.05.

14.3.9. Recall Question 9.2.6. Compare the ages at death
for authors noted for alcohol abuse with the ages at death
for authors not noted for alcohol abuse using a Wilcoxon
rank sum test. Let α = 0.05.

14.3.10. Use a large-sample Wilcoxon rank sum test to
analyze the alpha wave data summarized in Table 9.3.1.
Let α = 0.05.

14.4 The Kruskal-Wallis Test
The next two sections of this chapter discuss the nonparametric counterparts for the
two analysis of variance models introduced in Chapters 12 and 13. Neither of these
procedures, the Kruskal-Wallis test and the Friedman test, will be derived. We will
simply state the procedures and illustrate them with examples.

First, we consider the k-sample problem. Suppose that k(≥ 2) independent ran-
dom samples of sizes n1,n2, . . . ,nk are drawn, representing k continuous populations
having the same shape but possibly different locations: fY1(y − c1) = fY2(y − c2) =
. . . = fYk (y − ck), for constants c1, c2, . . . , ck . The objective is to test whether the
locations of the fY j (y)’s, j = 1,2, . . . , k, might all be the same—that is,

H0: μ1 =μ2 = . . . =μk

versus

H1: not all the μ j ’s are equal

The Kruskal-Wallis procedure for testing H0 is really quite simple, involving
considerably fewer computations than the analysis of variance. The first step is to

rank the entire set of n =
k∑

j=1
n j observations from smallest to largest. Then the rank

sum, R. j , is calculated for each sample. Table 14.4.1 shows the notation that will be
used: It follows the same conventions as the dot notation of Chapter 12. The only
difference is the addition of Ri j , the symbol for the rank corresponding to Yi j .

The Kruskal-Wallis statistic, B, is defined as

B = 12

n(n + 1)

k∑
j=1

R2
. j

n j
− 3(n + 1)

Table 14.4.1 Notation for Kruskal-Wallis Procedure

Treatment Level

1 2 · · · k

Y11(R11) Y12(R12) Y1k(R1k)

Y21(R21)
...

... · · · ...

Yn11(Rn11) Yn22(Rn22) Ynk k(Rnk k)

Totals R.1 R.2 R.k
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Notice how B resembles the computing formula for SSTR in the analysis of variance.

Here
k∑

j=1

(
R2

. j/n j
)
, and thus B, get larger and larger as the differences between the

population locations increase. [Recall that a similar explanation was given for SSTR

and
k∑

j=1

(
T 2

. j/n j
)
.]

Theorem
14.4.1

Suppose n1,n2, . . . ,nk independent observations are taken from the pdfs fY1(y), fY2(y),

. . . , fYk (y), respectively, where the fYi (y)’s are all continuous and have the same shape.
Let μi be the mean of fYi (y), i = 1,2, . . . , k, and let R.1, R.2, . . . , R.k denote the rank
sums associated with each of the k samples. If H0:μ1 =μ2 = . . . =μk is true,

B = 12

n(n + 1)

k∑
j=1

R2
. j

n j
− 3(n + 1)

has approximately a χ2
k−1 distribution and H0 should be rejected at the α level of sig-

nificance if b >χ2
1−α,k−1. �

Case Study 14.4.1

On December 1, 1969, a lottery was held in Selective Service headquarters in
Washington, D.C., to determine the draft status of all nineteen-year-old males.
It was the first time such a procedure had been used since World War II. Priori-
ties were established according to a person’s birthday. Each of the 366 possible
birth dates was written on a slip of paper and put into a small capsule. The
capsules were then put into a large bowl, mixed, and drawn out one by one.
By agreement, persons whose birthday corresponded to the first capsule drawn
would have the highest draft priority; those whose birthday corresponded to
the second capsule drawn, the second highest priority, and so on. Table 14.4.2
shows the order in which the 366 birthdates were drawn (160). The first date
was September 14 (= 001); the last, June 8 (= 366).

We can think of the observed sequence of draft priorities as ranks from 1 to
366. If the lottery was random, the distributions of those ranks for each of the
months should have been approximately equal. If the lottery was not random,
we would expect to see certain months having a preponderance of high ranks
and other months, a preponderance of low ranks.

Look at the rank totals at the bottom of Table 14.4.2. The differences from
month to month are surprisingly large, ranging from a high of 7000 for March
to a low of 3768 for December. Even more unexpected is the pattern in the vari-
ation (see Figure 14.4.1). Are the rank totals listed in Table 14.4.2 and the rank
averages pictured in Figure 14.4.1 consistent with the hypothesis that the lottery
was random?

Substituting the R· j ’s into the formula for B gives

b = 12

366(367)

[
(6236)2

31
+ · · ·+ (3768)2

31

]
− 3(367)

= 25.95

By Theorem 14.4.1, B has approximately a chi square distribution with 11
degrees of freedom (when H0: μJan =μFeb = . . . =μDec is true).

(Continued on next page)



14.4 The Kruskal-Wallis Test 679

Table 14.4.2 1969 Draft Lottery, Highest Priority (001) to Lowest Priority (366)

Date Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

1 305 086 108 032 330 249 093 111 225 359 019 129
2 159 144 029 271 298 228 350 045 161 125 034 328
3 251 297 267 083 040 301 115 261 049 244 348 157
4 215 210 275 081 276 020 279 145 232 202 266 165
5 101 214 293 269 364 028 188 054 082 024 310 056
6 224 347 139 253 155 110 327 114 006 087 076 010
7 306 091 122 147 035 085 050 168 008 234 051 012
8 199 181 213 312 321 366 013 048 184 283 097 105
9 194 338 317 219 197 335 277 106 263 342 080 043

10 325 216 323 218 065 206 284 021 071 220 282 041
11 329 150 136 014 037 134 248 324 158 237 046 039
12 221 068 300 346 133 272 015 142 242 072 066 314
13 318 152 259 124 295 069 042 307 175 138 126 163
14 238 004 354 231 178 356 331 198 001 294 127 026
15 017 089 169 273 130 180 322 102 113 171 131 320
16 121 212 166 148 055 274 120 044 207 254 107 096
17 235 189 033 260 112 073 098 154 255 288 143 304
18 140 292 332 090 278 341 190 141 246 005 146 128
19 058 025 200 336 075 104 227 311 177 241 203 240
20 280 302 239 345 183 360 187 344 063 192 185 135
21 186 363 334 062 250 060 027 291 204 243 156 070
22 337 290 265 316 326 247 153 339 160 117 009 053
23 118 057 256 252 319 109 172 116 119 201 182 162
24 059 236 258 002 031 358 023 036 195 196 230 095
25 052 179 343 351 361 137 067 286 149 176 132 084
26 092 365 170 340 357 022 303 245 018 007 309 173
27 355 205 268 074 296 064 289 352 233 264 047 078
28 077 299 223 262 308 222 088 167 257 094 281 123
29 349 285 362 191 226 353 270 061 151 229 099 016
30 164 217 208 103 209 287 333 315 038 174 003
31 211 030 313 193 011 079 100

Totals: 6236 5886 7000 6110 6447 5872 5628 5377 4719 5656 4462 3768
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Figure 14.4.1

(Continued on next page)
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(Case Study 14.4.1 continued)

Let α = 0.01. Then H0 should be rejected if b ≥ χ2
.99,11 = 24.725. But b does

exceed that cutoff, implying that the lottery was not random.
An even more resounding rejection of the randomness hypothesis can be

gotten by dividing the twelve months into two half-years—the first, January
through June; the second, July through December. Then the hypotheses to be
tested are

H0: μ1 =μ2

versus
H1: μ1 �=μ2

Table 14.4.3, derived from Table 14.4.2, gives the new rank sums R.1 and
R.2, associated with the two half-years. Substituting those values into the
Kruskal-Wallis statistic shows that the new b (with 1 degree of freedom)
is 16.85:

b = 12

366(367)

[
(37,551)2

182
+ (29,610)2

184

]
− 3(367)

= 16.85

Table 14.4.3 Summary of 1969 Draft Lottery by
Six-Month Periods

Jan.–June (1) July–Dec. (2)

R· j 37,551 29,610
n j 182 184

The significance of 16.85 can be gauged by recalling the moments of a chi square
random variable. If B has a chi square pdf with 1 degree of freedom, then
E(B)= 1 and Var(B)= 2 (see Question 7.3.2). It follows, then, that the observed
b is more than 11 standard deviations away from its mean:

16.85 − 1√
2

= 11.2

Analyzed this way, there can be little doubt that the lottery was not random!

About the Data Needless to say, the way the 1969 draft lottery turned out was a
huge embarrassment for the Selective Service Administration and a public relations
nightmare. Many individuals, both inside and outside the government, argued that
a “do over” was the only fair resolution. Unfortunately, any course of action would
have inevitably angered a sizeable number of people, so the decision was made to
stay with the original lottery, flawed though it was.

A believable explanation for why the selections were so nonrandom is that
(1) the birthday capsules were put into the urn by month (January capsules first,
February capsules second, March capsules next, and so on) and (2) the capsules
were not adequately mixed before the drawings began, leaving birthdays late in the
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year disproportionately near the top of the urn. If (1) and (2) happened, the trend
in Figure 14.4.1 would be the consequence.

What is particularly vexing about the draft lottery debacle and all the furor that
it created is that setting up a “fair” lottery is so very easy. First, the birthday capsules
should have been numbered from 1 to 366. Then a computer or a random number
table should have been used to generate a random permutation of those numbers.
That permutation would define the order in which the capsules would be put into the
urn. If those two simple steps had been followed, the likelihood of a fiasco similar
to that shown in Figure 14.4.1 would have been essentially zero.

Questions

14.4.1. Use a Kruskal-Wallis test to analyze the teacher
expectation data described in Question 8.2.7. Let α =0.05.
What assumptions are being made?

14.4.2. Recall the fiddler crab data given in Ques-
tion 9.5.3. Use the Kruskal-Wallis test to compare the
times spent waving to females by the two groups of males.
Let α = 0.10.

14.4.3. Use the Kruskal-Wallis method to test at the
0.05 level that methylmercury metabolism is different for
males and females in Question 9.2.8.

14.4.4. Redo the analysis of the Quintus Curtius Snod-
grass/Mark Twain data in Case Study 9.2.1, this time using
a nonparametric procedure.

14.4.5. Use the Kruskal-Wallis technique to test the
hypothesis of Case Study 12.2.1 concerning the effect of
smoking on heart rate.

14.4.6. A sample of ten 40-W light bulbs was taken
from each of three manufacturing plants. The bulbs were
burned until failure. The number of hours that each
remained lit is listed in the following table.

Plant 1 Plant 2 Plant 3

905 1109 571
1018 1155 1346

905 835 292
886 1152 825
958 1036 676

1056 926 541
904 1029 818
856 1040 90

1070 959 2246
1006 996 104

(a) Test the hypothesis that the median lives of bulbs
produced at the three plants are all the same. Use
the 0.05 level of significance.

(b) Are the mean lives of bulbs produced at the three
plants all the same? Use the analysis of variance with
α = 0.05.

(c) Change the observation “2246” in the third column
to “1500” and redo part (a). How does this change
affect the hypothesis test?

(d) Change the observation “2246” in the third column
to “1500” and redo part (b). How does this change
affect the hypothesis test?

14.4.7. The production of a certain organic chemical
requires the addition of ammonium chloride. The manu-
facturer can conveniently obtain the ammonium chloride
in any one of three forms—powdered, moderately ground,
and coarse. To see what effect, if any, the quality of the
NH4Cl has, the manufacturer decides to run the reac-
tion seven times with each form of ammonium chloride.
The resulting yields (in pounds) are listed in the following
table. Compare the yields with a Kruskal-Wallis test. Let
α = 0.05.

Organic Chemical Yields (lb)

Moderately
Powdered NH4Cl Ground NH4Cl Coarse NH4Cl

146 150 141
152 144 138
149 148 142
161 155 146
158 154 139
149 150 145
154 148 137

14.4.8. Show that the Kruskal-Wallis statistic, B, as
defined in Theorem 14.4.1 can also be written

B =
k∑

j=1

(
n − n j

n

)
Z 2

j

where

Z j =
R. j

n j
− n + 1

2√
(n + 1)(n − n j )

12n j
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14.5 The Friedman Test
The nonparametric analog of the analysis of variance for a randomized block design
is Friedman’s test, a procedure based on within-block ranks. Its form is similar to
that of the Kruskal-Wallis statistic, and, like its predecessor, it has approximately a
χ2 distribution when H0 is true.

Theorem
14.5.1

Suppose k(≥ 2) treatments are ranked independently within b blocks. Let r· j , j =
1,2, . . . , k, be the rank sum of the j th treatment. The null hypothesis that the popula-
tion medians of the k treatments are all equal is rejected at the α level of significance
(approximately) if

g = 12

bk(k + 1)

k∑
j=1

r2
· j − 3b(k + 1) ≥χ2

1−α,k−1 �

Case Study 14.5.1

Baseball rules allow a batter considerable leeway in how he is permitted to
run from home plate to second base. Two of the possibilities are the narrow-
angle and the wide-angle paths diagrammed in Figure 14.5.1. As a means of
comparing the two, time trials were held involving twenty-two players (206).
Each player ran both paths. Recorded for each runner was the time it took to
go from a point 35 feet from home plate to a point 15 feet from second base.
Based on those times, ranks (1 and 2) were assigned to each path for each player
(see Table 14.5.1).

Narrow-angle Wide-angle

Figure 14.5.1 Batter’s path from home plate to second base.

If μ̃1 and μ̃2 denote the true median rounding times associated with the
narrow-angle and wide-angle paths, respectively, the hypotheses to be tested are

H0: μ̃1 = μ̃2

versus
H1: μ̃1 �= μ̃2

Let α = 0.05. By Theorem 14.5.1, the Friedman statistic (under H0) will have
approximately a χ2

1 distribution, and the decision rule will be

Reject H0 if g ≥ 3.84

(Continued on next page)
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Table 14.5.1 Times (sec) Required to Round First Base

Player Narrow-Angle Rank Wide-Angle Rank

1 5.50 1 5.55 2
2 5.70 1 5.75 2
3 5.60 2 5.50 1
4 5.50 2 5.40 1
5 5.85 2 5.70 1
6 5.55 1 5.60 2
7 5.40 2 5.35 1
8 5.50 2 5.35 1
9 5.15 2 5.00 1

10 5.80 2 5.70 1
11 5.20 2 5.10 1
12 5.55 2 5.45 1
13 5.35 1 5.45 2
14 5.00 2 4.95 1
15 5.50 2 5.40 1
16 5.55 2 5.50 1
17 5.55 2 5.35 1
18 5.50 1 5.55 2
19 5.45 2 5.25 1
20 5.60 2 5.40 1
21 5.65 2 5.55 1
22 6.30 2 6.25 1

39 27

But

g = 12

22(2)(3)
[(39)2 + (27)2] − 3(22)(3)= 6.54

implying that the two paths are not equivalent. The wide-angle path appears to
enable runners to reach second base quicker.

Questions

14.5.1. The following data come from a field trial set up
to assess the effects of different amounts of potash on the
breaking strength of cotton fibers (25). The experiment
was done in three blocks. The five treatment levels—36,
54, 72, 108, and 144 lbs of potash per acre—were assigned

Pressley Strength Index for Cotton Fibers

Treatment (pounds of potash/acre)

36 54 72 108 144

1 7.62 8.14 7.76 7.17 7.46
Blocks 2 8.00 8.15 7.73 7.57 7.68

3 7.93 7.87 7.74 7.80 7.21

randomly within each block. The variable recorded was
the Pressley strength index. Compare the effects of the dif-
ferent levels of potash applications using Friedman’s test.
Let α = 0.05.

14.5.2. Use Friedman’s test to analyze the Transylvania
effect data given in Case Study 13.2.3.

14.5.3. Until its recent indictment as a possible car-
cinogen, cyclamate was a widely used sweetener in
soft drinks. The following data show a comparison of
three laboratory methods for determining the percentage
of sodium cyclamate in commercially produced orange
drink. All three procedures were applied to each of twelve
samples (156).
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Percent Sodium Cyclamate (w/w)

Method

Sample Picryl Chloride Davies AOAC

1 0.598 0.628 0.632
2 0.614 0.628 0.630
3 0.600 0.600 0.622
4 0.580 0.612 0.584
5 0.596 0.600 0.650
6 0.592 0.628 0.606
7 0.616 0.628 0.644
8 0.614 0.644 0.644
9 0.604 0.644 0.624

10 0.608 0.612 0.619
11 0.602 0.628 0.632
12 0.614 0.644 0.616

Use Friedman’s test to determine whether the differences
from method to method are statistically significant. Let
α = 0.05.

14.5.4. Use Friedman’s test to compare the effects of
habitat density on cockroach aggression for the data given
in Question 8.2.4. Let α = 0.05. Would the conclusion be
any different if the densities were compared using the
analysis of variance?

14.5.5. Compare the acrophobia therapies described in
Case Study 13.2.1 using the Friedman test. Let α = 0.01.
Does your conclusion agree with the inference reached
using the analysis of variance?

14.5.6. Suppose that k treatments are to be applied within
each of b blocks. Let r .. denote the average of the bk ranks
and let r . j = (1/b)r. j . Show that the Friedman statistic
given in Theorem 14.5.1 can also be written

g = 12b

k(k + 1)

k∑
j=1

(
r . j − r ..

)2
What analysis of variance expression does this resemble?

14.6 Testing for Randomness
All hypothesis tests, parametric as well as nonparametric, make the implicit assump-
tion that the observations comprising a given sample are random, meaning that
the value of yi does not predispose the value of y j . Should that not be the case,
identifying the source of the nonrandomness—and doing whatever it takes to elim-
inate it from future observations—necessarily becomes the experimenter’s first
objective.

Examples of nonrandomness are not uncommon in industrial settings, where
successive measurements made on a particular piece of equipment may show
a trend, for example, if the machine is slowly slipping out of calibration. The
other extreme—where measurements show a nonrandom alternating pattern (high
value, low value, high value, low value, . . .)—can occur if successive measurements
are made by two different operators, whose standards or abilities are markedly
different, or, perhaps, by one operator using two different machines.

A variety of tests based on runs of one sort or another can be used to examine
the randomness of a sequence of measurements. One of the most useful is a test
based on the total number of “runs up and down.”

Suppose that y1, y2, . . . , yn denotes a set of n time-ordered measurements. Let
sgn(yi − yi−1) denote the algebraic sign of the difference yi − yi−1. (It will be assumed
that the yi ’s represent a continuous random variable, so the probability of yi and yi−1

being equal is zero.) The n observations, then, produce an ordered arrangement
of n − 1 pluses and/or minuses representing the signs of the differences between
consecutive measurements (see Figure 14.6.1).

Figure 14.6.1 Data: y1

sgn(y2 y1)

y2 y3

sgn(y3 y2)

. . . yn 1 yn

sgn(yn yn 1)− − − −

−
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For example, the n = 5 observations

14.2 10.6 11.2 12.1 9.3

generate the “sgn” sequence

− + + −
which corresponds to an initial run down (that is, going from 14.2 to 10.6), followed
by two runs up, and ending with a final run down.

Let W denote the total number of runs up and down, as reflected by the
sequence sgn(y2 − y1), sgn(y3 − y2), . . . , sgn(yn − yn−1). For the example just cited,
W = 3. In general, if W is too large or too small, it can be concluded that the
yi ’s are not random. The appropriate decision rule derives from an approximate
Z ratio.

Theorem
14.6.1

Let W denote the number of runs up and down in a sequence of n observations, where
n > 2. If the sequence is random, then

a. E(W )= 2n−1
3

b. Var(W )= 16n−29
90

and

c. W−E(W )√
Var(W )

.= Z , when n ≥ 20.

Proof See (125) and (204). �

Case Study 14.6.1

The first widespread labor dispute in the United States occurred in 1877. Rail-
roads were the target, and workers were idled from Pittsburgh to San Francisco.
That initial confrontation may have been a long time coming, but organiz-
ers were quick to recognize what a powerful weapon a work stoppage could
be—36,757 more strikes were called between 1881 and 1905!

For that twenty-five-year period, Table 14.6.1 shows the annual numbers of
strikes that were called and the percentages that were deemed successful (31).
By definition, a strike was considered “successful” if most or all of the workers’
demands were met.

An obvious question suggested by the nature of these data is whether the
workers’ successes from year to year were random. One plausible hypothe-
sis would be that the percentages of successful strikes should show a trend
and tend to increase, as unions acquired more and more power. On the other
hand, it could be argued that years of high success rates might tend to alter-
nate with years of low success rates, indicating a kind of labor and management
standoff. Still another hypothesis, of course, would be that the percentages show
no patterns whatsoever and qualify as a random sequence.

The last column shows the calculation of sgn(yi − yi−1) for i = 2,3, . . . ,25.
By inspection, the number of runs up and down in that sequence of pluses and
minuses is eighteen. To test

(Continued on next page)
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(Case Study 14.6.1 continued)

Table 14.6.1

Year Number of Strikes % Successful, yi sgn(yi − yi−1)

1881 451 61 −
1882 454 53 +
1883 478 58 −
1884 443 51 +
1885 645 52 −
1886 1432 34 +
1887 1436 45 +
1888 906 52 −
1889 1075 46 +
1890 1833 52 −
1891 1717 37 +
1892 1298 39 +
1893 1305 50 −

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

w = 18
1894 1349 38 +
1895 1215 55 +
1896 1026 59 −
1897 1078 57 +
1898 1056 64 +
1899 1797 73 −
1900 1779 46 +
1901 2924 48 −
1902 3161 47 −
1903 3494 40 −
1904 2307 35 +
1905 2077 40

H0: The yi ’s are random with respect to the number of runs up and down

versus

H1: The yi ’s are not random with respect to the number of runs up and down

at the α = 0.05 level of significance, we should reject the null hypothesis if
w−E(W )√

Var(W )
is either (1) ≤−zα/2 =−1.96 or (2) ≥ zα/2 = 1.96. Given that n = 25,

E(W )= 2(25)− 1

3
= 16.3

and

Var(W )= 16(25)− 29

90
= 4.12

so the observed test statistic is +0.84:

z = 18 − 16.3√
4.12

= 0.84

Our conclusion, then, is to fail to reject H0—it is believable, in other words, that
the observed sequence of runs up and down could, in fact, have come from a
sample of twenty-five random observations.
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About the Data Another hypothesis suggested by these data is that the per-
centage of successful strikes might vary inversely with the number of strikes: As
the latter increased, the number of “frivolous” disputes might also have increased,
which could understandably lead to a lower percentage of successful resolutions. In
point of fact, that explanation does appear to have some merit. A linear fit of the
twenty-five observations yields the equation

% successful = 56.17 − 0.0047 · number of strikes

and the null hypothesis H0: β1 = 0 is rejected at the α = 0.05 level of significance.

Questions

14.6.1. The data in the table examine the relationship
between stock market changes (1) during the first few
days in January and (2) over the course of the entire year.
Included are the years from 1950 through 1986.

(a) Use Theorem 14.6.1 to test the randomness of the
January changes (relative to the number of runs up
and down). Let α = 0.05.

(b) Use Theorem 14.6.1 to test the randomness of the
annual changes. Let α = 0.05.

% Change for
First 5 Days in % Change

Year Jan., x for Year, y

1950 2.0 21.8
1951 2.3 16.5
1952 0.6 11.8
1953 −0.9 −6.6
1954 0.5 45.0
1955 −1.8 26.4
1956 −2.1 2.6
1957 −0.9 −14.3
1958 2.5 38.1
1959 0.3 8.5
1960 −0.7 −3.0
1961 1.2 23.1
1962 −3.4 −11.8
1963 2.6 18.9
1964 1.3 13.0
1965 0.7 9.1
1966 0.8 −13.1
1967 3.1 20.1
1968 0.2 7.7
1969 −2.9 −11.4
1970 0.7 0.1
1971 0.0 10.8
1972 1.4 15.6
1973 1.5 −17.4
1974 −1.5 −29.7
1975 2.2 31.5
1976 4.9 19.1
1977 −2.3 −11.5

1978 −4.6 1.1
1979 2.8 12.3
1980 0.9 25.8
1981 −2.0 −9.7
1982 −2.4 14.8
1983 3.2 17.3
1984 2.4 1.4
1985 −1.9 26.3
1986 −1.6 14.6

14.6.2. Listed below for two consecutive fiscal years
are the monthly numbers of passenger boardings at a
Florida airport. Use Theorem 14.6.1 to test whether these
twenty-four observations can be considered a random
sequence, relative to the number of runs up and down.
Let α = 0.05.

Passenger Passenger
Month Boardings Month Boardings

July 41,388 July 44,148
Aug. 44,880 Aug. 42,038
Sept. 33,556 Sept. 35,157
Oct. 34,805 Oct. 39,568
Nov. 33,025 Nov. 34,185
Dec. 34,873 Dec. 37,604
Jan. 31,330 Jan. 28,231
Feb. 30,954 Feb. 29,109
March 32,402 March 38,080
April 38,020 April 34,184
May 42,828 May 39,842
June 41,204 June 46,727

14.6.3. On the next page is a partial statistical summary
of the first twenty-four Super Bowls (33). Of particu-
lar interest to advertisers is the network share that each
game garnered. Can those shares be considered a random
sequence, relative to the number of runs up and down?
Test the appropriate hypothesis at the α = 0.05 level of
significance.
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Network
Game, Winner, MVP Is Share
Year Loser Score QB (network)

I Green Bay (NFL) 35 1 79
1967 Kansas City (AFL) 10 (CBS/NBC

combined)
II Green Bay (NFL) 33 1 68
1968 Oakland (AFL) 14 (CBS)
III NY Jets (AFL) 16 1 71
1969 Baltimore (NFL) 7 (NBC)
IV Kansas City (AFL) 23 1 69
1970 Minnesota (NFL) 7 (CBS)
V Baltimore (AFC) 16 0 75
1971 Dallas (NFC) 13 (NBC)
VI Dallas (NFC) 24 1 74
1972 Miami (AFC) 3 (CBS)
VII Miami (AFC) 14 0 72
1973 Washington (NFC) 7 (NBC)
VIII Miami (AFC) 24 0 73
1974 Minnesota (NFC) 7 (CBS)
IX Pittsburgh (AFC) 16 0 72
1975 Minnesota (NFC) 6 (NBC)
X Pittsburgh (AFC) 21 0 78
1976 Dallas (NFC) 17 (CBS)
XI Oakland (AFC) 32 0 73
1977 Minnesota (NFC) 14 (NBC)
XII Dallas (NFC) 27 0 67
1978 Denver (AFC) 10 (CBS)
XIII Pittsburgh (AFC) 35 1 74
1979 Dallas (NFC) 31 (NBC)
XIV Pittsburgh (AFC) 31 1 67
1980 Los Angeles (AFC) 19 (CBS)
XV Oakland (AFC) 27 1 63
1981 Philadelphia (NFC) 10 (NBC)
XVI San Francisco (NFC) 26 1 73
1982 Cincinnati (AFC) 21 (CBS)
XVII Washington (NFC) 27 0 69
1983 Miami (AFC) 17 (NBC)
XVIII LA Raiders (AFC) 38 0 71
1984 Washington (NFC) 9 (CBS)
XIX San Francisco (NFC) 38 1 63
1985 Miami (AFC) 16 (ABC)
XX Chicago (NFC) 46 0 70
1986 New England (AFC) 10 (NBC)
XXI NY Giants (NFC) 39 1 66
1987 Denver (AFC) 20 (CBS)
XXII Washington (NFC) 42 1 62
1988 Denver (AFC) 10 (ABC)
XXIII San Francisco (NFC) 20 0 68
1989 Cincinnati (AFC) 16 (NBC)
XXIV San Francisco (NFC) 55 1 63
1990 Denver (AFC) 10 (CBS)

14.6.4. In the next column are the lengths (in mm) of
furniture dowels recorded as part of an ongoing quality-
control program. Listed are the measurements made on
thirty samples (each of size 4) taken in order from the

assembly line. Is the variation in the sample averages ran-
dom with respect to the number of runs up and down?
Do an appropriate hypothesis test at the α = 0.05 level of
significance.

Sample y1 y2 y3 y4 y

1 46.1 44.4 45.3 44.2 45.0
2 46.0 45.4 42.5 44.4 44.6
3 44.3 44.0 45.4 43.9 44.4
4 44.9 43.7 45.2 44.8 44.7
5 43.0 45.3 45.9 43.8 44.5

6 46.0 43.2 44.4 43.7 44.3
7 46.0 44.6 45.4 46.4 45.6
8 46.1 45.5 45.0 45.5 45.5
9 42.8 45.1 44.9 44.3 44.3

10 45.0 46.7 43.0 44.8 44.9

11 45.5 44.5 45.1 47.1 45.6
12 45.8 44.6 44.8 45.1 45.1
13 45.1 45.4 46.0 45.4 45.5
14 44.6 43.8 44.2 43.9 44.1
15 44.8 45.5 45.2 46.2 45.4

16 45.8 44.1 43.3 45.8 44.8
17 44.1 44.8 46.1 45.5 45.1
18 44.5 43.6 45.1 46.9 45.0
19 45.2 43.1 46.3 46.4 45.3
20 45.9 46.8 46.8 45.8 46.3

21 44.0 44.7 46.2 45.4 45.1
22 43.4 44.6 45.4 44.4 44.5
23 43.1 44.6 44.5 45.8 44.5
24 46.6 43.3 45.1 44.2 44.8
25 46.2 44.9 45.3 46.0 45.6

26 42.5 43.4 44.3 42.7 43.2
27 43.4 43.3 43.4 43.5 43.4
28 42.3 42.4 46.6 42.3 43.4
29 41.9 42.9 42.0 42.9 42.4
30 43.2 43.5 42.2 44.7 43.4

14.6.5. Listed below are forty ordered observations gen-
erated by Minitab’s RANDOM command that presum-
ably represent a normal distribution with μ=5 and σ = 2.
Can the sample be considered random with respect to the
number of runs up and down?

Obs. # yi Obs. # yi Obs. # yi Obs. # yi

1 7.0680 11 7.6979 21 5.9828 31 5.2625
2 4.0540 12 4.4338 22 1.4614 32 5.9047
3 6.6165 13 5.6538 23 9.2655 33 4.6342
4 1.2166 14 8.0791 24 4.9281 34 5.3089
5 4.6158 15 4.7458 25 10.5561 35 5.4942
6 7.7540 16 3.5044 26 6.1738 36 6.6914
7 7.7300 17 1.3071 27 5.4895 37 1.4380
8 6.5109 18 5.7893 28 3.6629 38 8.2604
9 3.8933 19 4.5241 29 3.7223 39 5.0209

10 2.7533 20 5.3291 30 3.5211 40 0.5544
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14.6.6. Sunnydale Farms markets an all-purpose fertilizer
that is supposed to contain, by weight, 15% potash (K2O).
Samples were taken daily in October from three bags
chosen at random as they came off the filling machine.
Tabulated on the right are the K2O percentages recorded.
Calculate the range (= ymax − ymin) for each sample. Use
Theorem 14.6.1 to test whether the variation in the ranges
can be considered random with respect to the number of
runs up and down.

Date y1 y2 y3 Date y1 y2 y3

10/1 16.1 14.4 15.3 10/15 16.3 13.3 15.3
10/2 16.0 16.4 13.5 10/16 17.4 13.8 14.3
10/3 14.3 14.0 15.4 10/17 13.5 11.0 15.4
10/4 14.8 13.1 15.2 10/18 15.6 9.2 18.9
10/5 12.0 15.4 16.4 10/19 16.3 17.6 20.5

10/8 16.4 12.3 14.2 10/22 14.3 15.6 17.0
10/9 16.9 14.2 15.8 10/23 15.4 15.3 15.4

10/10 17.2 16.0 14.9 10/24 14.3 14.4 18.6
10/11 10.6 15.3 14.9 10/25 13.9 14.9 14.0
10/12 15.0 19.2 10.0 10/26 15.2 15.5 14.2

14.7 Taking a Second Look at Statistics (Comparing
Parametric and Nonparametric Procedures)
Virtually every parametric hypothesis test an experimenter might consider doing has
one or more nonparametric analogs. Using two independent samples to compare
the locations of two distributions, for example, can be done with a two-sample t test
or with a Wilcoxon signed rank test. Likewise, comparing k treatment levels using
dependent samples can be accomplished with the (parametric) analysis of variance
or with the (nonparametric) Friedman’s test. Having alternative ways to analyze
the same set of data inevitably raises the same sorts of questions that surfaced in
Section 13.4—which procedure should be used in a given situation, and why?

The answers to those questions are rooted in the origins of the data—that is, in
the pdfs generating the samples—and what those origins imply about (1) the rela-
tive power of the parametric and nonparametric procedures and (2) the robustness
of the two procedures. As we have seen, parametric procedures make assumptions
about the origin of the data that are much more specific than the assumptions
made by nonparametric procedures. The (pooled) two-sample t test, for example,
assumes that the two sets of independent observations come from normal distri-
butions with the same standard deviation. The Wilcoxon signed rank test, on the
other hand, makes the much weaker assumption that the observations come from
symmetric distributions (which, of course, include normal distributions as a special
case). Moreover, each observation does not have to come from the same symmetric
distribution.

In general, if the assumptions made by a parametric test are satisfied, then that
procedure will be superior to any of its nonparametric analogs in the sense that
its power curve will be steeper. (Recall Figure 6.4.5—if the normality assumption is
met, the parametric procedure will have a power curve similar to that for Method B;
the nonparametric procedure would have a power curve similar to Method A’s.)

If one or more of the parametric procedure’s assumptions are not satisfied,
the distribution of its test statistic will not be exactly what it would have been
had the assumptions all been met (recall Figure 7.4.5). If the differences between
the “theoretical” test statistic distribution and the “actual” test statistic distribution
are considerable, the integrity of the parametric procedure is obviously compro-
mised. Whether those two distributions will be considerably different depends on
the robustness of the parametric procedure with respect to whichever assumptions
are being violated.
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Concluding this section is a set of Monte Carlo simulations that compare the
one-way analysis of variance to a Kruskal-Wallis test. In each instance, the data con-
sist of n j = 5 observations taken on each of k = 4 treatment levels. Included are
simulations that focus on (1) the power of the two procedures when the normality
assumption is met and (2) the robustness of the two tests when neither the normality
nor the symmetry assumptions are satisfied. Each simulation is based on one hun-
dred replications, and the twenty observations generated for each replication (by
the RANDOM command) were analyzed twice, once using the analysis of variance
and again using the Kruskal-Wallis test (see Appendix 14.A.1 for an example of the
Minitab syntax).

Figure 14.7.1 shows the distribution of the one hundred observed F ratios
when all the H0 assumptions made by the analysis of variance are satisfied—that
is, five observations were taken on each of four treatment levels, where all twenty
observations were normally distributed with the same mean and the same standard
deviation. Given that n j = 5, k = 4, and n = 20, there would be 3 df for Treatments
and 16 df for Error (recall Figure 12.2.1). Superimposed over the histogram is the
pdf for an F3,16 random variable. Clearly, the agreement between the F curve and
the histogram is excellent.

Figure 14.7.1
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Figure 14.7.2 is the analogous “H0” distribution for the Kruskal-Wallis test. The
one hundred data sets analyzed were the same that gave rise to Figure 14.7.1. Super-
imposed is the χ2

3 pdf. As predicted by Theorem 14.4.1, the distribution of observed
b values is approximated very nicely by the chi square curve with 3 (= k − 1) df.

One of the advantages of nonparametric procedures is that violations of their
assumptions tend to have relatively mild repercussions on the distributions of their
test statistics. Figure 14.7.3 is a case in point. Shown there is a histogram of Kruskal-
Wallis values calculated from one hundred data sets where each of the twenty
observations (n j = 5 and k = 4) came from an exponential pdf with λ = 1—that is,
from fY (y) = e−y, y > 0. The latter is a sharply skewed pdf that violates the sym-
metry assumption underlying the Kruskal-Wallis test. The actual distribution of b
values, though, does not appear to be much different from the values produced in
Figure 14.7.2, where all the assumptions of the Kruskal-Wallis test were met.

A similar insensitivity to the data’s underlying pdf is not entirely shared by the
F test. Figure 14.7.4 summarizes the results of applying the analysis of variance to
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Figure 14.7.2
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Figure 14.7.3
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the same set of one hundred replications that produced Figure 14.7.3. Notice that a
handful of the data sets yielded F ratios much larger than the F3,16 curve would have
predicted. Recall that a similar skewness was observed when the t test was applied
to exponential data where n was small (see Figure 7.4.6b).

Figure 14.7.4
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Having weaker assumptions and being less sensitive to violations of those
assumptions are definite advantages that nonparametric procedures often have over
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their parametric counterparts. But that broader range of applicability does not come
without a price: Nonparametric hypothesis tests will make Type II errors more often
than will parametric procedures when the assumptions of the parametric procedures
are satisfied.

Consider, for example, the two Monte Carlo simulations pictured in
Figures 14.7.5 and 14.7.6. The former shows the results of applying the Kruskal-
Wallis test to one hundred sets of k-sample data, where the five measurements
representing each of the first three treatment levels came from normal distributions
with μ=0 and σ =1, while the five measurements representing the fourth treatment
level came from a normal distribution with μ= 1 and σ = 1. As expected, the distri-
bution of observed b values has shifted to the right, compared to the H0 distribution
shown in Figure 14.7.3. More specifically, 26% of the one hundred data sets pro-
duced Kruskal-Wallis values in excess of 7.815

(= χ2
0.95,3

)
, meaning that H0 would

have been rejected at the α = 0.05 level of significance. [If H0 were true, of course,
the theoretical percentage of b values exceeding 7.815 would be 5%. Only 1% of
the data sets, though, exceeded the α = 0.01 cutoff

(= χ2
0.99,3 = 11.345

)
, which is the

same percentage expected if H0 were true.]

Figure 14.7.5
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Figure 14.7.6
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Figure 14.7.6 shows the results of doing the analysis of variance on the same
one hundred data sets used for Figure 14.7.5. As was true for the Kruskal-Wallis
calculations, the distribution of observed F ratios has shifted to the right (compare
Figure 14.7.6 to Figure 14.7.1). What is especially noteworthy, though, is that the
observed F ratios have shifted much further to the right than did the observed b val-
ues. For example, while only 1% of the observed b values exceeded the α = 0.01
cutoff (= 11.345), a total of 8% of the observed F ratios exceeded their α = 0.01
cutoff (= F0.99,3,16).

So, is there an easy answer to the question of which type of procedure to use,
parametric or nonparametric? Sometimes yes, sometimes no. If it seems reasonable
to believe that all the assumptions of the parametric test are satisfied, then the para-
metric test should be used. For all those situations, though, where the validity of
one or more of the parametric assumptions is in question, the choice becomes more
problematic. If the violation of the assumptions is minimal (or if the sample sizes are
fairly large), the robustness of the parametric procedures (along with their greater
power) usually gives them the edge. Nonparametric tests tend to be reserved for
situations where (1) sample sizes are small, and (2) there is reason to believe that
“something” about the data is markedly inconsistent with the assumptions implicit
in the available parametric procedures.

Appendix 14.A.1 Minitab Applications

The Sign Test

Figure 14.A.1.1 shows Minitab’s sign test routine applied to ten paired samples—(97,
113), (106, 113), . . . , (96, 126). The basic command is

MTB > stest 0.0 c3;
SUBC > alternative 0.

where c3 contains the within-pair differences. The subcommand ALTERNATIVE
0 makes H1 two-sided. One-sided alternative hypotheses require that ALTERNA-
TIVE 1 (if the rejection region is to the right) or ALTERNATIVE–1 (if the rejection
region is to the left) be used.

Figure 14.A.1.1 MTB > set c1
DATA > 97 106 106 95 102 111 115 104 90 96
DATA > end
MTB > set c2
DATA > 113 113 101 119 111 122 121 106 110 126
DATA > end
MTB > let c3 = c2 -- c1
MTB > stest 0.0 c3;
SUBC > alternative 0.

Sign Test for Median: C3

Sign test of median = 0.00000 versus not = 0.00000
N Below Equal Above P MEDIAN

C3 10 1 0 9 0.0215 10.00

The Wilcoxon Signed Rank Test

The Wilcoxon signed rank statistic of Theorem 14.3.2 is calculated using the com-
mand MTB > wtest μ̃o c1, where the yi ’s have been entered in c1. As with the
sign test, the subcommand ALTERNATIVE 0 makes H1 two-sided. Figure 14.A.1.2
summarizes Minitab’s analysis of the shark data from Case Study 14.3.1.
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Figure 14.A.1.2 MTB > set cl
DATA > 13.32 13.06 14.02 11.86 13.58 13.77 13.51 14.42 14.44 15.43
DATA > end
MTB > wtest 14.6 c1;
SUBC > alternative 0.

Wilcoxon Signed Rank Test: C1

Test of median = 14.60 versus median not = 14.60
N For Wilcoxon Estimated

N test Statistic P Median
c1 10 10 4.5 0.022 13.75

The Kruskal-Wallis Test

Data are entered for the Kruskal-Wallis test using the stacked format seen earlier
in connection with the randomized block analysis of variance in Chapter 13. The
syntax, though, is different. First, the data from each treatment level are entered
in a separate column. Then a stack command is used to transfer all those data to a
single column (in this case, c5). Finally, an additional column—here, c6—is defined
that identifies the treatment level represented by each data point in the stacked
column.

Figure 14.A.1.3 shows the Kruskal-Wallis input and output for the heart rate
data given in Case Study 12.2.1.

Figure 14.A.1.3 MTB > set c1
DATA > 69 52 71 58 59 65
DATA > end
MTB > set c2
DATA > 55 60 78 58 62 66
DATA > end
MTB > set c3
DATA > 66 81 70 77 57 79
DATA > end
MTB > set c4
DATA > 91 72 81 67 95 84
DATA > end
MTB > stack c1 c2 c3 c4 c5
MTB > set c6
DATA > 6(1) 6(2) 6(3) 6(4)
DATA > end
MTB > kruskal-wallis c5 c6.

Kruskal-Wallis Test: C5 versus C6

Kruskal-Wallis Test on C5

C6 N Median Ave. Rank Z

1 6 62.00 8.1 -1.77
2 6 61.00 8.3 -1.67
3 6 73.50 14.0 0.60
4 6 82.50 19.6 2.83
Overall 24 12.5
H = 10.71 DF = 3 P = 0.013
H = 10.73 DF = 3 P = 0.013 (adjusted for ties)

The Friedman Test

The syntax for Friedman’s test is similar to what is used for the Kruskal-Wallis
procedure, except that an additional column identifying the block to which each
observation belongs must be included. As before, the data from each treatment level
are initially put into separate columns; then those columns are stacked. For the case
of two treatment levels, the final command would be

MTB > friedman c3 c4 c5
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where c3 is the stacked column of the entire data set, c4 is a column identifying the
treatment level represented by each observation, and c5 is a column giving the block
location of each observation.

Figure 14.A.1.4 is the Friedman analysis of the baseball data in Case
Study 14.5.1. The observed test statistic is denoted S (instead of the g on p. 682).

Figure 14.A.1.4 MTB > set c1
DATA > 5.50 5.70 5.60 5.50 5.85 5.55 5.40 5.50 5.15 5.80 5.20
DATA > 5.55 5.35 5.00 5.50 5.55 5.55 5.50 5.45 5.60 5.65 6.30
DATA > end
MTB > set c2
DATA > 5.55 5.75 5.50 5.40 5.70 5.60 5.35 5.35 5.00 5.70 5.10
DATA > 5.45 5.45 4.95 5.40 5.50 5.35 5.55 5.25 5.40 5.55 6.25
DATA > end
MTB > stack c1 c2 c3
MTB > set c4
DATA > 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
DATA > 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
DATA > end
MTB > set c5
DATA > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
DATA > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
DATA > end
MTB > friedman c3 c4 c5.

Friedman Test: C3 versus C4 blocked by C5

S = 6.55 DF = 1 P = 0.011

Sum of
C4 N Est Median Ranks
1 22 5.5500 39.0
2 22 5.4500 27.0
Grand median = 5.5000



Appendix

Statistical Tables A

A.1 Cumulative Areas under the Standard Normal
Distribution

A.2 Upper Percentiles of Student t Distributions
A.3 Upper and Lower Percentiles of χ2

Distributions

A.4 Percentiles of F Distributions
A.5 Upper Percentiles of Studentized Range

Distributions
A.6 Upper and Lower Percentiles of the Wilcoxon

Signed Rank Statistic, W
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Table A.1 Cumulative Areas under the Standard Normal Distribution

0 z

z 0 1 2 3 4 5 6 7 8 9

(cont.)
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Table A.1 Cumulative Areas under the Standard Normal Distribution (cont.)

z 0 1 2 3 4 5 6 7 8 9

Source: From Samuels/Witmer, Statistics for Life Sciences, Table 3, p. 675, © 2003 Pearson Education, Inc.
Reproduced by permission of Pearson Education, Inc.
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Table A.2 699

Table A.2 Upper Percentiles of Student t Distributions

0 tα, df

Area = α

Student t distribution
with df degrees of freedom

α

df 0.20 0.15 0.10 0.05 0.025 0.01 0.005

(cont.)



700 Appendix Statistical Tables

Table A.2 Upper Percentiles of Student t Distributions (cont.)
α

df 0.20 0.15 0.10 0.05 0.025 0.01 0.005
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Table A.2 Upper Percentiles of Student t Distributions (cont.)
α

df 0.20 0.15 0.10 0.05 0.025 0.01 0.005

Source: Scientific Tables, 6th ed. (Basel, Switzerland: J.R. Geigy, 1962), pp. 32–33.
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Table A.3 Upper and Lower Percentiles of χ 2 Distributions

Area = 1 – p

�   distribution with
df degrees of freedom

�2
p, df

2

0

p

df 0.010 0.025 0.050 0.10 0.90 0.95 0.975 0.99
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Table A.3 Upper and Lower Percentiles of χ 2 Distributions (cont.)
p

df 0.010 0.025 0.050 0.10 0.90 0.95 0.975 0.99

Source: Scientific Tables, 6th ed. (Basel, Switzerland: J.R. Geigy, 1962), p. 36.

Area = 1 – p

F distribution with m
and n degrees of freedom

Fp, m, n0

The figure above illustrates the percentiles of the F distributions shown in Table
A.4. Table A.4 is used with permission from Wilfrid J. Dixon and Frank J. Massey,
Jr., Introduction to Statistical Analysis 2nd ed. (New York: McGraw-Hill, 1957),
pp. 389–404.
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Table A.4 Percentiles of F Distributions

Read .0356 as .00056, 2001 as 2000, 1624 as 1620000, etc.
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Table A.4 Percentiles of F Distributions (cont.)

(cont.)
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Table A.4 Percentiles of F Distributions (cont.)
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Table A.4 Percentiles of F Distributions (cont.)

(cont.)
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Table A.4 Percentiles of F Distributions (cont.)
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Table A.4 Percentiles of F Distributions (cont.)

(cont.)
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Table A.4 Percentiles of F Distributions (cont.)
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Table A.4 Percentiles of F Distributions (cont.)

(cont.)
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Table A.4 Percentiles of F Distributions (cont.)



Table A.4 713

Table A.4 Percentiles of F Distributions (cont.)

(cont.)
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Table A.4 Percentiles of F Distributions (cont.)



Table A.4 715

Table A.4 Percentiles of F Distributions (cont.)

(cont.)
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Table A.4 Percentiles of F Distributions (cont.)
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Table A.4 Percentiles of F Distributions (cont.)



Table A.5 Upper Percentiles of Studentized Range Distributions

Area = α

Studentized range distribution with
k and v degrees of freedom

Qα, k, v0
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Source: Olive Jean Dunn and Virginia A. Clark, Applied Statistics: Analysis of Variance and Regression (New York:
Wiley, 1974), pp. 371–372. Reproduced with permission of John Wiley & Sons, Inc.
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Table A.6 Upper and Lower Percentiles of the Wilcoxon Signed
Rank Statistic, W



Table A.6 721

Table A.6 Upper and Lower Percentiles of the Wilcoxon Signed
Rank Statistic, W (cont.)

Source: Used with permission from Wilfrid J. Dixon and Frank
J. Massey, Jr., Introduction to Statistical Analysis, 2nd ed. (New York:
McGraw-Hill, 1957), pp. 443–444.
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ANSWERS TO SELECTED ODD-NUMBERED QUESTIONS

CHAPTER 2

Section 2.2

2.2.1. S ={(s, s, s), (s, s, f ), (s, f, s), ( f, s, s), (s, f, f ),

( f, s, f ), ( f, f, s), ( f, f, f )};
A ={(s, f, s), ( f, s, s)}; B ={( f, f, f )}

2.2.3. (1,3,4), (1,3,5), (1,3,6), (2,3,4), (2,3,5), (2,3,6)

2.2.5. The outcome sought is (4, 4).
2.2.7. P = {right triangles with sides (5,a,b): a2 + b2 = 25}
2.2.9. (a) S = {(0,0,0,0), (0,0,0,1), (0,0,1,0), (0,0,1,1),

(0,1,0,0), (0,1,0,1), (0,1,1,0), (0,1,1,1), (1,0,0,0),

(1,0,0,1), (1,0,1,0), (1,0,1,1), (1,1,0,0), (1,1,0,1),

(1,1,1,0), (1,1,1,1)}
(b) A = {(0,0,1,1), (0,1,0,1), (0,1,1,0), (1,0,0,1),

(1,0,1,0), (1,1,0,0)}
(c) 1 + k

2.2.11. Let p1 and p2 denote the two perpetrators and i1, i2,
and i3, the three in the lineup who are innocent. Then S =
{(p1, i1), (p1, i2), (p1, i3), (p2, i1), (p2, i2), (p2, i3), (p1, p2),
(i1, i2), (i1, i3), (i2, i3)}. The event A contains every outcome
in S except (p1, p2).
2.2.13. In order for the shooter to win with a point of 9, one
of the following (countably infinite) sequences of sums must
be rolled: (9, 9), (9, no 7 or no 9, 9), (9, no 7 or no 9, no 7 or
no 9, 9), . . . .
2.2.15. Let Ak be the set of chips placed in the urn at 1/2k

minute until midnight. For example, A1 = {11,12, . . . ,20}.
Then the set of chips in the urn is

⋃∞
k=1(Ak −{k})=⋃∞

k=1 Ak −⋃∞
k=1{k}=∅, since

⋃∞
k=1 Ak is a subset of

⋃∞
k=1{k}.

2.2.17. A ∩ B ={x : −3 ≤ x ≤ 2} and A ∪ B ={x : −4 ≤ x ≤ 2}
2.2.19. A = (A11 ∩ A21) ∪ (A12 ∩ A22)

2.2.21. 40

2.2.23. (a) If s is a member of A ∪ (B ∩ C), then s belongs
to A or to B ∩ C . If it is a member of A or of B ∩ C , then
it belongs to A ∪ B and to A ∪ C . Thus, it is a member of
(A ∪ B) ∩ (A ∪ C). Conversely, choose s in (A ∪ B) ∩ (A ∪ C).
If it belongs to A, then it belongs to A ∪ (B ∩C). If it does not
belong to A, then it must be a member of B ∩ C . In that case
it also is a member of A ∪ (B ∩ C).
2.2.25. (a) Let s be a member of A ∪ (B ∪C). Then s belongs
to either A or B ∪C (or both). If s belongs to A, it necessarily
belongs to (A ∪ B) ∪ C . If s belongs to B ∪ C , it belongs to B
or C or both, so it must belong to (A ∪ B) ∪ C . Now, suppose
s belongs to (A ∪ B)∪ C . Then it belongs to either A ∪ B or C
or both. If it belongs to C , it must belong to A ∪ (B ∪ C). If it
belongs to A ∪ B, it must belong to either A or B or both, so
it must belong to A ∪ (B ∪ C).
(b) The proof is similar to part (a).
2.2.27. A is a subset of B

2.2.29. (a) B and C
(b) B is a subset of A

2.2.31. 240
2.2.35. A and B are subsets of A ∪ B.
2.2.37. 100/1200

2.2.39. 500

Section 2.3

2.3.1. 0.41

2.3.3. (a) 1 − P(A ∩ B)

(b) P(B)− P(A ∩ B)

2.3.5. No. P(A1 ∪ A2 ∪ A3)= P(at least one “6” appears)=
1− P(no 6’s appear)=1− ( 5

6

)3 �= 1
2
. The Ai ’s are not mutu-

ally exclusive, so P(A1 ∪ A2 ∪ A3) �= P(A1) + P(A2)+ P(A3).
2.3.7. By inspection, B = (B ∩ A1) ∪ (B ∩ A2)∪ . . .∪ (B ∩ An).

2.3.9.
3

4
2.3.11. 0.30
2.3.13. 0.15
2.3.15. (a) XC ∩ Y ={(H, T, T, H), (T, H, H, T )}, so P(XC ∩
Y ) = 2/16
(b) X ∩ Y C = {(H, T, T, T ), (T, T, T, H), (T, H, H, H),

(H, H, H, T )}, so P(X ∩ Y C) = 4/16

2.3.17. A ∩ B, (A ∩ B) ∪ (A ∩ C), A, A ∪ B, S

Section 2.4

2.4.1. 3/10

2.4.3. If P(A|B) = P(A ∩ B)

P(B)
< P(A), then P(A ∩ B) < P(A) ·

P(B). It follows that P(B|A) = P(A ∩ B)

P(A)
<

P(A) · P(B)

P(A)
=

P(B).
2.4.5. The answer would remain the same. Distinguishing
only three family types does not make them equally likely;
(girl, boy) families will occur twice as often as either (boy,
boy) or (girl, girl) families.
2.4.7. 3/8

2.4.9. 5/6

2.4.11. (a) 5/100 (b) 70/100 (c) 95/100 (d) 75/100
(e) 70/95 (f) 25/95 (g) 30/35

2.4.13. 3/5

2.4.15. 1/5

2.4.17. 2/3

2.4.19. 20/55

2.4.21. 1800/360, 360; 1/360, 360
2.4.23. 1/6, 497, 400
2.4.25. 0.027
2.4.27. 0.23
2.4.29. 0.70
2.4.31. 0.02%
2.4.33. 0.645
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2.4.35. No. Let B denote the event that the person calling
the toss is correct. Let AH be the event that the coin comes up
Heads and let AT be the event that the coin comes up Tails.

Then P(B) = P(B|AH )P(AH ) + P(B|AT )P(AT ) = (0.7)

(
1

2

)
+

(0.3)

(
1

2

)
= 1

2
.

2.4.37. 0.415
2.4.39. 0.46
2.4.41. 5/12

2.4.43. Hearthstone
2.4.45. 0.74
2.4.47. 14
2.4.49. 0.441
2.4.51. 0.64
2.4.53. 1/3

Section 2.5

2.5.1. (a) No, P(A ∩ B) > 0 (b) No, P(A ∩ B) = 0.2 �= 0.3 =
P(A)P(B) (c) 0.8
2.5.3. 6/36

2.5.5. 0.51
2.5.7. (a) (1) 3/8 (2) 11/32 (b) (1) 0 (2) 1/4

2.5.9. 6/16

2.5.11. Equation 2.5.3:

P(A ∩ B ∩ C) = P({(1,3)})= 1/36 = (2/6)(3/6)(6/36)

= P(A)P(B)P(C)

Equation 2.5.4:

P(B ∩ C)= P({(1,3), (5,6)})= 2/36 �= (3/6)(6/36) = P(B)P(C)

2.5.13. 11
2.5.15. P(A ∩ B ∩ C) = 0 (since the sum of two odd numbers
is necessarily even) �= P(A) · P(B) · P(C) > 0, so A, B, and

C are not mutually independent. However, P(A ∩ B) = 9

36
=

P(A) · P(B) = 3

6
· 3

6
, P(A ∩ C) = 9

36
= P(A) · P(C) = 3

6
· 18

36
,

and P(B ∩ C)= 9

36
= P(B) · P(C)= 3

6
· 18

36
, so A, B, and C are

pairwise independent.
2.5.17. 0.56
2.5.19. Let p be the probability of having a winning game
card.

Then 0.32 = P(winning at least once in 5 tries)

= 1 − P(not winning in 5 tries)

= 1 − (1 − p)5, so p = 0.074

2.5.21. 7
2.5.23. 63/384

2.5.25. 25

2.5.27.
w

w + r
2.5.29. 12

Section 2.6

2.6.1. 2 · 3 · 2 · 2 = 24

2.6.3. 3 · 3 · 5 = 45; included are aeu and cdx

2.6.5. 9 · 9 · 8 = 648; 8 · 8 · 5 = 320

2.6.7. 5 · 27 = 640

2.6.9. 4 · 14 · 6 + 4 · 6 · 5 + 14 · 6 · 5 + 4 · 14 · 5 = 1156

2.6.11. 28 − 1 = 255; five families can be added
2.6.13. 28 − 1 = 255

2.6.15. 12 · 4 + 1 · 3 = 51

2.6.17. 6 · 5 · 4 = 120

2.6.19. 2.645 × 1032

2.6.21. 2 · 6 · 5 = 60

2.6.23. 4 · 10 P3 = 2880

2.6.25. 6! − 1 = 719

2.6.27. (2!)(8!)(6)= 483, 840
2.6.29. (13!)4

2.6.31. 9(8)4 = 288

2.6.33. (a) (4!)(5!)=2880 (b) 6(4!)(5!)=17,280
(c) (4!)(5!)=2880 (d) 2(9)8(7)6(5)= 30,240

2.6.35.
6!

3!(1!)3
+ 6!

2!2!(1!)2
= 180

2.6.37. (a) 4!3!3!=864 (b) 3!4!3!3!=5184 (c) 10!=3,628,800
(d) 10!/4!3!3! = 4200

2.6.39. (2n)!/n!(2!)n = 1 · 3 · 5 . . .· (2n − 1)

2.6.41. 11 · 10!/3! = 6,652,800
2.6.43. 4!/2!2! = 6

2.6.45. 6!/3!3! = 20

2.6.47.
1

30
· 14!

2!2!1!2!2!3!1!1! = 30,270,240

2.6.49. The three courses with A grade can be:
English, math, French English, math, psychology
English, math, history English, French, psychology
English, French, history English, psychology, history
math, French, psychology math, French, history
math, psychology, history French, psychology, history

2.6.51.
(

10

6

)(
15

3

)
= 95,550

2.6.53. (a)
(

9

4

)
=126 (b)

(
5

2

)(
4

2

)
=60 (c)

(
9

4

)
−
(

5

4

)
−(

4

4

)
= 120

2.6.55.
(

10

5

)/
2 = 126

2.6.57.
(

8

4

)
7!

2!4!1! = 7350
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2.6.59. Consider the problem of selecting an unordered sam-
ple of n objects from a set of 2n objects, where the 2n have
been divided into two groups, each of size n. Clearly, we could
choose n from the first group and 0 from the second group, or
n −1 from the first group and 1 from the second group, and so

on. Altogether
(

2n

n

)
must equal

(
n

n

)(
n

0

)
+
(

n

n − 1

)(
n

1

)
+

. . .+
(

n

0

)(
n

n

)
. But

(
n

j

)
=
(

n

n − j

)
, j = 0,1, . . . ,n so

(
2n

n

)
=

n∑
j=0

(
n

j

)2

.

2.6.61. The ratio of two successive terms in the sequence is(
n

j + 1

)/(
n

j

)
= n − j

j + 1
. For small j , n − j > j + 1, implying

that the terms are increasing. For j >
n − 1

2
, though, the ratio

is less than 1, meaning the terms are decreasing.

2.6.63. Using Newton’s binomial expansion, the equation
(1 + t)d · (1 + t)e = (1 + t)d+e can be written

(
d∑

j=0

(
d

j

)
t j

)
·
(

e∑
j=0

(
e

j

)
t j

)
=

d+e∑
j=0

(
d + e

j

)
t j

Since the exponent k can arise as t0 · t k , t1 · t k−1, . . . ,

or t k · t0, it follows that
(

d

0

)(
e

k

)
+
(

d

1

)(
e

k − 1

)
+ . . .

+
(

d

k

)(
e

0

)
=
(

d + e

k

)
. That is,

(
d + e

k

)
=

k∑
j=0

(
d

j

)(
e

k − j

)
.

Section 2.7

2.7.1. 63/210

2.7.3. 1 − 37

190

2.7.5. 10/19 (recall Bayes’s rule)

2.7.7. 1/6n−1

2.7.9. 2(n!)2/(2n)!
2.7.11. 7!/77; 1/76. The assumption being made is that all pos-
sible departure patterns are equally likely, which is probably
not true, since residents living on lower floors would be less
inclined to wait for the elevator than would those living on
the top floors.

2.7.13. 210

/(
20

10

)
2.7.15.

(
k

2

)
· 365 · 364 · · · (365 − k + 2)

(365)k

2.7.17.
(

11

3

)/(
47

3

)

2.7.19. 2

/(
47

2

)
;
[(

10

2

)
− 2

]/(
47

2

)

2.7.21.
(

5

3

)(
4

2

)3(3

1

)(
4

2

)(
2

1

)(
4

1

)/(
52

9

)

2.7.23.
[(

2

1

)(
2

1

)]4(32

4

)/(
48

12

)

CHAPTER 3

Section 3.2

3.2.1. 0.211
3.2.3. (0.23)12 .= 1/45,600,000

3.2.5. 0.0185
3.2.7 The probability that a two engine plane lands safely
is 0.84. The probability that a four engine plane lands safely
is 0.8208.
3.2.9. n = 6: 0.67 n = 12: 0.62 n = 18: 0.60

3.2.11. The probability of two girls and two boys is 0.375.
The probability of three of one sex and one of the other is 0.5.
3.2.13. 7
3.2.15. (1) 0.273 (2) 0.756
3.2.17. Expanding [(p + (1 − p)]n gives 1 = [(p + (1 − p)]n =

n∑
k=0

(
n

k

)
pk(1 − p)n−k

3.2.19. 0.031
3.2.21. 64/84
3.2.23. 0.967
3.2.25. 0.964
3.2.27. 0.129
3.2.31. 53/99

3.2.33.

⎛⎜⎝ n1

r1

⎞⎟⎠
⎛⎜⎝ n2

r2

⎞⎟⎠
⎛⎜⎝ n3

r3

⎞⎟⎠
⎛⎜⎝ N

r

⎞⎟⎠

3.2.35.

⎛⎜⎝ n1

k1

⎞⎟⎠
⎛⎜⎝ n2

k2

⎞⎟⎠ · · ·
(

nt

kt

)
⎛⎜⎝ N

n

⎞⎟⎠
Section 3.3
3.3.1. (a)

k pX (k)

2 1/10
3 2/10
4 3/10
5 4/10

(b)
k pV (k)

3 1/10
4 1/10
5 2/10
6 2/10
7 2/10
8 1/10
9 1/10
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3.3.3. pX (k)= k3/216 − (k − 1)3/216

3.3.5. pX (3)= 1/8; pX (1)= 3/8; pX (−1)= 3/8, pX (−3)= 1/8

3.3.7. pX (2k − 4)=
(

4

k

)
1

16
, k = 0,1,2,3,4

3.3.9.
k pX (k)

0 4/10
1 3/10
2 2/10
3 1/10

3.3.11. p2X+1(k) = pX

(
k − 1

2

)
=
(

4
k−1

2

)(
2

3

) k−1
2
(

1

3

)4− k−1
2

,

k = 1,3,5,7,9

3.3.13. FX (k)=
k∑

j=0

(
4

j

)(
1

6

) j (5

6

)4− j

3.3.15. See answer to Question 3.3.3.

Section 3.4

3.4.1. 1/16

3.4.3. 13/64
3.4.5. (a) 0.135 (b) 0.23355

3.4.7. FY (y)= y4 P(Y ≤ 1/2) = 1/16

3.4.9. FY (y)=

⎧⎪⎪⎨⎪⎪⎩
1
2
+ y + y2

2
, −1 ≤ y ≤ 0

1
2
+ y − y2

2
, 0 ≤ y ≤ 1

3.4.11. (a) 0.693 (b) 0.223 (c) 0.223 (d) fY (y) = 1

y
,

1 ≤ y ≤ e

3.4.13. fY (y) = 1

6
y + 1

4
y2, 0 ≤ y ≤ 2

Section 3.5

3.5.1. −0.144668

3.5.3. $28,200
3.5.5. $227.58
3.5.7. 15
3.5.9. 9/4 years
3.5.11. 1/λ

3.5.13. E(X) =
200∑
k=1

k

(
200

k

)
(0.80)k(0.20)200−k

E(X) = np = 200(0.80) = 160

3.5.15. $307,421.92
3.5.17. 10/3

3.5.19. $10.95
3.5.21. 91/36

3.5.23. 5.8125

3.5.27. (a) (0.5)
1

θ+1 (b)
−1 + √

5

2
3.5.29. E(Y ) = $132

3.5.31. $50,000
3.5.33. Class average = 53.3, so the professor’s “curve”
did not work.
3.5.35. 16.33

Section 3.6

3.6.1. 12/25

3.6.3. 0.748
3.6.5. 3/80

3.6.7. 1.115
3.6.9. Johnny should pick (a + b)/2

3.6.11. E(Y ) = ∫ ∞
0 yλe−λydy = 1/λ. E(Y 2) = ∫ ∞

0 y2λe−λydy =
2/λ2, using integration by parts. Thus, Var(Y ) = 2/λ2 −
(1/λ)2 = 1/λ2.
3.6.13. E[(X − a)2] = Var(X) + (μ − a)2 since E(X − μ) = 0.
This is minimized when a = μ, so the minimum of g(a) =
Var(X).
3.6.15. 8.7◦C

3.6.17. (a) fY (y) = 1

b − a
fU

(
y − a

b − a

)
= 1

b − a
. The interval

where Y is non-zero is (b − a)(0) + a ≤ y ≤ (b − a)(1) + a, or
equivalently a ≤ y ≤ b
(b) Var(Y )=Var[(b −a)U +a]= (b −a)2 Var(U )= (b −a)2/12

3.6.19.
2r

r + 1
;1/7

3.6.21. 9/5
3.6.23. Let E(X) = μ and Var(X) = σ 2. Then
E(a X + b) = aμ + b and Var(a X + b) = a2σ 2.
Thus, the standard deviation of a X + b = aσ and

γ1 = E
[
((a X + b) − (aμ+ b))

3
]

(aσ)3
= a3 E

[
(X −μ)3

]
a3σ 3

= E
[
(X −μ)3

]
σ 3

= γ1(X)

The demonstration for γ2 is similar.

3.6.25. (a) c = 5 (b) Highest integral moment = 4

Section 3.7

3.7.1. 1/10

3.7.3. 2

3.7.5. P(X = x,Y = y)=

(
3

x

)(
2

y

)(
4

3 − x − y

)
(

9

3

) ,

0 ≤ x ≤ 3,0 ≤ y ≤ 2, x + y ≤ 3

3.7.7. 13/50

3.7.9. pz(0) = 16/36 pz(1)= 16/36 pz(2)= 4/36

3.7.11. 1/2
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3.7.13. 19/24

3.7.15. 3/4

3.7.17. pX (0) = 1/2 pX (1) = 1/2
pY (0) = 1/8 pX (1) = 3/8 pX (2)= 3/8 pX (3)= 1/8

3.7.19. (a) fX (x) = 1/2, 0 ≤ x ≤ 2

fY (y) = 1, 0 ≤ y ≤ 1

(b) fX (x) = 1/2, 0 ≤ x ≤ 2

fY (y) = 3y2, 0 ≤ y ≤ 1

(c) fX (x) = 2
3
(x + 1), 0 ≤ x ≤ 1

fY (y) = 4
3

y + 1
3
, 0 ≤ y ≤ 1

(d) fX (x) = x + 1
2
, 0 ≤ x ≤ 1

fY (y) = y + 1
2
, 0 ≤ y ≤ 1

(e) fX (x) = 2x, 0 ≤ x ≤ 1

fY (y) = 2y, 0 ≤ y ≤ 1

(f) fX (x) = xe−x , 0 ≤ x

fY (y) = ye−y, 0 ≤ y

(g) fX (x) =
(

1

x + 1

)2

, 0 ≤ x

fY (y) = e−y, 0 ≤ y

3.7.21. fX (x)= 3 − 6x + 3x2, 0 ≤ x ≤ 1

3.7.23. X is binomial with n = 4 and p = 1/2. Similarly, Y is
binomial with n = 4 and p = 1/3.
3.7.25. (a) {(H, 1), (H, 2), (H, 3), (H, 4), (H, 5), (H, 6), (T, 1),
(T, 2), (T, 3), (T, 4), (T, 5), (T, 6)} (b) 4/12

3.7.27. (a) FX,Y (u, v)= 1
2
uv3, 0 ≤ u ≤ 2,0 ≤ v ≤ 1

(b) FX,Y (u, v)= 1
3
u2v + 2

3
uv2, 0 ≤ u ≤ 1,0 ≤ v ≤ 1

(c) FX,Y (u, v)= u2v2, 0 ≤ u ≤ 1,0 ≤ v ≤ 1

3.7.29. fX,Y (x, y)= 1, 0 ≤ x ≤ 1,0 ≤ y ≤ 1
The graph of fX,Y (x, y) is a plane of height one over the unit
square.
3.7.31. 11/32

3.7.33. 0.015
3.7.35. 25/576

3.7.37. fW,X (w, x) = 4wx, 0 ≤w ≤ 1,0 ≤ x ≤ 1
P(0 ≤ W ≤ 1/2,1/2 ≤ X ≤ 1) = 3/16

3.7.39. fX (x)= λe−λx ,0 ≤ x and fY (y)= λe−λy,0 ≤ y

3.7.41. Note that P(Y ≥ 3/4) �= 0. Similarly P(X ≥ 3/4) �= 0.
However, (X ≥ 3/4) ∩ (Y ≥ 3/4) is in the region where the
density is 0. Thus, P((X ≥ 3/4) ∩ (Y ≥ 3/4)) is zero, but the
product P(X ≥ 3/4)P(Y ≥ 3/4) is not zero.
3.7.43. 2/5

3.7.45. 1/12

3.7.47. P(0 ≤ X ≤ 1/2,0 ≤ Y ≤ 1/2) = 5/32 �= (3/8)(1/2) =
P(0 ≤ X ≤ 1/2)P(0 ≤ Y ≤ 1/2)

3.7.49. Let K be the region of the plane where fX,Y �= 0.
If K is not a rectangle with sides parallel to the coordinate
axes, there exists a rectangle A = {(x, y)|a ≤ x ≤ b, c ≤ y ≤ d}
with A ∩ K = ∅, but for A1 = {(x, y)|a ≤ x ≤ b, all y} and
A2 ={(x, y)| all x, c ≤ y ≤ d}, A1 ∩ K �= ∅ and A2 ∩ K �= ∅. Then

P(A) = 0, but P(A1) �= 0 and P(A2) �= 0. But A = A1 ∩ A2, so
P(A1 ∩ A2) �= P(A1)P(A2).
3.7.51. (a) 1/16 (b) 0.206
(c) fX1,X2,X3,X4(x1, x2, x3, x4) = 256(x1x2x3x4)

3 where 0 ≤
x1, x2, x3, x4 ≤ 1 (d) FX2,X3(x2, x3) = x4

2 x4
3 , 0 ≤ x2, x3 ≤ 1

Section 3.8

3.8.1. (a) pX+Y (w) = e−(λ+μ)
(λ+ μ)z

w! , w = 0,1,2, . . . , so

X + Y does belong to the same family.
(b) pX+Y (w) = (w − 1)(1 − p)w−2 p2, w = 2,3,4, . . .

X + Y does not have the same form of pdf as X and Y ,
but Section 4.5 will show that they all belong to the same
family—the negative binomial.

3.8.3. fx+y(w)=
{

w 0 ≤ w ≤ 1

2 −w 1 ≤ w ≤ 2

3.8.5. FW (w)= P(W ≤ w)= P(Y 2 ≤ w)= P(Y ≤√
w)

= FY (
√

w)

fW (w) = F ′
W (w)= F ′

Y (
√

w) = 1
2
√

w
fY (w)

3.8.7. 3(1 − √
w), 0 ≤ w ≤ 1

3.8.9. (a) fW (w)=− lnw, 0 ≤w ≤ 1
(b) fW (w)=−4w lnw, 0 ≤w ≤ 1

3.8.11. fW (w) = 2

(1 + w)3
, 0 ≤ w

Section 3.9

3.9.1.
r(n + 1)

2

3.9.3.
5

9
+ 11

18
= 7

6

3.9.5. If and only if
n∑

i=1
ai = 1

3.9.7. (a) E(Xi ) is the probability that the i-th ball drawn is
red, 1 ≤ i ≤ n. Draw the balls in order without replacement,
but do not note the colors. Then look at the i-th ball first. The
probability that it is red is surely independent of when it is
drawn. Thus, all of these expected values are the same and
= r/(r + w).

(b) Let X be the number of red balls drawn. Then X =
n∑

i=1
Xi

and E(X) =
n∑

i=1
E(Xi ) = nr/(r +w).

3.9.9. 7.5
3.9.11. 1/8

3.9.13. 105/72

3.9.15. E(X) = E(Y ) = E(XY ) = 0. Then Cov(X,Y ) = 0. But
X and Y are functionally dependent, Y =√

1 − X 2, so they are
probabilistically dependent.

3.9.17. 2/λ2
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3.9.19. 17/324

3.9.21. $6750, $373,500
3.9.23. σ ≤ 0.163

Section 3.10

3.10.1. 5/16

3.10.3. 0.64

3.10.5. P
(
Y ′

1 > m
)= P(Y1, . . . ,Yn > m)= ( 1

2

)n
P
(
Y ′

n > m
)= 1 − P

(
Y ′

n < m
)= 1 − P(Y1, . . . ,Yn < m)

= 1 − P(Y1 < m) · . . . · P(Yn < m) = 1 − ( 1
2

)n
If n ≥ 2, the latter probability is greater.

3.10.7. 0.200

3.10.9. P(Ymin > 20) = (1/2)n

3.10.11. 0.725; 0.951

3.10.15. 1/2

Section 3.11

3.11.1. pY |x(y)= pX,Y (x, y)

pX (x)
= x + y + xy

3 + 5x
, y = 1,2

3.11.3. pY |x(y) =

(
6

y

)(
4

3 − x − y

)
(

10

3 − x

) , y = 0,1, . . . ,3 − x

3.11.5. (a) k = 1/36

(b) pY |x(1) = x + 1

3x + 6
, x = 1, 2, 3

3.11.7. pX,Y |z(x, y) = xy + xz + yz

9 + 12z
, x = 1, 2 y = 1, 2

z = 1, 2

3.11.13. fY |x(y)= x + y

x + 1
2

, 0 ≤ y ≤ 1

3.11.15. fY (y)= 1
3
(2y + 2), 0 ≤ y ≤ 1

3.11.17. 2/3

3.11.19. fX1,X2,X3 |x4x5(x1, x2, x3) = 8x1x2x3, 0 ≤ x1, x2, x3 ≤ 1
Note: the five random variables are independent, so the
conditional pdf’s are just the marginal pdf’s.

Section 3.12
3.12.1. MX (t)= E

(
et X
)= n−1∑

k=0

etk pX (k) =
n−1∑
k=0

etk 1

n

= 1

n

n−1∑
k=0

(et)k = 1 − ent

n(1 − et)

3.12.3.
1

310
(2 + e3)10

3.12.5. (a) Normal with μ= 0 and σ 2 = 12
(b) Exponential with λ = 2
(c) Binomial with n = 4 and p = 1/2
(d) Geometric with p = 0.3

3.12.7. MX (t)= eλ(et −1)

3.12.9. 0
3.12.11. M (1)

Y (t)= d
dt

eat+b2 t2/2 = (a + b2t)eat+b2 t2/2, so M (1)

Y (0)= a

M (2)

Y (t)= (a + b2t)2eat+b2 t2/2 + b2eat+b2 t2/2, so

M (2)

Y (0) = a2 + b2. Then Var(Y ) = (a2 + b2) − a2 = b2.

3.12.13. 9

3.12.15 E(Y ) =
a + b

2

3.12.17. MY (t)=
(

1

1 − t/λ

)2

3.12.19. (a) True
(b) False
(c) True
3.12.21. Y is normally distributed with mean μ and variance
σ 2/n.
3.12.23. (a) MW (t) = M3X (t) = MX (3t) = e−λ+λe3t . This last
term is not the moment-generating function of a Poisson
random variable, so W is not Poisson.
(b) MW (t) = M3X+1(t) = et MX (3t) = et e−λ+λe3t . This last term
is not the moment-generating function of a Poisson random
variable, so W is not Poisson.

CHAPTER 4

Section 4.2

4.2.1. Binomial answer: 0.158; Poisson approximation: 0.158.
The agreement is not surprising because n (=6000) is so large
and p (= 1/3250) is so small.
4.2.3. 0.602
4.2.5. For both the binomial formula and the Poisson approx-
imation, P(X ≥1)=0.10. The exact model that applies here is
the hypergeometric, rather than the binomial, because p = P
(ith item must be checked) is a function of the previous i − 1
items purchased. However, the variation in p is likely to be
so small that the binomial and hypergeometric distributions
in this case are essentially the same.
4.2.7. 0.122
4.2.9. 6.9 × 10−12

4.2.11. The Poisson model pX (k) = e−0.435(0.435)k/k!, k =
0, 1, . . . fits the data fairly well. The expected frequencies cor-
responding to k = 0, 1, 2, and 3+ are 230.3, 100.4, 21.7, and
3.6, respectively.

4.2.13. The model px(k) = e−0.363 0.363k

k! fits the data well

if we follow the usual statistical practice of collapsing low
frequency categories, in this case k = 2, 3, 4.

Number of Expected
Countries, k Frequency px(k) Frequency

0 82 0.696 78.6
1 25 0.252 28.5
2+ 6 0.052 5.9
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The level of agreement between the observed and expected
frequencies suggests that the Poisson is a good model for
these data.
4.2.15. If the mites exhibit any sort of “contagion” effect, the
independence assumption implicit in the Poisson model will
be violated. Here, x̄ = 1

100
[55(0) + 20(1) + . . . + 1(7)] = 0.81,

but pX (k) = e−0.81(0.81)k/k!, k = 0, 1, . . . does not adequately
approximate the infestation distribution.

No. of Infestations, k Frequency Proportion pX (k)

0 55 0.55 0.4449
1 20 0.20 0.3603
2 21 0.21 0.1459
3 1 0.01 0.0394
4 1 0.01 0.0080
5 1 0.01 0.0013
6 0 0 0.0002
7+ 1 0.01 0.0000

1.00 1.00

4.2.17. 0.826
4.2.19. 0.762
4.2.21. (a) 0.076
(b) No. P(4 accidents occur during next two weeks) =
P(X = 4) · P(X = 0) + P(X = 3) · P(X = 1) + P(X = 2) ·
P(X = 2) + P(X = 1) · P(X = 3) + P(X = 0) · P(X = 4).

4.2.23. P(X is even) =
∞∑

k=0

e−λλ2k

(2k)! = e−λ

{
1 + λ2

2! + λ4

4! + λ6

6! + · · ·
}

= e−λ · cosh λ = e−λ

(
eλ+e−λ

2

)
= 1

2
(1 + e−2λ).

4.2.25. P(X2 = k) =
∞∑

x1=k

(
x1

k

)
pk(1 − p)x1−k · e−λλx1

x1! . Let

y = x1 − k. Then P(X2 = k) =
∞∑

y=0

(
y + k

k

)
pk(1 − p)y ·

e−λλy+k

(y + k)! = e−λ(λp)k

k! ·
∞∑

y=0

[λ(1 − p)]y

y! = e−λ(λp)k

k! · eλ(1−p)

= e−λp(λp)k

k! .

4.2.27. 0.50
4.2.29. 28

Section 4.3

4.3.1. (a) 0.5782 (b) 0.8264 (c) 0.9306 (d) 0.0000

4.3.3. (a) Both are the same (b)
∫ a+ 1

2

a− 1
2

1√
2π

e−z2/2 dz

4.3.5. (a) −0.44 (b) 0.76 (c) 0.41 (d) 1.28
(e) 0.95

4.3.7. 0.0655
4.3.9. (a) 0.0053 (b) 0.0197
4.3.11. P(X ≥ 344)

.= P(Z ≥ 13.25) = 0.0000, which strongly
discredits the hypothesis that people die randomly with
respect to their birthdays.
4.3.13. The normal approximation does not apply because
the needed condition n > 9p/(1 − p) = 9(0.7)/0.3 = 21 does
not hold.
4.3.15. 0.5646
For binomial data, the central limit theorem and DeMoivre-
Laplace approximations differ only if the continuity correc-
tion is used in the DeMoivre-Laplace approximation.
4.3.17. 0.6808
4.3.19. 0.0694
4.3.21. No, only 84% of drivers are likely to get at least
25,000 miles on the tires.
4.3.23. 0.0228
4.3.25. (a) 6.68%; 15.87%
4.3.27. 434
4.3.29. 29.85
4.3.31. 0.0062. The “0.075%” driver should ask to take the
test twice; the “0.09%” driver has a greater chance of not
being charged by taking the test only once. As n, the num-
ber of times the test is taken, increases, the precision of the
average reading increases. It is to the sober driver’s advan-
tage to have a reading as precise as possible; the opposite is
true for the drunk driver.
4.3.33. 0.23
4.3.35. σ = 0.22 ohms

Section 4.4

4.4.1. 0.343
4.4.3. No, the expected frequencies (= 50 · pX (k)) differ con-
siderably from the observed frequencies, especially for small
values of k. The observed number of 1’s, for example, is 4,
while the expected number is 12.5.

4.4.5. FX (t)= P(X ≤ t) = p
[t]∑

s=0

(1 − p)s . But
[t]∑

s=0

(1 − p)s

= 1 − (1 − p)[t]

1 − (1 − p)
= 1 − (1 − p)[t]

p
, and the result follows.

4.4.7. P(n ≤ Y ≤ n + 1) =
∫ n+1

n

λe−λy dy = (1 − e−λy)

∣∣∣∣n+1

n=e−λn −e−λ(n+1) =e−λn(1−e−λ). Setting p =1−e−λ gives P(n ≤
Y ≤ n + 1)= (1 − p)n p.

Section 4.5

4.5.1. 0.029
4.5.3. Probably not. The presumed model, pX (k) =(

k−1
1

) (
1
2

)2 ( 1
2

)k−2
, k = 2, 3, . . . fits the data almost perfectly, as

the table shows. Agreement this good is often an indication
that the data have been fabricated.
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k pX (k) Obs. Freq. Exp. Freq.

2 1/4 24 25
3 2/8 26 25
4 3/16 19 19
5 4/32 13 12
6 5/64 8 8
7 6/128 5 5
8 7/256 3 3
9 8/512 1 2

10 9/1024 1 1

4.5.5. E(X)=
∞∑

k=r

k

(
k − 1

r − 1

)
pr (1 − p)k−r

= r

p

∞∑
k=r

(
k

r

)
pr+1(1 − p)k−r = r

p
.

4.5.7. The given X = Y − r , where Y has the negative bino-

mial pdf as described in Theorem 4.5.1. Then E(X)= r

p
− p =

r(1 − p)

p
, Var(X)= r(1 − p)

p2
, MX (t)=

[
p

1 − (1 − p)et

]r

4.5.9. M (1)

X (t)= r

[
pet

1 − (1 − p)et

]r−1

{pet [1 − (1 − p)et ]−2

(1 − p)et +[1 − (1 − p)et ]−1 pet }. When t = 0, M (1)

X (0)= E(X)

= r

[
p(1 − p)

p2
+ p

p

]
= r

p
.

Section 4.6

4.6.1. fY (y)= (0.001)3

2
y2e−0.001y, 0 ≤ y

4.6.3. If E(Y ) = r

λ
= 1.5 and Var(Y) = r

λ2
= 0.75, then r = 3

and λ = 2, which makes fY (y) = 4y2e−2y , y > 0. Then P(1.0 ≤
Yi ≤ 2.5) =

∫ 2.5

1.0

4y2e−2ydy = 0.55. Let X = number of Yi ’s in

the interval (1.0, 2.5). Since X is a binomial random variable
with n = 100 and p = 0.55, E(X)= np = 55.
4.6.5. Setting the first derivative of f (y)

Y equal to 0 gives
λr

�(r)
e−λy{−λr−1

y + (r − 1)r−2
y } = 0

which implies that (r − 1)r−2
y = λr−1

y , so y = r−1
λ

is a mode. Its
uniqueness follows from the fact that the second derivative
of fY (y) is negative for all other y for which fY (y) is defined.

fλY (y)= 1

λ
fY (y/λ) = 1

λ

λr

�(r)

( y

λ

)r−1

e−λ(y/λ)

= 1

�(r)
yr−1e−y

4.6.7. �
(

7
2

)= 5
2
�
(

5
2

)= 5
2

3
2
�
(

3
2

)= 5
2

3
2

1
2
�
(

1
2

)= 15
8
�
(

1
2

)
by Theo-

rem 4.6.2 (2), and �
(

1
2

)=√
π by Question 4.6.6.

4.6.9. Write the gamma moment-generating function
in the form MY (t) = (1 − t/λ)−r . Then M (1)

Y (t) = −r(1 −
t/λ)−r−1(−1/λ) = (r/λ)(1 − t/λ)−r−1 and M (2)

Y (t) = (r/λ)

(−r − 1)(1 − t/λ)r−2 · (−1/λ) = (r/λ2)(r + 1)(1 − t/λ)−r−2.

Therefore, E(Y ) = M (1)

Y (0) = r

λ
and Var(Y ) = M (2)

Y (0) −[
M (1)

Y (0)
]2 = r(r + 1)

λ2
− r 2

λ2
= r

λ2
.

CHAPTER 5

Section 5.2

5.2.1. 5/8

5.2.3. 0.122
5.2.5. 0.733
5.2.7. 8.00
5.2.9. (a) λ =[0(6)+ 1(19) + 2(12) + 3(13) + 4(9)]/59 = 2.00

Number of
No-hitters

Observed
Frequency

Expected
Frequency

0 6 8.0
1 19 16.0
2 12 16.0
3 13 10.6
4 9 8.4

(b) The agreement is reasonably good considering the num-
ber of changes in baseball over the 59 years—most notably
the change in the height of the pitcher’s mound.
5.2.11. ymin

5.2.13.
25

−25 ln k +
n∑

i=1
ln yi

5.2.15. θe = σ 2
e = 1

n

n∑
i=1

(yi − μ)2

5.2.17.
2ȳ

1 − ȳ
5.2.19. 1/ȳ

5.2.21. ȳ/(ȳ − k)

5.2.23.
1

n

n∑
i=1

y2
i − ȳ2

5.2.25. E(X)=1/p and pe = 1

x̄
. For the given data, pe =0.479.

The expected frequencies are:

X Observed Frequency Expected Frequency

1 132 119.8
2 52 62.4
3 34 32.5
4 9 16.9
5 7 8.8
6 5 4.6
7 5 2.4

≥ 8 6 2.6
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Section 5.3

5.3.1. Confidence interval is (103.7, 112.1).
5.3.3. The confidence interval is (64.432, 77.234). Since 80
does not fall within the confidence interval, that men and
women metabolize methylmercury at the same rate is not
believable.
5.3.5. 336
5.3.7. 0.501
5.3.9. The interval given is correctly calculated. However,
the data do not appear to be normal, so claiming that it is a
95% confidence interval would not be correct.
5.3.9. (0.316, 0.396)
5.3.11. (0.254, 0.300)
5.3.13. Since 0.54 does not fall in the confidence interval of
(0.61, 0.65), the increase could be considered significant.
5.3.15. 16,641
5.3.17. Both intervals have confidence level approximately
50%.
5.3.19. The margin of error is correct at the 95% level. The
confidence interval is (0.559, 0.621).

5.3.21. In Definition 5.3.1, substitute d = 1.96

2
√

n

√
N − n

N − 1
5.3.23. For margin of error 0.06, n = 267. For margin of error
0.03, n = 1068.
5.3.25. The first case requires n = 421; the second, n = 479.
5.3.27. 1024

Section 5.4

5.4.1. 2/10

5.4.3. 0.1841

5.4.5. (a) E(X̄) = E

(
1

n

n∑
i=1

Xi

)
= 1

n

n∑
i=1

E(Xi ) = 1

n

n∑
i=1

λ = λ

(b) In general, the sample mean is an unbiased estimator of
the mean μ.
5.4.7. By Theorem 3.10.1, fYmin(y) = ne−n(y−θ), θ ≤ y. Then

E(Ymin)=
∫ ∞

θ

y · ne−(y−θ)dy

=
∫ ∞

0

(u + θ) · ne−u du =
∫ ∞

0

u · ne−u du

+ θ

∫ ∞

0

ne−u du = 1

n
+ θ,

and E(Ymin − 1
n
) = 1

n
+ θ − 1

n
= θ

5.4.9. 1/2

5.4.11. E(W 2) = Var(W ) + E(W )2 = Var(W ) + θ 2. Thus, W 2 is
unbiased only if Var(W ) = 0, which in essence means that W
is constant.

5.4.13. The median of θ̂ is
(n + 1)

n n
√

2
θ , which is unbiased only

if n = 1.

5.4.15. E
(
W̄ 2
)= Var

(
W̄
)+ E

(
W̄
)2 = σ 2

n
+μ2, so lim

n→∞
E
(
W̄ 2
)

= lim
n→∞

(
σ 2

n
+μ2

)
=μ2

5.4.17. (a) E( p̂1)= E(X1) = p. E( p̂2)= E

(
X

n

)
= 1

n
E(X)

= 1

n
np = p, so both p̂1 and p̂2 are unbiased estimators of p.

(b) Var( p̂1) = p(1 − p); Var( p̂2) = p(1 − p)/n, so Var( p̂2) is
smaller by a factor of n.

5.4.19. (a) See the solution to Question 5.4.14.

(b) Var(θ̂1) = Var(Y2) = θ 2, since Y1 is a gamma variable with
parameters 1 and 1/θ .

Var(θ̂2) = Var(Y ) = θ 2/n.

From the solution to Question 5.4.14, it follows that
nYmin is a gamma variable with parameters 1 and θ 2/n2, so
Var(θ̂3)= Var(nYmin)= θ 2/n2.

(c) Var(θ̂3)/Var(θ̂1) = ((θ 2/n2)/θ 2) = 1/n2

Var(θ̂3)/V ar(θ̂2) = (θ 2/n2)/(θ 2/n) = 1/n

5.4.21. Var(θ̂1) = Var

(
n + 1

n
Ymax

)
= θ 2

n(n + 2)

Var(θ̂2) = Var((n + 1)Ymin)= nθ 2

(n + 2)

Var(θ̂2)/Var(θ̂1)= nθ 2

(n + 2)

/
θ 2

n(n + 2)
= n2

Section 5.5

5.5.1. The Cramer-Rao bound is θ 2/n. Var(θ̂) = Var(Ȳ ) =
Var(Y )/n = θ 2/n, so θ̂ is a best estimator.

5.5.3. The Cramer-Rao bound is σ 2/n. Var(μ̂) = Var(Ȳ ) =
Var(Y )/n = σ 2/n, so μ̂ is an efficient estimator.

5.5.5. The Cramer-Rao bound is
(θ − 1)θ

n
. Var(θ̂)= Var(X̄)=

Var(X)/n = (θ − 1)θ

n
, so θ̂ is an efficient estimator.

5.5.7. E

(
∂2 ln fW (W ; θ)

∂θ 2

)
=
∫ ∞

−∞

∂

∂θ

(
∂ ln fW (w; θ)

∂θ

)
× fW (w; θ) dw

=
∫ ∞

−∞

∂

∂θ

(
1

fW (w; θ)

∂ fW (w; θ)

∂θ

)
× fW (w; θ) dw

=
∫ ∞

−∞

[
1

fW (w; θ)

∂2 fW (w; θ)

∂θ 2

− 1

( fW (w; θ))2

(
∂ fW (w; θ)

∂θ

)2
]

× fW (w; θ) dw
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=
∫ ∞

−∞

∂2 fW (w; θ)

∂θ 2
dw

−
∫ ∞

−∞

1

( fW (w; θ))2

(
∂ fW (w; θ)

∂θ

)2

× fW (w; θ) dw

= 0 −
∫ ∞

−∞

(
∂ ln fW (w; θ)

∂θ

)2

× fW (w; θ) dw

The 0 occurs because 1 =
∫ ∞

−∞
fW (w; θ) dw, so

0 =
∂2

∫ ∞

−∞
fW (w; θ) dw

∂θ 2
=
∫ ∞

−∞

∂2 fW (w; θ)

∂θ 2
dw

The above argument shows that

E

(
∂2 ln fW (W ; θ)

∂θ 2

)
=−E

(
∂ ln fW (W ; θ)

∂θ

)2

Multiplying both sides of the equality by n and inverting gives
the desired equality.

Section 5.6

5.6.1.
n∏

i=1
pX (ki ; p) =

n∏
i=1

(1 − p)ki −1 p = (1 − p)

(
n∑

i=1
ki

)
−n

pn .

Let g
( n∑

i=1

ki ; p
)

= (1 − p)

(
n∑

i=1
ki

)
−n

pn and u(k1, k2, . . . , kn)= 1.

By Theorem 5.6.1,
n∑

i=1
Xi is sufficient.

5.6.3. In the discrete case, and for a one-to-one function g,
note that P(X1 = x1, X2 = x2, . . . , Xn = x1|g(θ̂) = θe) =
P(X1 = x1, X2 = x2, . . . , Xn = x1|θ̂ = g−1(θe))

The right hand term does not depend on θ , because θ̂ is
sufficient.

5.6.5. The likelihood function is

[
1

θrn e
1
θ

n∑
i=1

yi

]
1

[(r − 1)!]n

(
n∏

i=1

yi

)r−1

so
n∑

i=1
Yi is a sufficient statistic for θ .

So also is 1
r
Ȳ . (See Question 5.6.3.)

5.6.7. (a) Write the pdf in the form fY (y) = e−(y−θ) · I[θ,∞](y)

where I[θ,∞](y) is the indicator function introduced in
Example 5.6.2. Then the likelihood function is

L(θ)=
n∏

i=1

e−(yi −θ) · I[θ,∞](yi ) = e
−

n∑
i=1

yi
enθ

n∏
i=1

I[θ,∞](yi )

But
n∏

i=1
I[θ,∞](yi )= I[θ,∞](ymin), so the likelihood function

factors into

L(θ) =
(

e
−

n∑
i=1

yi

)
[enθ , I[θ,∞](ymin)]

Thus the likelihood function decomposes in such a way that
the factor involving θ only contains the yi

′s through ymin. By
Theorem 5.6.1, ymin is sufficient.
(b) We need to show that the likelihood function given ymax

is independent of θ . But the likelihood function is

n∏
i=1

e−(yi −θ) =
⎧⎨⎩ eθ e

−
n∑

i=1
yi

if θ ≤ y1, y2, . . . yn

0 otherwise

Regardless of the value of ymax, the expression for the likeli-
hood does depend on θ . If any one of the yi , other than ymax,
is less than θ , the expression is 0. Otherwise it is non-zero.

5.6.9.
n∏

i=1
gW (wi ; θ) =

⎛⎝e

(
n∑

i=1
K (wi )

)
p(θ)+nq(θ)

⎞⎠(e

n∑
i=1

S(wi )

)
, so

n∑
i=1

K (Wi ) is a sufficient statistic for θ by Theorem 5.6.1.

5.6.11. θ/(1 + y)θ+1 = e[ln(1+y)](−θ−1)+ln θ . Take K (Y ) = ln(1 + y),

p(θ) = −θ − 1, and q(θ) = ln θ . Then
n∑

i=1
K (Yi ) =

n∑
i=1

ln(1 + Yi )

is sufficient for θ .

Section 5.7

5.7.1. 17

5.7.3. (a) P(Y1 > 2λ) =
∫ ∞

2λ

λe−λydy = e−2λ2
. Then P(|Y1 −

λ| <λ/2) < 1 − e−2λ2
< 1. Thus, lim

n→∞
P(|Y1 − λ| <λ/2) < 1.

(b) P

(
n∑

i=1

Yi > 2λ

)
≥ P(Y1 > 2λ) = e−2λ2

. The proof now

proceeds along the lines of Part (a).

5.7.5 E[(Ymax − θ)2] =
∫ θ

0

(y − θ)2 n

θ

( y

θ

)n−1

dy

= n

θ n

∫ θ

0

(
yn+1 − 2θyn + θ 2 yn−1

)
dy

= n

θ n

(
θ n+2

n + 2
− 2θ n+2

n + 1
+ θ n+2

n

)
=
(

n

n + 2
− 2n

n + 1
+ 1

)
θ 2

Then lim
n→∞

E[(Ymax − θ)2] = lim
n→∞

(
n

n + 2
− 2n

n + 1
+ 1

)
θ 2 = 0,

and the estimator is squared error consistent.
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Section 5.8

5.8.1. The numerator of g(θ |X = k) is

px(k|θ) f(θ)=[(1 − θ)k−1θ ] �(r + s)

�(r)�(s)
θ r−l(1 − θ)s−l

= �(r + s)

�(r)�(s)
θ r (1 − θ)s+k−2

The term θ r (1 − 0)s+k−2 is the variable part of the beta distri-
bution with parameters r + 1 and s + k − 1, so that is the pdf
g(θ | X = k).
5.8.3. (a) The posterior distribution is a beta pdf with
parameters k + 135 and n − k + 135.
(b) The mean of the Bayes pdf given in part (a) is

k + 135

k + 135 + n − k + 135
= k + 135

n + 270

= n

n + 270

(
k

n

)
+ 270

n + 270

(
135

270

)
= n

n + 270

(
k

n

)
+ 270

n + 270

(
1

2

)
5.8.5. In each case the estimator is biased, since the mean
of the estimator is a weighted average of the unbiased maxi-
mum likelihood estimator and a non-zero constant. However,
in each case, the weighting on the maximum likelihood esti-
mator tends to 1 as n tends to ∞, so these estimators are
asymptotically unbiased.
5.8.7. Since the sum of gamma random variables is gamma,
then W is gamma with parameters nr and λ. Then g(θ |X =k)

is a gamma pdf with parameters nr + s and
n∑

i=1
yi +μ.

5.8.9. pX (k|θ) f(θ)=
(

n
k

)
�(r + s)

�(r)�(s)
θ k+r−1(1 − θ)n−k+s−1, so

pX (k|θ)=
(

n
k

)
�(r + s)

�(r)�(s)

∫ 1

0

θ k+r−1(1 − θ)n−k+s−1dθ

=
(

n
k

)
�(r + s)

�(r)�(s)

�(k + r)�(n − k + s)

�(n + r + s)

= n!
k!(n − k)!

(r + s − 1)!
(r − 1)!(s − 1)!

(k + r − 1)!(n − k + s − 1)!
(n + r + s − 1)!

= (k + r − 1)!
k!(r − 1)!

(n − k + s − 1)!
(n − k)!(s − 1)!

n!(r + s − 1)!
(n + r + s − 1)!

=
(

k + r − 1
k

)(
n − k + s − 1

n − k

)/(
n + r + s − 1

n

)

CHAPTER 6

Section 6.2

6.2.1. (a) Reject H0 if
ȳ − 120

18/
√

25
≤−1.41; z =−1.61; reject H0.

(b) Reject H0 if
ȳ − 42.9

3.2/
√

16
is either 1) ≤ −2.58 or 2) ≥ 2.58;

z = 2.75; reject H0.

(c) Reject H0 if
ȳ − 14.2

4.1/
√

9
≥ 1.13; z = 1.17; reject H0.

6.2.3. (a) No (b) Yes
6.2.5. No

6.2.7. (a) H0 should be rejected if
ȳ − 12.6

0.4/
√

30
is either (1)

≤ −1.96 or (2) ≥ 1.96. But ȳ = 12.76 and z = 2.19, suggesting
that the machine should be readjusted.
(b) The test assumes that the yi ’s constitute a random sample
from a normal distribution. Graphed, a histogram of the 30
yi ’s shows a mostly bell-shaped pattern. There is no reason
to suspect that the normality assumption is not being met.
6.2.9. P-value = P(Z ≤ −0.92) + P(Z ≥ 0.92) = 0.3576; H0

would be rejected if α had been set at any value greater than
or equal to 0.3576.

6.2.11. H0 should be rejected if
ȳ − 145.75

9.50/
√

25
is 1) ≤ −1.96 or

2) ≥ 1.96. Here, ȳ = 149.75 and z = 2.10, so the difference
between $145.75 and $149.75 is statistically significant.

Section 6.3

6.3.1. (a) z =0.91, which is not larger than z.05 (=1.64), so H0

would not be rejected. These data do not provide convincing
evidence that transmitting predator sounds helps to reduce
the number of whales in fishing waters.
(b) P-value= P(Z ≥0.91)=0.1824; H0 would be rejected for
any α ≥ 0.1814.

6.3.3. z = 72 − 120(0.65)√
120(0.65)(0.35)

= −1.15, which is not less than

−z.05 (=−1.64), so H0: p = 0.65 would not be rejected.
6.3.5. Let p = P(Yi ≤ 0.69315). Test H0: p = 1

2
versus

H1: p �= 1
2
. Given that x = 26 and n = 60, the P-value = P(X ≤

26) + P(X ≥ 34) = 0.3030.
6.3.7. Reject H0 if x ≥ 4 gives α = 0.50; reject H0 if x ≥ 5 gives
α = 0.23; reject H0 if x ≥ 6 gives α = 0.06; reject H0 if x ≥ 7
gives α = 0.01.
6.3.9. (a) 0.07

Section 6.4

6.4.1. 0.0735
6.4.3. 0.3786
6.4.5. 0.6293
6.4.7. 95
6.4.9. 0.23
6.4.11. α = 0.064; β = 0.107. A Type I error (convicting an
innocent defendant) would be considered more serious than
a Type II error (acquitting a guilty defendant).
6.4.13. 1.98
6.4.15. n

√
0.95

6.4.17. 1 −β = ( 1
2

)θ+1

6.4.19. 7
8

6.4.21. 0.63
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Section 6.5

6.5.1. λ = max
ω

L(p)/max
�

L(p), where max
ω

L(p) = pn
0 (1−

p0)

n∑
i=1

ki −n
and max

�
L(p)=

(
n

/ n∑
i=1

ki

)n [
1 −
(

n

/ n∑
i=1

ki

)] n∑
i=1

ki −n

6.5.3. λ =
{

(2π)−n/2e
− 1

2

n∑
i=1

(yi −μ0)2
}/{

(2π)−n/2e
− 1

2

n∑
i=1

(yi −ȳ)2
}

= e− 1
2

(
(ȳ−μ0)/

(
1/

√
n
))2

.

Base the test on z = (ȳ −μ0)/
(
1/

√
n
)
.

6.5.5. (a) λ = ( 1
2

)n
/[(k/n)k(1 − k/n)n−k] = 2−nk−k(n − k)k−nnn .

Rejecting H0 when 0 < λ ≤ λ∗ is equivalent to rejecting H0

when k ln k + (n − k) ln(n − k) ≥ λ∗∗.
(b) By inspection, k ln k + (n − k) ln(n − k) is symmetric in k.
Therefore, the left-tail and right-tail critical regions will be
equidistant from p = 1

2
, which implies that H0 should be

rejected if
∣∣k − 1

2

∣∣ ≥ c, where c is a function of α.

CHAPTER 7

Section 7.3

7.3.1. Clearly, fU (u)> 0 for all u > 0. To verify that fU (u) is a
pdf requires proving that

∫ ∞
0 fU (u) du = 1. But

∫ ∞
0 fU (u) du =

1
�(n/2)

∫ ∞
0

1
2n/2 un/2−1e−u/2du = 1

�(n/2)

∫ ∞
0 ( u

2
)

n/2−1e−u/2(du/2) =
1

�( n
2 )

= ∫ ∞
0 vn/2−1e−vdv, where v = u

2
and dv = du

2
. By definition,

�( n
2
) = ∫ ∞

0 vn/2−1e−vdv. Thus,
∫ ∞

0 fU (u)dy = 1
�(n/2)

· �( n
2
)= 1.

7.3.3. If μ = 50 and σ = 10,
3∑

i=1

( Yi −50
10

)2
should have a

χ 2
3 distribution, implying that the numerical value of

the sum is likely to be between, say, χ 2
.025,3(= 0.216) and

χ 2
.975,3(= 9.348). Here,

3∑
i=1

( Yi −50
10

)2 = ( 65−50
10

)2 + ( 30−50
10

)2 +(
55−50

10

)2 = 6.50, so the data are not inconsistent with the
hypothesis that the Yi ’s are normally distributed with μ = 50
and σ = 10.

7.3.5. Since E(S2)=σ 2, it follows from Chebyshev’s inequal-
ity that P(|S2 − σ 2| < ε) > 1 − Var(S2)

ε2 . But Var(S2) = 2σ4

n−1
→ 0 as

n → ∞. Therefore, S2 is consistent for σ 2.

7.3.7. (a) 0.983
(b) 0.132
(c) 9.00
7.3.9. (a) 6.23
(b) 0.65
(c) 9
(d) 15
(e) 2.28

7.3.11. F = V/m
U/n

, where V and U are independent χ 2 vari-
ables with m and n degrees of freedom, respectively. Then
1
F

= U/n
V/m

, which implies that 1
F

has an F distribution with n
and m degrees of freedom.

7.3.15. Let T be a Student t random variable with n degrees

of freedom. Then E(T 2k) = C
∫ ∞

−∞
t2k 1(

1 + t2

n

)(n+1)/2 dt , where

C is the product of the constants appearing in the defini-
tion of the Student t pdf. The change of variable y = t/

√
n

results in the integral E(T 2k) = C∗
∫ ∞

−∞
y2k 1

(1 + y2)
(n+1)/2 dy for

some constant C∗. Because of the symmetry of the integrand,

E(T 2k) is finite if the integral
∫ ∞

0

y2k

(1 + y2)
(n+1)/2 dy is finite. But∫ ∞

0

y2k

(1 + y2)
(n+1)/2 dy <

∫ ∞

0

(
1 + y2

)k
(1 + y2)

(n+1)/2 dy

=
∫ ∞

0

1

(1 + y2)
(n+1)/2−k dy =

∫ ∞

0

1

(1 + y2)
n−2k

2
+ 1

2

dy

To apply the hint, take α = 2 and β = n − 2k

2
+ 1

2
. Then

2k < n, β > 0, and αβ > 1, so the integral is finite.

Section 7.4

7.4.1. (a) 0.15
(b) 0.80
(c) 0.85
(d) 0.99 − 0.15 = 0.84

7.4.3. Both differences represent intervals associated with
5% of the area under fTn (t). Because the pdf is closer to the
horizontal axis the further t is away from 0, the difference
t.05,n − t.10,n is the larger of the two.
7.4.5. k = 2.2281

7.4.7. (0.869, 1.153)
7.4.9. (a) (30.8 yrs, 40.0 yrs)
(b) The graph of date versus age shows no obvious patterns
or trends. The assumption that μ has remained constant over
time is believable.
7.4.11. (175.6, 211.4)
The medical and statistical definition of “normal” differ
somewhat. There are people with medically normal platelet
counts who appear in the population less than 10% of the
time.
7.4.13. No, because the length of a confidence interval for
μ is a function of s as well as the confidence coefficient. If
the sample standard deviation for the second sample was
sufficiently small (relative to the sample standard deviation
for the first sample), the 95% confidence interval would be
shorter than the 90% confidence interval.
7.4.15. (a) 0.95
(b) 0.80
(c) 0.945
(d) 0.95
7.4.17. Obs. t =−1.71;−t.05,18 =−1.7341; fail to reject H0

7.4.19. Test H0: μ = 40 vs. H1: μ < 40; obs. t = −2.25;
−t.05,14 =−1.7613; reject H0.
7.4.21. Test H0: μ = 0.0042 vs. H1: μ < 0.0042; obs. t =
−2.48;−t.05,9 =−1.8331; reject H0.
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7.4.23. Because of the skewed shape of fY (y), and if the
sample size were small, it would not be unusual for all the
yi ’s to lie close together near 0. When that happens, ȳ will be
less than μ, s will be considerably smaller than E(S), and the t
ratio will be further to the left of 0 than fTn−1(t) would predict.
7.4.25. fZ (z)

Section 7.5

7.5.1. (a) 23.685
(b) 4.605
(c) 2.700
7.5.3. (a) 2.088
(b) 7.261
(c) 14.041
(d) 17.539
7.5.5. 233.9
7.5.7. P

(
χ 2

a/2,n−1 ≤ (n−1)S2

σ2 ≤χ 2
1−α/2,n−1

)
= 1 − α =

P

(
(n−1)S2

χ2
1−α/2,n−1

≤ σ 2 ≤ (n−1)S2

χ2
α/2,n−1

)
, so

(
(n−1)s2

χ2
1−α/2,n−1

, (n−1)s2

χ2
α/2,n−1

)
is a

100(1 − α)% confidence interval for σ 2. Taking the square
root of both sides gives a 100(1 − α)% confidence interval
for σ .
7.5.9. (a) (20.13, 42.17)
(b) (0,39.16) and (21.11,∞)

7.5.11. Confidence intervals for σ (as opposed to σ 2) are
often preferred by experimenters because they are expressed
in the same units as the data, which makes them easier to
interpret.

7.5.13. n = 10, which implies that 9s2

3.325
= 261.92, and s = 9.8.

7.5.15. Test H0: σ 2 = 30.42 versus H1: σ 2 < 30.42 The test
statistic in this case is χ 2 = (n−1)s2

σ2
0

= 18(733.4)

30.42 = 14.285.

The critical value is χ 2
α,n−1 = χ 2

.05,18 = 9.390. Accept the
null hypothesis, so do not assume that the potassium-argon
method is more precise.
7.5.17. (a) Test H0: μ= 10.1 versus H1: μ > 10.1
Test statistic is ȳ−μ0

s/
√

n
= 11.5−10.1

10.17/
√

24
= 0.674. Critical value is

tα,n−1 = t0.05,23 = 1.7139.
Accept the null hypothesis. Do not ascribe the increase

of the portfolio yield over the bench mark to the analyst’s
system for choosing stocks.
(b) Test H0: σ 2 = 15.67 versus H1: σ 2 < 15.67
Test statistic is χ 2 = 23(10.172)

15.672 = 9.688. Critical value is χ 2
.05,23 =

13.091.
Reject the null hypothesis. The analyst’s method of choosing
stocks does seem to result in less volatility.

CHAPTER 8

Section 8.2

8.2.1. Regression data
8.2.3. One-sample data
8.2.5. Regression data

8.2.7. k-sample data
8.2.9. One-sample data
8.2.11. Regression data
8.2.13. Two-sample data
8.2.15. k-sample data
8.2.17. Categorical data
8.2.19. Two-sample data
8.2.21. Paired data
8.2.23. Categorical data
8.2.25. Categorical data
8.2.27. Categorical data
8.2.29. Paired data
8.2.31. Randomized block data

CHAPTER 9

Section 9.2

9.2.1. Since t = 1.72 < t.01,19 = 2.539, accept H0.
9.2.3. Since z.05 = 1.64 < t = 5.67, reject H0.
9.2.5. Since −z.005 = −2.58 < t = −0.532 < z.005 = 2.58, do not
reject H0.
9.2.7. Since −t.025,6 = 2.4469 < t = 0.69 < t.025,6 = 2.4469,
accept H0.
9.2.9. Since t = 2.16 > t.025,86 = 1.9880, reject H0.
9.2.11. (a) 22.880 (b) 166.990
9.2.13. (a) 0.3974 (b) 0.2090
9.2.15. E

(
S2

X

) = E
(
S2

Y

)= σ 2 by Example 5.4.4.

E
(
S2

P

) = (n−1)E
(

S2
X

)
+(m−1)E

(
S2

Y

)
n+m−2

= (n−1)σ2+(m−1)σ2

n+m−2
= σ 2

9.2.17. Since t = 2.16 > t.05,13 = 1.7709, reject H0.
9.2.19. (a) The sample standard deviation for the first data
set is approximately 3.15; for the second, 3.29. These seem
close enough to permit the use of Theorem 9.2.2.
(b) Intuitively, the states with the comprehensive law should
have fewer deaths. However, the average for these data is
8.1, which is larger than the average of 7.0 for the states with
a more limited law.

Section 9.3

9.3.1. The observed F = 35.7604/115.9929 = 0.308. Since
F.025,11,11 = 0.288 < 0.308 < 3.47 = F.975,11,11, we can accept H0

that the variances are equal.

9.3.3. (a) The critical values are F.025,19,19 and F.975,19,19. These
values are not tabulated, but in this case, we can approximate
them by F.025,20,20 = 0.406 and F.975,20,20 = 2.46. The observed
F = 2.41/3.52 = 0.685. Since 0.406 < 0.685 < 2.46, we can
accept H0 that the variances are equal.

(b) Since t = 2.662 > t.025,38 = 2.0244, reject H0.
9.3.5. F = (0.20)2/(0.37)2 = 0.292. Since 0.248 = F.025,9,9 <

0.292 < 4.03 = F.975,9,9, accept H0.
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9.3.7. F = 65.25/227.77 = 0.286. Since 0.208 = F.025,8,5 <

0.286 < 6.76 = F.975,8,5, accept H0. Thus, Theorem 9.2.2 is
appropriate.

9.3.9. If σ 2
X = σ 2

Y = σ 2, the maximum likelihood estimator for
σ 2 is

σ̂ 2 = 1

n + m

(
n∑

i=1
(xi − x)2 +

m∑
i=1

(yi − y)2

)
.

Then L(ω̂)=
(

1

2πσ̂ 2

)(n+m)/2

e
− 1

2σ̂2

(
n∑

i=1
(xi −x)2+

m∑
i=1

(yi −y)2

)

=
(

1

2πσ̂ 2

)(n+m)/2

e−(n+m)/2

If σ 2
X �= σ 2

Y the maximum likelihood estimators for σ 2
X and

σ 2
Y are

σ̂ 2
X = 1

n

n∑
i=1

(xi − x)2, and σ̂ 2
Y = 1

m

m∑
i=1

(yi − y)2.

Then L(�̂)=
(

1

2πσ̂ 2
X

)n/2

e
1

2σ̂2
X

(
n∑

i=1
(xi −x)2

) (
1

2πσ̂ 2
Y

)m/2

× e
1

2σ̂2
Y

(
m∑

i=1
(yi −y)2

)

=
(

1

2πσ̂ 2
X

)n/2

e−m/2

(
1

2πσ̂ 2
Y

)m/2

e−n/2

The ratio λ = L(ω̂)

L(�̂)
= (σ̂ 2

X )n/2(σ̂ 2
Y )m/2

(σ̂ 2)(n+m)/2
, which equates to the

expression given in the statement of the question.

Section 9.4

9.4.1. Since −1.96 < z = 1.76 < 1.96 = z.025, accept H0.
9.4.3. Since −1.96 < z = −0.17 < 1.96 = z.025, accept H0 at the
0.05 level of significance.
9.4.5. Since z = 4.25 > 2.33 = z.01, reject H0 at the 0.01 level
of significance.
9.4.7. Since −1.96 < z = 1.50 < 1.96 = z.025, accept H0 at the
0.05 level of significance.
9.4.9. Since =0.25<1.64= z.05, accept H0. The player is right.

Section 9.5

9.5.1. (0.71, 1.55). Since 0 is not in the interval, we can reject
the null hypothesis that μX =μY .
9.5.3. Equal variance confidence interval is (−13.32,
6.72). Unequal variance confidence interval is (−13.61,
7.01).
9.5.5. Begin with the statistic X̄ − Ȳ , which has E(X̄ − Ȳ ) =
μX − μY and Var(X̄ − Ȳ ) = σ 2

X/n + σ 2
Y /m. Then

P

(
−zα/2 ≤ X̄−Ȳ−(μX −μY )√

σ2
X /n+σ2

Y /m
≤ zα/2

)
= 1 −α, which implies

P

(
−zα/2

√
σ 2

X/n + σ 2
Y /m ≤ X̄ − Ȳ − (μX −μY )

≤ zα/2

√
σ 2

X/n + σ 2
Y /m

)
= 1 −α.

Solving the inequality for μX −μY gives

P

(
X̄ − Ȳ − zα/2

√
σ 2

X/n + σ 2
Y /m ≤μX −μY ≤ X̄ − Ȳ

+zα/2

√
σ 2

X/n + σ 2
Y /m

)
= 1 −α.

Thus the confidence interval is(
x̄ − ȳ − zα/2

√
σ 2

X/n + σ 2
Y /m, x̄ − ȳ + zα/2

√
σ 2

X/n + σ 2
Y /m

)
.

9.5.7. (0.06, 2.14). Since the confidence interval contains
1, we can accept H0 that the variances are equal, and
Theorem 9.2.1 applies.
9.5.9. (−0.021, 0.051). Since the confidence interval contains
0, we can conclude that Flonase users do not suffer more
headaches.
9.5.11. The approximate normal distribution implies that

P

⎛⎝−zα ≤
X
n

− Y
m

− (pX − pY )√
(X/n)(1−X/n)

n
+ (Y/m)(1−Y/m)

m

≤ zα

⎞⎠= 1 −α

or

P

(
−zα

√
(X/n)(1 − X/n)

n
+ (Y/m)(1 − Y/m)

m
≤ X

n
− Y

m

− (pX − pY )≤ zα

√
(X/n)(1 − X/n)

n
+ (Y/m)(1 − Y/m)

m

)
= 1 − α

which implies that

P

(
−
(

X

n
− Y

m

)
− zα

√
(X/n)(1 − X/n)

n
+ (Y/m)(1 − Y/m)

m

≤−(pX − pY ) ≤−
(

X

n
− Y

m

)

+zα

√
(X/n)(1 − X/n)

n
+ (Y/m)(1 − Y/m)

m

)
= 1 −α

Multiplying the inequality by −1 yields the confidence
interval.

CHAPTER 10

Section 10.2

10.2.1. 0.000886
10.2.3. 0.00265
10.2.5. 0.00649
10.2.7. (a) 50!

3!7!15!25!
(

1
64

)3 ( 7
64

)7 ( 19
64

)15 ( 37
64

)25

(b) Var(X3) = 50
(

19
64

) (
45
64

)= 10.44

10.2.9. Assume that MX1,X2,X3(t1, t2, t3) = (p1et1 + p2et2 +
p3et3 )n . Then MX1,X2,X3(t1,0,0)= E(et1 X1)= (p1et1 + p2 + p3)

n =
(1 − p1 + p1et1)n is the mgf for X1. But the latter has the form
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of the mgf for a binomial random variable with parameters n
and p1.

Section 10.3

10.3.1.
t∑

i=1

(Xi −npi )
2

npi
=

t∑
i=1

(
X2

i −2npi Xi +n2 p2
i

)
npi

=
t∑

i=1

X2
i

npi
− 2

t∑
i=1

Xi+

n
t∑

i=1
pi =

t∑
i=1

X2
i

npi
− n.

10.3.3. If the sampling is done with replacement, the number
of white chips drawn should follow a binomial distribution
(with n = 2 and p = 0.4). Since the obs. χ 2 = 3.30 < 4.605 =
χ 2

.90,2, fail to reject H0.
10.3.5. Let p = P(baby is born between midnight and
4 A.M.). Test H0: p = 1/6 vs. H1: p �= 1/6; obs. z = 2.73;
reject H0 if α = 0.05. The obs. χ 2 in Question 10.3.4
will equal the square of the obs. z. The two tests are
equivalent.
10.3.7. Obs. χ 2 = 12.23 with 5 df; χ 2

.95,5 = 11.070; reject H0.
10.3.9. Obs. χ 2 = 18.22 with 7 df; χ 2

.95,7 = 14.067; reject H0.
10.3.11. Obs. χ 2 = 8.10; χ 2

.95,1 = 3.841; reject H0.

Section 10.4

10.4.1. Obs. χ 2 = 11.72 with 4 − 1 − 1 = 2 df; χ 2
.95,2 = 5.991;

reject H0.
10.4.3. Obs. χ 2 = 46.75 with 7 − 1 − 1 = 5 df; χ 2

.95,5 = 11.070;
reject H0. The independence assumption would not hold if
the infestation was contagious.
10.4.5. For the model fY (y)=λe−λy , λ̂=0.823; obs. χ 2 =4.181
with 5 − 1 − 1 = 3 df; χ 2

.95,3 = 7.815; fail to reject H0.
10.4.7. Let p = P(child is a boy). Then p̂ = 0.533, obs.
χ 2 = 0.62, and we fail to reject the binomial model because
χ 2

.95,1 = 3.841.
10.4.9. For the model pX (k) = e−3.87(3.87)k/k!, obs. χ 2 = 12.9
with 12 − 1 − 1 = 10 df. But χ 2

.95,10 = 18.307, so we fail to
reject H0.
10.4.11. p̂ = 0.26; obs. χ 2 = 9.23; χ 2

.95,3 = 7.815; reject H0.

Section 10.5

10.5.1. Obs. χ 2 = 2.77; χ 2
.90,1 = 2.706 and χ 2

.95,1 = 3.841, so H0

is rejected at the α = 0.10 level but not at the α = 0.05 level.
10.5.3. Obs. χ 2 = 42.25; χ 2

.99,3 = 11.345; reject H0.
10.5.5. Obs. χ 2 = 4.80; χ 2

.95,1 = 3.841; reject H0. Regular use
of aspirin appears to lessen the chances that a woman will
develop breast cancer.
10.5.7. Obs. χ 2 = 12.61; χ 2

.95,1 = 3.841; reject H0.
10.5.9. Obs. χ 2 = 2.197; χ 2

.95,1 = 3.841; fail to reject H0.

CHAPTER 11

Section 11.2

11.2.1. y = 25.23 + 3.29x;84.5◦F

11.2.3.

xi yi − ŷi

0 −0.81
4 0.01

10 0.09
15 0.03
21 −0.09
29 0.14
36 0.55
51 1.69
68 −1.61

A straight line appears to fit these data.
11.2.5. The value 12 is too “far” from the data observed.
11.2.7. The least squares line is y = 88.1 + 0.412x .
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11.2.9. The least squares line is y = 114.72 + 9.23x .
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A linear fit seems reasonable.
11.2.11. The least squares line is y = 0.61 + 0.84x , which
seems inadequate because of the large values of the residuals.
11.2.13. When x̄ is substituted for x in the least squares
equation, we obtain y = a + bx̄ = ȳ − bx̄ + bx̄ = ȳ.
11.2.15. 0.03544

11.2.17. y = 100 − 5.19x

11.2.19. To find the a, b, and c, solve the following set of
equations.
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(1) na +
(

n∑
i=1

xi

)
b +
(

n∑
i=1

sin xi

)
c =

n∑
i=1

yi

(2)

(
n∑

i=1

xi

)
a +
(

n∑
i=1

x2
i

)
b +
(

n∑
i=1

xi sin xi

)
c =

n∑
i=1

xi yi

(3)

(
n∑

i=1

cos xi

)
a +
(

n∑
i=1

xi cos xi

)
b+

(
n∑

i=1

(cos xi )(sin xi )

)
c =

n∑
i=1

yi cos xi

11.2.21. (a) y = 4.6791e0.0484x (b) 8.362 trillion
(c) Part (b) and the residual pattern cast doubt on the
exponential model.
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11.2.23. y = 819.4e0.128x

11.2.25. The model is y = 13.487x10.538.
11.2.27. The model is y = 0.07416x1.43687.
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11.2.29. (d) If y = 1
a+bx

, then 1
y
= a + bx, and 1/y is linear

with x .
(e) If y = x

a+bx
, then 1

y
= a+bx

x
= b + a 1

x
, and 1/y is linear

with 1/x .
(f) If y = 1 − e−xb/a

, then 1 − y = e−xb/a
, and 1

1−y
= exb/a . Tak-

ing the ln of both sides gives ln 1
1−y

= xb/a. Taking the ln again
yields ln ln 1

1−y
=− ln a + b ln x, and ln ln 1

1−y
is linear with ln x .

11.2.31. a = 5.55870;b =−0.13314
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Section 11.3

11.3.1. y = 13.8 − 1.5x ; since −t.025,2 = −4.3027 < t = −1.59
< 4.3027 = t.025,2, accept H0.
11.3.3. Since t = 5.47 > t.005,13 = 3.0123, reject H0.
11.3.5. 0.9164
11.3.7. (66.551, 68.465)
11.3.9. Since t = 4.38 > t.025,9 = 2.2622, reject H0.
11.3.11. By Theorem 11.3.2, E(β̂0)=β0, and

Var
(
β̂0

)= σ 2
n∑

i=1
xi

n
n∑

i=1
(xi − x̄)2

.

Now (β̂0 −β0)/

√
Var(β̂0) is normal, so

P

(
−za/2 <

(
β̂0 −β0

)
/

√
Var
(
β̂0

)
< zα/2

)
= 1 −α.

Then the confidence interval is(
β̂0 − zα/2

√
Var
(
β̂0

)
, β̂0 + zα/2

√
Var
(
β̂

0

))
or ⎛⎜⎜⎜⎜⎝β̂ − za/2

σ

√
n∑

i=1
xi√

n
n∑

i=1
(xi − x̄)2

, β̂0 + zα/2

σ

√
n∑

i=1
xi√

n
n∑

i=1
(xi − x̄)2

⎞⎟⎟⎟⎟⎠
11.3.13. Reject the null hypothesis if the test statistic is
< χ 2

.025,22 = 10.982 or > χ 2
.975,22 = 36.781. The observed chi

square is
(n − 2)s2

σ 2
0

= (24 − 2)(18.2)

12.6
= 31.778, so do not

reject H0.
11.3.15. (2.655, 17.237)
11.3.17. (2.060, 2.087)
11.3.19. The confidence interval of (173.89, 214.13) does not
contain the Harvard median salary. The prediction interval
of (147.40, 240.62) does.
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11.3.21. The test statistic is t = β̂1 − β̂∗
1

s
√

1
6∑

i=1
(xi −x̄)2

+ 1
8∑

i=1

(
x∗

i −x̄∗
)2 ,

where s =
√

5.983+13.804

6+8−4
= 1.407.

Then t = 0.606−1.07

1.407

√
1

31.33
+ 1

46

=−1.42

Since the observed ratio is not less than −t0.05,10 = −1.8125,
the difference in slopes can be ascribed to chance. These data
do not support further investigation.
11.3.23. The form given in the text is Var(Ŷ ) =

σ 2

⎡⎣ 1
n
+ (x−x̄)2

n∑
i=1

(xi −x̄)2

⎤⎦. Putting the sum in the brackets over a

least common denominator gives

1

n
+ (x − x̄)2

n∑
i=1

(xi − x̄)2

=

n∑
i=1

(xi − x̄)2 + n(x − x̄)2

n
n∑

i=1
(xi − x̄)2

=

n∑
i=1

x2
i − nx̄2 + n(x2 + x̄2 − 2x x̄)

n
n∑

i=1
(xi − x̄)2

=

n∑
i=1

x2
i + nx2 − 2nx x̄

n
n∑

i=1
(xi − x̄)2

=

n∑
i=1

x2
i + nx2 − 2x

n∑
i=1

xi

n
n∑

i=1
(xi − x̄)2

=

n∑
i=1

(xi − x)2

n
n∑

i=1
(xi − x̄)2

.

Thus, Var(Ŷ ) =
σ2

n∑
i=1

(xi −x)2

n
n∑

i=1
(xi −x̄)2

.

Section 11.4

11.4.1. −2/121;−2/15
√

14

11.4.3. 0.492

11.4.5. ρ(a + bX, c + dY ) = Cov(a + bX, c + dY )√
Var(a + bX)Var(c + dY )

=
bd Cov (X,Y )√

b2Var(X)d2Var(Y )
, the equality in the numerators stem-

ming from Question 3.9.14. Since b > 0, d > 0, this last
expression is

bd Cov(X,Y )

bdσXσY

= Cov(X,Y )

σXσY

= ρ(X,Y ).

11.4.7. (a) Cov(X + Y, X − Y )= E �(X + Y )(X − Y )�
−E(X + Y )E(X − Y )

= E[X 2 − Y 2] − (μX +μY )

(μX − μY )

= E(X 2)−μ2
X − E(Y 2) +μ2

Y

=Var(X)− Var(Y )

(b) ρ(X + Y ) = Cov(X + Y, X − Y )√
Var(X + Y )Var(X − Y )

. By Part (a)

Cov(X + Y, X − Y ) = Var(X)− Var(Y ).
Var(X + Y ) = Var(X) + Var(Y )= 2Cov(X,Y )

= Var(X)+ Var(Y ) + 0.
Similarly, Var(X − Y ) = Var(X) + Var(Y ). Then

ρ(X + Y ) = Var(X)− Var(Y )√
(Var(X)+ Var(Y ))(Var(X) + Var(Y ))

=Var(X)− Var(Y )

Var(X)+ Var(Y )
.

11.4.9. By Equation 11.4.2

r =
n

n∑
i=1

xi yi −
(

n∑
i=1

xi

)(
n∑

i=1
yi

)
√

n
n∑

i=1
x2

i −
(

n∑
i=1

xi

)2
√

n
n∑

i=1
y2

i −
(

n∑
i=1

yi

)2

=
n

n∑
i=1

xi yi −
(

n∑
i=1

xi

)(
n∑

i=1
yi

)
n

n∑
i=1

x2
i −
(

n∑
i=1

xi

)2

×
n

n∑
i=1

x2
i −
(

n∑
i=1

xi

)2

√
n

n∑
i=1

x2
i −
(

n∑
i=1

xi

)2
√

n
n∑

i=1
y2

i −
(

n∑
i=1

yi

)2

= β̂1

√
n

n∑
i=1

x2
i −
(

n∑
i=1

xi

)2

√
n

n∑
i=1

y2
i −
(

n∑
i=1

yi

)2
.

11.4.11. r = −0.030. The data do not suggest that altitude
affects home run hitting.
11.4.13. 58.1%

Section 11.5

11.5.1. 0.1891; 0.2127
11.5.3. (a) fX+Y (t)= 1

2π

√
1−ρ2

∫ ∞
−∞

exp

{
−1

2

(
1

1 − ρ2

)
[(t − y)2 − 2ρ(t − y)y + y2]

}
dy
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The expression in the brackets can be expanded and
rewritten as

t2 + 2(1 + ρ)y2 − 2t (1 + ρ)y = t2 + 2(1 + ρ)[y2 − t y]

= t2 + 2(1 + ρ)

[
y2 − t y + t2

4

]
− 1

2
(1 + ρ)t2

= 1 − ρ

2
t2 + 2(1 + ρ)(y − t/2)2.

Placing this expression into the exponent gives

fX+Y (t)= 1

2π
√

1 − ρ2
e

− 1
2

(
1

1−ρ2

)
1−ρ

2 t2
∫ ∞

−∞
e

− 1
2

(
1

1−ρ2

)
2(1+ρ)(y−t/2)2

dy

= 1

2π
√

1 − ρ2
e

− 1
2

(
t2

2(1+ρ)

) ∫ ∞

−∞
e

− 1
2

(
(y−t/2)2

(1+ρ)/2

)
dy.

The integral is that of a normal pdf with mean t/2 and
σ 2 = (1 + ρ)/2. Thus, the integral equals

√
2π(1 + ρ)/2 =√

π(1 + ρ). Putting this into the expression for fX+Y gives

fX+Y (t)= 1√
2π

√
2(1 + ρ)

e
− 1

2

(
t2

2(1+ρ)

)
,

which is the pdf of a normal variable with μ = 0 and σ 2 =
2(1 + ρ).
(b) E(X + Y ) = cμX + dμY ,Var(X + Y ) = c2σ 2

X + d2σ 2
Y +

2cdσXσY ρ(X,Y )

11.5.5. E(X) = E(Y ) = 0;Var(X) = 4;Var(Y ) = 1;ρ(X,Y ) =
1/2; k = 1/2π

√
3

11.5.7. Since −t.005,18 = −2.8784 < Tn−2 = −2.156 < 2.8784 =
t.005,18, accept H0.
11.5.9. Since −t.025,10 = −2.2281 < Tn−2 = −0.094 < 2.2281 =
t.025,10, accept H0.

11.5.11. r = 0.249. T8 =
√

8(0.249)√
1−(0.249)2

= 0.73

Since T8 = 0.73 < 1.397 = t.10,8, accept H0.

CHAPTER 12

Section 12.2

12.2.1. Obs. F = 3.94 with 3 and 6 df; F.95,3,6 = 4.76 and
F.90,3,6 = 3.29, so H0 would be rejected at the α = 0.10 level,
but not at the α = 0.05 level.
12.2.3.

Source df SS MS F

Sector 2 186.0 93.0 3.44
Error 27 728.2 27.0
Total 29 914.2

F.99,2,27 does not appear in Table A.9, but F.99,2,30 = 5.39 <

F.99,2,27 < F.99,2,24 = 5.61. Thus, we fail to reject H0, since
3.44 < 5.39

12.2.5.

Source df SS MS F P

Tribe 3 504167 168056 3.70 0.062
Error 8 363333 45417
Total 11 867500

Since the P-value is greater than 0.01, we fail to reject H0.

12.2.7.

Source df SS MS F

Treatment 4 271.36 67.84 6.40
Error 10 106.00 10.60
Total 14 377.36

12.2.9.

SSTOT =
k∑

j=1

n j∑
i=1

(
Yi j − Ȳ..

)2 =
k∑

j=1

n j∑
i=1

(
Y 2

i j − 2Yi j Ȳ.. + Ȳ 2
..

)

=
k∑

j=1

n j∑
i=1

Y 2
i j − 2Ȳ..

k∑
j=1

n j∑
i=1

Yi j + nȲ 2
..

=
k∑

j=1

n j∑
i=1

Y 2
i j − 2nȲ 2

.. + nȲ 2
..

=
k∑

j=1

n j∑
i=1

Y 2
i j − nȲ 2

.. =
k∑

j=1

n j∑
i=1

Y 2
i j − C,

where C = T 2
.. /n.Also,

SSTR =
k∑

j=1

n j∑
i=1

(
Ȳ 2

. j − Ȳ..

)2
=

k∑
j=1

n j

(
Ȳ 2

. j − 2Ȳ. j Ȳ.. + Ȳ 2
..

)
=

k∑
j=1

T 2
. j/n j − 2Ȳ..

k∑
j=1

n j Ȳ. j + nȲ 2
..

=
n∑

j=1

T 2
. j/n j − 2nȲ 2

.. + nȲ 2
..

=
k∑

j=1

T 2
. j/n j − C.

12.2.11. Analyzed with a two-sample t test, the data
in Question 9.2.8 require that H0:μX = μY be rejected
(in favor of a two-sided H1) at the α = 0.05 level if
|t | ≥ t.025,6+9−2 = 2.1604. Evaluating the test statistic gives
t = (70.83 − 79.33)/11.31

√
1/6 + 1/9 = −1.43, which implies

that H0 should not be rejected. The ANOVA table for the
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same data shows that F = 2.04. But (−1.43)2 = 2.04. More-
over, H0 would be rejected with the analysis of variance if
F ≥ F.95,1,13 = 4.667. But (2.1604)2 = 4.667.

Source df SS MS F

Sex 1 260 260 2.04
Error 13 1661 128
Total 14 1921

12.2.13.

Source df SS MS F P

Law 1 16.333 16.333 1.58 0.2150
Error 46 475.283 10.332
Total 47 491.616

The F critical value is 4.05.
For the pooled two-sample t test, the observed t ratio is

−1.257, and the critical value is 2.0129.
Note that (−1.257)2 =1.58 (rounded to two decimal places)

which is the observed F ratio. Also, 2.01292 = 4.05 (rounded
to two decimal places), which is the F critical value.

Section 12.3

12.3.1.

Pairwise Difference Tukey Interval Conclusion

μ1 −μ2 (−15.27,13.60) NS
μ1 −μ3 (−23.77,5.10) NS
μ1 −μ4 (−33.77,−4.90) Reject
μ2 −μ3 (−22.94,5.94) NS
μ2 −μ4 (−32.94,−4.06) Reject
μ3 −μ4 (−24.44,4.44) NS

12.3.3. Obs. F =5.81 with 2 and 15 df; reject H0:μC =μA =μM

at α = 0.05 but not at α = 0.01.

Pairwise Difference Tukey Interval Conclusion

μC −μA (−78.9,217.5) NS
μC −μM (−271.0,25.4) NS
μA −μM (−340.4,−44.0) Reject

12.3.5.

Pairwise Difference Tukey Interval Conclusion

μ1 −μ2 (−29.5,2.8) NS
μ1 −μ3 (−56.2,−23.8) Reject
μ2 −μ3 (−42.8,−10.5) Reject

12.3.7. Longer. As k gets larger, the number of possible
pairwise comparisons increases. To maintain the same over-
all probability of committing at least one Type I error, the
individual intervals would need to be widened.

Section 12.4

12.4.1.

Source df SS MS F

Tube 2 510.7 255.4 11.56
Error 42 927.7 22.1
Total 44 1438.4

Subhypothesis Contrast SS F

H0:μA =μC C1 =μA −μC 264 11.95

H0:μB = μA +μC

2
C2 = 1

2
μA −μB + 1

2
μC 246.7 11.16

H0:μA =μB =μC is strongly rejected (F.99,2,42 = F.99,2,40 =5.18).
Theorem 12.4.1 holds true for orthogonal contrasts C1 and
C2—SSC1 − SSC2 = 264 + 246.7 = 510.7 = SSTR.

12.4.3. Ĉ = −14.25;SSC = 812.25; obs. F = 10.19; F.95,1,20 =
4.35; reject H0.
12.4.5.

μA μB μC μD

4∑
j=1

c j

C1 1 −1 0
¯

0 0
C2 0 0 1

¯
−1 0

C3
11
12

11
12

−1 −5
6

0

C1 and C3 are orthogonal because 1(11/12)

6
+ (−1)(11/12)

6
= 0;

also C2 and C3 are orthogonal because 1(−1)

6
+ (−1)(−5/6)

5
=

0. Ĉ3 = −2.293 and SSC3 = 8.97. But SSC1 + SSC2 + SSC3 =
4.68 + 1.12 + 8.97 = 14.77 = SSTR.

Section 12.5

12.5.1. Replace each observation by its square root. At the
α = 0.05 level, H0:μA = μB is rejected. (For α = 0.01, though,
we would fail to reject H0.)

Source df SS MS F P

Developer 1 1.836 1.836 6.23 0.032
Error 10 2.947 0.295
Total 11 4.783

12.5.3. Since Yi j is a binomial random variable based on
n = 20 trials, each data point should be replaced by the arc-
sin of (yi j/20)1/2. Based on those transformed observations,
H0:μA =μB =μC is strongly rejected (P < 0.001).
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Source df SS MS F P

Launcher 2 0.30592 0.15296 22.34 0.000
Error 9 0.06163 0.00685
Total 11 0.36755

Appendix 12.A.3

12.A.3.1. The F test will have greater power against H ∗∗
1

because the latter yields a larger noncentrality parameter
than does H ∗

1 .

12.A.3.3. MV (t)= (1−2t)−r/2eγ t (1−2t)−1 , so M (1)

V (t)= (1−2t)−r/2

eγ t (1−2t)−1 [
γ t (−1)(1 − 2t)−2(−2) + (1 − 2t)−1γ

]+
eγ t (1−2t)−1

(
− r

2

)
(1 − 2t)−(r/2)−1(−2).

Therefore E(V )= M (1)

V (0)= γ + r .

12.A.3.5. MV (t) =
n∏

i=1
(1 − 2t)−ri /2eγi t/(1−2t) = (1 − 2t)

−
n∑

i=1
ri /2 ·

e

(
n∑

i=1
γi

)
t/(1−2t)

which implies that V has a noncentral χ 2 distri-

bution with
n∑

i=1
ri df and with noncentrality parameter

n∑
i=1

γi .

CHAPTER 13

Section 13.2

13.2.1.

Source df SS MS F P

States 1 61.63 61.63 7.20 0.0178
Students 14 400.80 28.63 3.34 0.0155
Error 14 119.87 8.56
Total 29 582.30

The critical value F.95,1,14 is approximately 4.6. Since the
F statistic = 7.20 > 4.6, reject H0.

13.2.3.

Source df SS MS F P

Additive 1 0.03 0.03 4.19 0.0865
Batch 6 0.02 0.00 0.41 0.8483
Error 6 0.05 0.01
Total 13 0.10

Since the F statistic = 4.19 < F.95,1,6 = 5.99, accept H0.

13.2.5. From the Table 13.2.9, we obtain M SE =
6.00. The radius of the Tukey interval is D

√
M SE =

(Q .05,3,22/
√

b)
√

6.00 = (3.56/
√

12)
√

6.00 = 2.517. The Tukey
intervals are

Pairwise Difference y .s − y .t Tukey Interval Conclusion

μ1 −μ2 −2.41 (−4.93, 0.11) NS
μ1 −μ3 −0.54 (−3.06, 1.98) NS
μ2 −μ3 1.87 (−0.65, 4.39) NS

From this analysis and that of Case Study 13.2.3, we
find that the significant difference occurs not for overall
means testing or pairwise comparisons, but for the com-
parison of “during the full moon” with “not during the full
moon.”

13.2.7.

Pairwise Difference y ·s − y ·t Tukey Interval Conclusion

μ1 −μ2 2.925 (0.78,5.07) Reject
μ1 −μ3 1.475 (−0.67,3.62) NS
μ2 −μ3 −1.450 (−3.60,0.70) NS

13.2.9. (a)

Source df SS MS F P

Sleep stages 2 16.99 8.49 4.13 0.0493
Shrew 5 195.44 39.09 19.00 0.0001
Error 10 20.57 2.06
Total 17 233.00

(b) Since the observed F ratio=2.42< F.95,1,10 =4.96, accept
the subhypothesis. For the contrast C1 = − 1

2
μ1 − 1

2
μ2 +

μ3, SSC1 = 4.99. For the contrast C2 = μ1 − μ2, SSC2 = 12.00.

Then SSTR = 16.99 = 4.99 + 12.00 = SSC1 + SSC2 .

13.2.11. Equation 13.2.2:

SSTR =
b∑

i=1

k∑
j=1

(
Y . j − Y . .

)2 = b
k∑

j=1

(
Y . j − Y . .

)2
= b

k∑
j=1

(
Y

2

. j − 2Y . j Y . . + Y
2

. .

)
= b

k∑
j=1

Y
2

. j − 2bY . .

k∑
j=1

Y . j + bkY
2

. .

= b
k∑

j=1

T 2
. j

b2
− 2T 2

. .

bk
+ T 2

. .

bk
=

k∑
j=1

T 2
. j

b
− T 2

. .

bk
=

k∑
j=1

T 2
. j

b
− c
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Equation 13.2.3:

SSB =
b∑

i=1

k∑
j=1

(
Y i. − Y . .

)2 = k
b∑

i=1

(
Y i. − Y . .

)2
= k

b∑
i=1

(
Y

2

i. − 2Y i.Y . . + Y
2

. .

)= k
b∑

i=1

Y
2

i. − 2kY . .

b∑
i=1

Y i.

+bkY
2

. .

= k
b∑

i=1

T 2
i.

k2
− 2T 2

. .

bk
+ T 2

. .

bk
=

b∑
i=1

T 2
i.

k
− T 2

. .

bk
=

b∑
i=1

T 2
i.

k
− c

Equation 13.2.4:

SSTOT =
b∑

i=1

k∑
j=1

(
Yi j − Y . .

)2 =
b∑

i=1

k∑
j=1

(
Y 2

i j − 2Yi j Y . . + Y
2

. .

)
=

b∑
i=1

k∑
j=1

Y 2
i j − 2Y . .

b∑
i=1

k∑
j=1

Yi j + bkY
2

. .

=
b∑

i=1

k∑
j=1

Y 2
i j −

2T 2
. .

bk
+ T 2

. .

bk
=

b∑
i=1

k∑
j=1

Y 2
i j − c

13.2.13. (a) False. They are equal only when b = k.
(b) False. If neither treatment levels nor blocks are
significant, it is possible to have F variables

SSTR/(k − 1)

SSE/(b − 1)(k − 1)
and

SSB/(b − 1)

SSE/(b − 1)(k − 1)
both<1.

In that case both SSTR and SSB are less than SSE.

Section 13.3

13.3.1. Since 1.51 < 1.7341 = t.05,18, do not reject H0.
13.3.3. α = 0.05: Since −t.025,11 = −2.2010 < 0.74 < 2.2010 =
t.025,11, accept H0.
α = 0.01: Since −t.005,11 = −3.1058 < 0.74 < 3.1058 = t.005,11,
accept H0.
13.3.5. Since −t.025,6 = −2.4469 < −2.0481 < 2.4469 = t.025,6,
accept H0. The square of the observed Student t statistic =
(−2.0481)2 = 4.1947 = the observed F statistic. Also,
(t.025,6)

2 = (2.4469)2 =5.987= F.95,1,6. Conclusion: the square of
the t statistic for paired data is the randomized block design
statistic for 2 treatments.
13.3.7. (−0.21,0.43)

CHAPTER 14

Section 14.2

14.2.1. Here, x = 8 of the n = 10 groups were larger than the
hypothesized median of 9. The P-value is P(X ≥ 8) + P(X ≤
2)= 0.000977 + 0.009766 + 0.043945 + 0.043945 + 0.009766 +
0.000977 = 2(0.054688) = 0.109376.

14.2.3. The median of fY (y) is 0.693. There are x = 22 values
that exceed the hypothesized median of 0.693. The test statis-

tic is z = 22 − 50/2√
50/4

= −0.85. Since −z0.025 = −1.96 < −0.85 <

z0.025 = 1.96, do not reject H0.
14.2.5.

y+ P(Y+ = y+)

0 1/128
1 7/128
2 21/128
3 35/128
4 35/128
5 21/128
6 7/128
7 1/128

Possible levels for a one-sided test: 1/128,8/128,29/128, etc.
14.2.7. P(Y+ ≤ 6) = 0.0835; P(Y+ ≤ 7) = 0.1796. The closest
test to one with α = 0.10 is to reject H0 if y+ ≤ 6. Since y+ = 9,
accept H0. Since the observed t statistic = −1.71 < −1.330 =
−t.10,18, reject H0.
14.2.9. The approximate, large-sample observed Z ratio is
1.89. Accept H0, since −z.025 =−1.96 < 1.89 < 1.96 = z.025.

14.2.11. From Table 13.3.1, the number of pairs where xi > yi

is 7. The P-value for this test is P(U ≥ 7) + P(U ≤ 3) =
2(0.17186) = 0.343752. Since the P-value exceeds α = 0.05,
do not reject the null hypothesis, which is the conclusion of
Case Study 13.3.1.

Section 14.3

14.3.1. For the critical values of 7 and 29, α = 0.148. Since
w = 9, accept H0.
14.3.3. The observed Z statistic has value 0.99. Since
−z.025 =−1.96 < 0.99 < 1.96 = z.025, accept H0.

14.3.5. Since w′ = 61.0 − 95√
617.5

= −1.37 < −1.28 = −z.10, reject

H0. The sign test accepted H0.
14.3.7. The signed rank test should have more power since it
uses more of the information in the data.
14.3.9. A reasonable assumption is that alcohol abuse short-
ens life span. In that case, reject H0 if the test statistic is less
than −z0.05 = −1.64. Since the test statistic has value −1.88,
reject H0.

Section 14.4

14.4.1. Assume the data within groups are independent and
that the group distributions have the same shape. Let the
null hypothesis be that teachers’ expectations do not mat-
ter. The Kruskal-Wallis statistics has value b = 5.64. Since
5.64 < 5.991 =χ0.95,2, accept H0.
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14.4.3. Since b = 1.68 < 3.841 =χ 2
.95,1, do not reject H0.

14.4.5. Since b = 10.72 > 7.815 = χ 2
.95,3, reject H0.

14.4.7. Since b = 12.48 > 5.991 = χ 2
.95,2, reject H0.

Section 14.5

14.5.1. Since g = 8.8 < 9.488 =χ 2
.95,4, accept H0.

14.5.3. Since g = 17.0 > 5.991 =χ 2
.95,2, reject H0.

14.5.5. Since g = 8.4 < 9.210 = χ0.99,2, accept H0. On the
other hand, using the analysis of variance, the null hypothesis
would be rejected at this level.

Section 14.6

14.6.1. (a) For these data, w = 23 and z = −0.53. Since
−z.025 = −1.96 < −0.53 < 1.96 = z.025, accept H0 and assume
the sequence is random.
(b) For these data, w = 21 and z = −1.33. Since −z.025 =
−1.96 < −1.33 < 1.96 = z.025, accept H0 and assume the
sequence is random.
14.6.3. For these data, w = 19 and z = 1.68. Since −z.025 =
−1.96<1.68<1.96= z.025, accept H0 and assume the sequence
is random.
14.6.5. For these data, w = 25 and z = −0.51. Since −z.025 =
−1.96 < −0.51 < 1.96 = z.025, accept H0 at the 0.05 level of
significance and assume the sequence is random.
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Analysis of variance (see Completely randomized one-factor design;

Randomized block design)
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Arc sine transformation, 617–618
Asymptotically unbiased, 317, 330

Bayesian estimation, 333–344
Bayes theorem, 48, 64
Behrens-Fisher problem, 465–468
Benford’s law, 121–122, 502–505
Bernoulli distribution, 186, 191, 282–283, 321, 323–324
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Best estimator, 322
Beta distribution, 336
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Binomial distribution:
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confidence interval for p, 302–305
definition, 104–105
estimate for p, 282–283, 312–313, 321
examples, 105–107, 141, 179, 185–186, 191, 243–244,

255, 336, 511
hypothesis tests for p, 361, 364–365
moment-generating function, 208
moments, 141, 185–186, 191, 212–213
normal approximation, 239–244, 279
Poisson approximation, 222–223
relationship to Bernoulli distribution, 185–186, 191
relationship to beta distribution, 337
relationship to hypergeometric distribution, 110, 202–203
relationship to multinomial distribution, 494–497, 521
sample size determination, 307–308
in sign test, 657

Birthday problem, 94–95
Bivariate distribution (see Joint probability density function)
Bivariate normal distribution, 582–585
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682–683
Bootstrapping, 345–346
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Chi square distribution:

definition, 389
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moments, 394
noncentral, 624–626
relationship to F distribution, 389
relationship to gamma distribution, 389
relationship to normal distribution, 389
relationship to Student t distribution, 391
table, 410–411, 702–703

Chi square test:
for goodness-of-fit, 494, 499–500, 506–508, 510
for independence, 522
for means, 599
in nonparametric analyses, 678, 682
for the variance, 415, 427–429

Coefficient of determination, 579
Combinations, 86–87
Complement, 23
Completely randomized one-factor design:

comparison with Kruskal-Wallis test, 689–693
comparison with randomized block design, 636
computing formulas, 604
error sum of squares, 600–601
notation, 596–597
relationship to two-sample data, 606–607
test statistic, 599, 601, 626
total sum of squares, 600–601
treatment sum of squares, 598–600, 614, 624

Conditional expectation, 555–557, 569–570
Conditional probability:

in bivariate distribution, 201–206
definition, 33–34, 201, 203
in higher-order intersections, 40
in partitioned sample spaces, 43–44, 48, 334
in regression, 555–557

Confidence band, 570
Confidence coefficient, 302
Confidence interval (see also Prediction interval):

for conditional mean in linear model, 569–570, 592
definition, 298–299, 302
for difference of two means, 481
for difference of two proportions, 485
interpretation, 299–301, 304–306
for mean of normal distribution, 298–302,

396, 621
for p in binomial distribution, 302–305
for quotient of two variances, 483
for regression coefficients, 364–365, 567
relationship to hypothesis testing, 483
for variance of normal distribution, 412

Consistent estimator, 330–333
Consumer’s risk, 377
Contingency table, 446, 520, 524–526
Continuity correction, 242–243
Contrast, 611–614, 638–640
Correlation coefficient (see also Sample correlation

coefficient):
applied to linear relationships, 576
in bivariate normal distribution, 585
definition, 576
estimate, 577–578
interpretation, 578–579, 589–590
relationship to covariance, 576
relationship to independence, 585

Correlation data, 444–446
Covariance, 189–190
Cramér-Rao lower bound, 320–322, 329
Craps, 62–63
Critical region, 355
Critical value, 355
Cumulative distribution function (cdf):

definition, 127, 137, 171
in pdf of order statistics, 194, 196, 198
relationship to pdf, 137, 172
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Curve-fitting:
examples, 534–540, 544–552
method of least squares, 533–534
residual, 535
residual plot, 535–540
transformations to induce linearity, 544–545, 547, 549–550, 552

Decision rule (see Hypothesis testing; Testing)
DeMoivre-Laplace limit theorem, 239–240, 246
DeMorgan’s laws, 26
Density function (see Probability density function (pdf))
Density-scaled histogram, 132–135, 237, 296
Dependent samples, 433, 440, 629–630, 647–653
Distribution-free statistics (see Nonparametric statistics)
Dot notation, 596–597, 631

Efficiency, 317–319, 322
Efficient estimator, 332
Estimation (see also Confidence interval; Estimator):

Bayesian, 333–344
least squares, 533–534
maximum likelihood, 282–291
method of moments, 293–296
point versus interval, 297–298

Estimator (see also Confidence interval; Estimation):
best, 321–322
for binomial p, 282–283, 312–313, 321
for bivariate normal parameters, 586–587
consistent, 330–333
for contrast, 612–613
for correlation coefficient, 577–578
Cramér-Rao lower bound, 320
difference between estimate and estimator, 283, 286
efficient, 322
for exponential parameter, 288
for gamma parameters, 295–296
for geometric parameter, 288–290
interval, 297–298
for normal parameters, 285–286, 315–316
for Poisson parameter, 285–286, 326–327, 344
for slope and y-intercept (linear model), 557–560
sufficient, 323, 326–327
unbiasedness, 313–316
for uniform parameter, 331, 347–349
for variance in linear model, 557, 561

Event, 18
Expected value (see also “moments” listings for specific

distributions):
conditional, 555–557
definition, 140, 160–161
examples, 139–146, 183–185, 598–599
of functions, 150–154, 183, 185, 187–188, 192
of linear combinations, 192
of loss functions, 342
in method of moments estimation, 293–294
relationship to median, 147
relationship to moment-generating function, 210
of sums, 185

Experiment, 18
Experimental design, 430, 435, 448–450, 595–596, 629–630,

635–636, 647–653
Exponential distribution:

examples, 134–135, 145, 147–148, 180–182, 194–195, 236–237,
275, 408

moment-generating function, 208–209
moments, 145–146, 211
parameter estimation, 287–288
relationship to Poisson distribution, 235–236
threshold parameter, 288

Exponential form, 330
Exponential regression, 3, 544–547

Factor, 431–432
Factorial moment-generating function, 262
Factorization theorem, 327–328
Factor levels, 431–432
F distribution:

in analysis of variance, 601, 614, 633
definition, 390
in inferences about variance ratios, 471–472, 483
relationship to chi square distribution, 390
relationship to Student t distribution, 391–392
table, 391, 703–717

Finite correction factor, 309
Fisher’s lemma, 425
Friedman’s test, 682–683, 694–695

Gamma distribution:
additive property, 273
definition, 270, 272
examples, 271, 294–296
moment-generating function, 273
moments, 272, 274, 294
parameter estimation, 294–296
relationship to chi square distribution, 389
relationship to exponential distribution, 270, 337–338
relationship to normal distribution, 389
relationship to Poisson distribution, 270

Generalized likelihood ratio, 379–380
Generalized likelihood ratio test (GLRT):

definition, 381
examples, 379–382, 401, 425–429, 476–477, 488–491, 500, 597

Geometric distribution:
definition, 260–261
examples, 261–262, 288–290
moment-generating function, 207–208, 261
moments, 211, 261
parameter estimation, 288–290
relationship to negative binomial distribution, 262–263

Geometric probability, 166–168
Goodness-of-fit test (see Chi square test)

Hazard rate, 139
Hypergeometric distribution:

definition, 110–112
examples, 112–116, 142,
moments, 142–143, 191–192, 309
relationship to binomial distribution, 110, 202–203

Hypothesis testing (see also Testing):
critical region, 355
decision rule, 351–354, 374–377, 381
level of significance, 355
P-value, 358–359, 362–363
Type I and Type II errors, 366–369, 608

Independence:
effect of, on the expected value of a product, 188
of events, 34, 53, 58–59
mutual versus pairwise, 58–59
of random variables, 173–175, 187–188
of regression estimators, 560, 592–594
of repeated trials, 61
of sample mean and sample variance (normal data), 390,

423–425, 560
of sums of squares, 600, 632
tests for, 494, 519–527
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Independent samples, 433, 437–439, 457–458, 596, 649–653,
673–674, 677–678

Intersection, 21
Interval estimate (see Confidence interval; Prediction interval)

Joint cumulative distribution function, 171–172
Joint probability density function, 162–165, 172

Kruskal-Wallis test, 677–681, 689–694
k-sample data, 439–440, 595–596, 677–678
Kurtosis, 161

Law of small numbers, 230–231
Level of significance, 355, 359, 366–367, 375–377, 608–609
Likelihood function, 284
Likelihood ratio (see Generalized likelihood ratio)
Likelihood ratio test (see Generalized likelihood ratio test (GLRT))
Linear model (see also Curve-fitting):

assumptions, 443–444, 555–557
confidence intervals for parameters, 564–565, 567
hypothesis tests, 562, 568–569, 572
parameter estimation, 557, 561

Logarithmic regression, 547–549
Logistic regression, 549–552
Loss function, 341–343

Margin of error, 305–307
Marginal probability density function, 164, 169–170, 339–340, 496–497
Maximum likelihood estimation (see also Estimation):

definition, 285
examples, 282–283, 285–291, 557–558
in goodness-of-fit testing, 509
properties, 329, 333
in regression analysis, 557–558, 561

Mean (see Expected value)
Mean free path, 145
Mean square, 602
Median, 147, 304, 317, 333, 657
Median unbiased, 317
Method of least squares (see Estimation)
Method of moments (see Estimation)
Minimum variance estimator, 321
MINITAB calculations:

for cdf, 219–220, 278–279
for completely randomized one-factor design, 621–623
for confidence intervals, 299–300, 422, 491
for choosing samples, 487–488
for critical values, 422
for Friedman’s test, 694–695
for independence, 531, 590–591
for Kruskal-Wallis test, 694
for Monte Carlo analysis, 274–278, 299–300, 347–349, 354, 407–408
for one-sample t test, 423
for pdf, 219, 365
for randomized block design, 653–654
for regression analysis, 590–592
for robustness, 407–409
for sample statistics, 421
for Tukey confidence intervals, 622–623
for two-sample t test, 491–492

Model equation, 436–437, 439, 442–443, 597, 631
Moment-generating function (see also “moment-generating function”

listings for specific distributions):
definition, 207
examples, 207–209
in proof of central limit theorem, 280
properties, 210, 214
relationship to moments, 210, 212
as technique for finding distributions of sums, 214–215

Moments (see Expected value; Variance; “moments” listings
for specific distributions)

Monte Carlo studies, 100–101, 274–278, 299–301, 347–349
Moore’s Law, 545–547
Multinomial coefficients, 81
Multinomial distribution, 494–496, 521
Multiple comparisons, 608–611
Multiplication rule, 68
Mutually exclusive events, 22, 27, 55

Negative binomial distribution, 262–268
definition, 262–263
examples, 126, 264–266, 340
moment-generating function, 263–264
moments, 263–264

Noncentral chi square distribution, 625
Noncentral F distribution, 626–628
Noncentral t distribution, 419
Noninformative prior, 336
Nonparametric statistics, 656
Normal distribution (see also Standard normal distribution):

additive property, 257–258
approximation to binomial distribution, 239–240, 242–244, 279
approximation to sign test, 657
approximation to Wilcoxon signed rank statistic, 669
central limit theorem, 239–240, 246–249, 280
confidence interval for mean, 298–302, 396–398
confidence interval for variance, 412
definition, 251
hypothesis test for mean (variance known), 357
hypothesis test for mean (variance unknown), 401, 406–409
hypothesis test for variance, 415, 427–429
independence of sample mean and sample variance, 390, 423–425
as limit for Student t distribution, 386–388, 393
in linear model, 556–557
moment-generating function, 209, 215
moments, 251
parameter estimation, 290–291, 315–316
relationship to chi square distribution, 389, 391, 417
relationship to gamma distribution, 389
table, 240–242, 697–698
transformation to standard normal, 215–216,

252–257, 259
unbiased estimator for variance, 315–316, 561

Null hypothesis, 350, 358

One-sample data, 435–437, 657
One-sample t test, 401, 423, 425–426
Operating characteristic curve, 116
Order statistics:

definition, 193
estimates based on, 288, 314, 319, 331
joint pdf, 198
probability density function for ith, 194, 196

Outliers, 529–531

Paired data, 440–442, 642–643, 660–661, 672–673
Paired t test, 440, 642–644, 649–653
Pairwise comparisons (see Tukey’s test)
Parameter, 281–282
Parameter space, 380–381, 425, 427
Pareto distribution, 292, 297, 330, 504–505
Partitioned sample space, 43, 48
Pascal’s triangle, 88
Pearson product moment correlation coefficient, 578
Permutations:

objects all distinct, 74
objects not all distinct, 80
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Poisson distribution:
additive property, 214–215
definition, 227
examples, 121, 224–226, 228–230, 233, 408
hypothesis test, 375–377
as limit of binomial distribution, 222–223, 232
moment-generating function, 213
moments, 213, 227
parameter estimation, 285–286, 326–327, 337–338, 344
relationship to exponential distribution, 235–236
relationship to gamma distribution, 270, 337–338
square root transformation, 618

Poisson model, 230–231
Poker hands, 96–97
Political arithmetic, 11–13
Posterior distribution, 335–339
Power, 369–373, 628
Power curve, 369–370, 382–383
Prediction interval, 571, 592
Prior distribution, 334–339
Probability:

axiomatic definition, 18, 27–28
classical definition, 9, 17
empirical definition, 17–18

Probability density function (pdf), 124, 135–136, 172, 178, 181–182
Probability function, 27–28, 119, 129–131
Producer’s risk, 377
P-value, 358–359, 362–363

Qualitative measurement, 434
Quantitative measurement, 434

Random deviates, 266–269, 279
Random Mendelian mating, 56–57
Randomized block data, 442–443, 629–630
Randomized block design:

block sum of squares, 632
comparison with completely randomized one-factor design, 635–636
computing formulas, 634
error sum of squares, 631–632
notation, 631
relationship to paired t test, 648
test statistic, 633
treatment sum of squares, 632

Random sample, 175
Random variable, 102–103, 119, 124, 135–136
Range, 199
Rank sum test (see Wilcoxon rank sum test)
Rayleigh distribution, 146
Rectangular distribution (see Uniform distribution)
Regression curve, 555–557, 586
Regression data, 443–446, 532, 555–557, 575–576
Relative efficiency, 317–319
Repeated independent trials, 61, 495
Resampling, 345
Residual, 535
Residual plot, 535–540
Risk, 342–344
Robustness, 399, 406–409, 420–421, 462–463, 517, 656, 689–693
Runs, 684–687

Sample correlation coefficient:
definition, 577–578
interpretation and misinterpretation, 578–579, 589–590
in tests of independence, 587–589

Sample outcome, 18
Sample size determination, 307–308, 373–374, 414, 455–456
Sample space, 18

Sample standard deviation, 316
Sample variance, 316, 394, 459, 561, 572, 599–600
Sampling distributions, 388–389
Serial number analysis, 6
Sign test, 657–661, 693
Signed rank test (see Wilcoxon signed rank test)
Simple linear model (see Linear model)
Skewness, 161
Spurious correlation, 589–590
Square root transformation, 617–618
Squared-error consistent, 333
Standard deviation, 156, 316
Standard normal distribution (see also Normal distribution):

in central limit theorem, 246–247, 251
definition, 240
in DeMoivre-Laplace limit theorem, 239–240
table, 240–242, 697–698
Z transformation, 215–216, 252, 257

Statistic, 283
Statistically significant, 355, 382–384
Stirling’s formula, 76–77, 82
St. Petersburg paradox, 144–145
Studentized range, 608–609, 718–719
Student t distribution:

approximated by standard normal distribution, 386–388, 393
definition, 391–393
in inferences about difference between two dependent

means, 644
in inferences about difference between two independent means,

458–460, 460, 468
in inferences about single mean, 396, 401
in regression analysis, 561–562, 564–565, 567, 569–572, 587
relationship to chi square distribution, 391
relationship to F distribution, 391–392
table, 395–396, 699–701

Subhypothesis, 597, 608–609, 612–614
Sufficient estimator:

definition, 323, 326–328
examples, 323–329
exponential form, 330
factorization criterion, 327–328
relationship to maximum likelihood estimator, 329
relationship to minimum variance, unbiased estimator, 329

t distribution (see Student t distribution)
Testing (see also Hypothesis testing)

that correlation coefficient is zero, 587–589
the equality of k location parameters (dependent samples),

682–683
the equality of k location parameters (independent samples),

677–678
the equality of k means (dependent samples), 632–633
the equality of k means (independent samples), 599–601
the equality of two location parameters (dependent samples),

660–661
the equality of two location parameters (independent samples),

673–674
the equality of two means (dependent samples), 644
the equality of two means (independent samples), 460, 468,

606–607
the equality of two proportions (independent samples), 476–478
the equality of two slopes (independent samples), 572
the equality of two variances (independent samples), 471–472
for goodness-of-fit, 494, 499–500, 506–508, 510, 642–644
for independence, 494, 519–527, 562, 587
the parameter of Poisson distribution, 375–377
the parameter of uniform distribution, 379–382
for randomness, 685
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a single mean with variance known, 357
a single mean with variance unknown, 401, 425–426
a single median, 657
a single proportion, 361, 364–365
a single variance, 415, 427–429, 567–568
the slope of a regression line, 562, 591
subhypotheses, 608–609, 614

Test statistic, 355
Threshold parameter, 288
Total sum of squares, 600–601, 604
Transformations:

of data, 617–618
of random variables, 176–182

Treatment sum of squares, 598–601, 604, 614, 624, 632
Trinomial distribution, 498–499
Tukey’s test, 608–610, 622–623, 637–638
Two-sample data, 437–439, 457–458, 673–674
Two-sample t test, 437, 458–460, 488–491, 572, 606–607, 649–653
Type I error, 366–367, 375–377, 608
Type II error, 366–369, 419–420

Unbiased estimator, 313–316
Uniform distribution, 131, 166–168, 199, 249–250, 268, 331,

374–375, 379–382, 407
Union, 21

Variance (see also Sample variance; Testing)
computing formula, 157
confidence interval, 412, 567
definition, 156
in hypothesis tests, 415, 471–472, 567–568
lower bound (Cramér-Rao), 320–322
properties, 158
of a sum, 189–190, 612

Venn diagrams, 25–26, 29, 35

Weak law of large numbers, 333
Weibull distribution, 292
Wilcoxon rank sum test, 673–676
Wilcoxon signed rank test, 662–672, 693–694, 720–721

Z transformation (see Normal distribution)
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