H²-MG: A multigrid method for hierarchical rank structured matrices

Daria Sushnikova

daria.sushnikova@kaust.edu.sa

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

George Turkiyyah, KAUST Edmond Chow, Georgia Institute of Technology David Keyes, KAUST

< □ > < 同 > < 回 > < 回 >

June 17, 2024

5		~	
D	aria	Sus	kova
~	and	045	

Introduction

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Multigrid method

- sparse matrix
- hierarchical grids
- fast convergence

\mathcal{H}^2 matrix

- dense matrix approximation
- hierarchical structure
- $\mathcal{O}(N)$ storage and matrix-by-vector product

$\mathsf{Idea:}\ \mathsf{MG} + \mathcal{H}^2 = \mathcal{H}^2\text{-}\mathsf{MG}$

- dense matrix
- fast convergence
- fast v-cycle run

<ロト < 回 > < 回 > < 回 > < 回 >

\mathcal{H}^2 matrix

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Ax = b, where $A \in \mathbb{R}^{N \times N}$ is dense, and $x, b \in \mathbb{R}^N$. The rows and columns of matrix A are partitioned into M blocks of size B.

Matrix D block-sparse, U_1 and V_1 are orthogonal block-diagonal matrices.

	4	· · 문 · 문	*) Q (*
Daria Sushnikova	\mathcal{H}^2 -MG	June 17, 2024	

\mathcal{H}^2 matrix

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Next level factorization:

 \mathcal{H}^2 matrix approximation:

$$A = D + U_1 (D_2 + U_2 (\dots (D_l + U_l S_l V_l) \dots) V_2) V_1.$$
(1)

\mathcal{H}^2 matrix-by-vector product

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

$$y = Ax = (Dx + U_1 (D_2 + U_2 (\dots (D_l + U_l S_l V_l) \dots) V_2) V_1) x.$$

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Ax = b, where $A \in \mathbb{R}^{N \times N}$ is an *I*-level \mathcal{H}^2 matrix, SPD, $b \in \mathbb{R}^N$ is the right-hand side, $x_0 \in \mathbb{R}^N$ is the initial guess.

$$r_1=b-Ax_0,$$

$$Ae_1 = r_1$$
, where $e_1 = x - x_0$.

Smoothing iterations (CG in our case):

$$ilde e_1 = extsf{lter}(A, r_1, 0).$$

 $\hat r_1 = r_1 - A ilde e_1.$
 $A \hat e_1 = \hat r_1, \quad extsf{where} \ \hat e_1 = e_1 - ilde e_1$

Image: A math a math

$$(D + U_1 (D_2 + U_2 (\dots (D_l + U_l S_l V_l) \dots) V_2) V_1) \hat{e}_1 = \hat{r}_1.$$

The orthogonal level-to-level transfer matrices U_1 and V_1 are used as interpolation and prolongation operators.

$$U_{1}^{\top}(D + U_{1}(D_{2} + U_{2}(...(D_{l} + U_{l}S_{l}V_{l})...)V_{2})V_{1})V_{1}^{\top}V_{1}\hat{e}_{1} = U_{1}^{\top}\hat{r}_{1},$$

$$(U_{1}^{\top}DV_{1}^{\top} + D_{2} + U_{2}(...(D_{l} + U_{l}S_{l}V_{l})...)V_{2})V_{1}\hat{e}_{1} = U_{1}^{\top}\hat{r}_{1}.$$

$$A_{2} = U_{1}^{\top}DV_{1}^{\top} + D_{2} + U_{2}(...(D_{l} + U_{l}S_{l}V_{l})...)V_{2}).$$

Note that A_2 is an \mathcal{H}^2 matrix. Second level soothing iteration:

$$A_2 e_2 = r_2$$
, where $e_2 = V_1 \hat{e}_1, r_2 = U_1^\top \hat{r}_1$.

Daria Sushnikova

The coarsest level:

$$A_I e_I = r_I$$
,

where A_l is a small dense matrix. The Cholesky factorization:

$$e_I = \mathbf{dir}_{-}\mathbf{sol}(A_I, r_I).$$

< □ > < □ > < □ > < □ > < □ >

Prolongation of the error:

$$\tilde{e}_{l-1} = \tilde{e}_{l-1} + V_l^{\top} e_l.$$

Then, we apply the smoothing operator starting with initial guess \tilde{e}_{l-1} :

$$e_{l-1} = \operatorname{Iter}(A_{l-1}, r_{l-1}, \tilde{e}l - 1).$$

We continue until we reach level 1. From the estimated error e_1 , we obtain the approximation of the solution x^* :

$$x^* = x_0 + e_1.$$

 \mathcal{H}^2 -MG

$$e_{3} = \operatorname{dir}_{s} \operatorname{sol}(A_{3}, r_{3})$$

$$i_{3} = U_{2}^{\top}(r_{2} - A_{2}\tilde{e}_{2})$$

$$\tilde{e}_{2} = \operatorname{lter}(A_{2}, r_{2}, 0)$$

$$i_{2} = U_{1}^{\top}(r_{1} - A\tilde{e}_{1})$$

$$\tilde{e}_{1} = \operatorname{lter}(A, r_{1}, 0)$$

$$e_{1} = \operatorname{lter}(A, r_{1}, \tilde{e}_{1})$$

ヘロト ヘロト ヘヨト ヘヨト

\mathcal{H}^2 -MG complexity

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

 \mathcal{H}^2 matrix-by-vector product has complexity $\mathcal{O}(N),$ with constant $c_{H2}.$

$$n_{\rm op} = 2n_f c_{H2} N + 2n_c \sum_{i=2}^{l-1} c_{H2} N_i + c_d N_l^3.$$

Assume N = MB, $N_i = \frac{Mr}{d^{i-2}}$, for i = 2, ..., I, rank r.

$$n_{\rm op} = 2n_f c_{H2}MB + 2n_c \sum_{i=2}^{l-1} \frac{Mrc_{H2}}{d^{i-2}} + c_d N_l^3.$$

Using the sum of geometric progression, obtain:

$$n_{\rm op} = 2n_f c_{H2} MB + 2n_c \left(\frac{d - \frac{1}{d^{I-3}}}{d - 1} \right) c_{H2} Mr + c_d N_I^3.$$

By the construction of \mathcal{H}^2 , the size of the coarsest level N_i is a constant; thus,

$$n_{\rm op} = \mathcal{O}(N),$$

Daria Sushnikova

Numerical results (preliminary)

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

- Python implementation
- ▶ The tests were done on a MacBook Pro with Apple M1 Max Chip
- Points: uniform tensor grid on a unit square $P \subset \mathbb{R}^2$
- \mathcal{H}^2 matrix:
 - Number of levels: adaptive
 - Approximation accuracy: $\epsilon = 10^{-5}$
 - Block size: B = 256

イロト イボト イヨト イヨ

Ax = b, where $b \in \mathbb{R}^N$ is random, $x \in \mathbb{R}^N$ is an unknown, and $A \in \mathbb{R}^{N \times N}$ is a kernel matrix:

$$a_{ij} = \begin{cases} \exp\left(-\frac{|p_i - p_j|}{\sigma}\right), & \text{if } i \neq j \\ c, & \text{if } i = j \end{cases},$$

where points $p_i \in P$, $i \in 1...N$, $\sigma = 0.1$ is the dispersion parameter of the matrix, c = 64 is a constant.

<ロト < 同ト < ヨト < ヨ)

Exponential kernel

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

(a) Convergence for various problem sizes.

(b) Solution time.

Figure 2: Convergence comparison of the methods $\mathcal{H}^2\text{-}\mathsf{MG}$ and CG for different number of coarse iterations.

		◆ 恵 ▶ ○ 恵	うくで
Daria Sushnikova	\mathcal{H}^2 -MG	June 17, 2024	14 / 22

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Number of V-cycles required for the convergence to the residual $\varepsilon = 10^{-5}$:

N	2e4	4e4	8e4	16e4	32e4
Number V-cycles	3	3	3	5	4

Table 1: Number of V-cycles to solve the system with exponential matrix.

Daria Susnnikov	/a

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Ax = b, where $b \in \mathbb{R}^N$ is random, $x \in \mathbb{R}^N$ is an unknown, and $A \in \mathbb{R}^{N \times N}$ is a kernel matrix:

$$a_{ij} = \begin{cases} \frac{1}{|p_i - p_j|}, & \text{if } i \neq j \\ c, & \text{if } i = j \end{cases},$$

where points $p_i \in P$, c = 2000.

Inverse distance kernel

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

(a) Convergence for various problem sizes.

(b) Solution time.

Figure 3: Convergence comparison of the methods $\mathcal{H}^2\text{-}\mathsf{MG}$ and CG for different number of coarse iterations.

	•	□ ► < @ ►	< ≣ >	◆夏≯	10	୬୯୯
Daria Sushnikova	\mathcal{H}^2 -MG			June 17, 2	2024	

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Number of V-cycles required for the convergence to the residual $\varepsilon = 10^{-5}$:

N	2e4	4e4	8e4	16e4	32e4
Number V-cycles	6	17	7	17	10

Table 2: Number of V-cycles to solve the system with inverse distance matrix.

Ax = b, where $b \in \mathbb{R}^N$ is random, $x \in \mathbb{R}^N$ is an unknown, and $A \in \mathbb{R}^{N \times N}$ is a kernel matrix:

$$a_{ij} = \begin{cases} \exp\left\{-\frac{|p_i - p_j|^2}{\sigma}\right\}, & \text{if } i \neq j \\ c, & \text{if } i = j \end{cases},$$

where points $p_i \in P$, $i \in 1...N$, $\sigma = 0.01$ is the dispersion parameter of the matrix, c = 64.

<ロト < 同ト < ヨト < ヨ)

Gaussian kernel

جامعة المللك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

(a) Convergence for various problem sizes.

(b) Solution time.

Figure 4: Convergence comparison of the methods \mathcal{H}^2 -MG and CG for different number of coarse iterations.

	1 >	▶ (* 注)	- * 王 * .	10	୬୯୯
Daria Sushnikova	\mathcal{H}^2 -MG		June 17,	2024	20 / 22

Number of V-cycles required for the convergence to the residual $\varepsilon = 10^{-5}$:

N	2e4	4e4	8e4	16e4	32e4
Number V-cycles	3	3	2	3	3

Table 3: Number of V-cycles to solve the system.

< □ > < □ > < □ > < □ > < □ >

We successfully applied the multigrid method to the system with \mathcal{H}^2 matrix receiving the $\mathcal{H}^2\text{-}MG$ solver:

- The rapid convergence (from the multigrid method)
- Time and memory efficiency (from \mathcal{H}^2)

Future work:

- Expand its applicability beyond the SPD matrices
- High-performance implementation
- Integration into other computational frameworks

• • • • • • • • • • • • • •