Using Spectral Coarse Spaces of the GenEO Type for Efficient Solutions of the Helmholtz Equation

Victorita Dolean

with: N. Bootland, I. Graham, M. Fry, M. Langer

Preconditioning, Atlanta, 10 June 2024

[How to solve Helmholtz equation](#page-1-0) [efficiently](#page-1-0)

Helmholtz equation

Hermann von Helmholtz (1821-1894) physicist, physician, philosopher

Time-harmonic wave equation

 $-\Delta u - k^2u = f$

Scalar wave equation (c(x) **local speed)** $\partial_{tt} v - c^2(x) \Delta v = F(x, t),$

If $F(x,t) = f(x)e^{-i\omega t}$ (mono-chromatic) then

 $v(x,t) = u(x)e^{-i\omega t}$

which leads to

$$
-\Delta u - n(x)^2 \omega^2 u = f,
$$

where $n(x) = \frac{1}{c(x)}$ is the **index of refraction**, $k^2 = n^2 \omega^2$ is called **wave number**.

Remark

If k is small, Helmholtz is a perturbation of the Laplace's problem, otherwise the solution is highly oscillatory **mathematical** and **numerical** difficulties.

Why the high-frequency problem is hard? (Accuracy and pollution)

How to discretise well

- After discretisation **maximise** accuracy and **minimise** the number of degrees of freedom (#DoF)
- If $h\omega$ is kept constant the error increases with $\omega \rightarrow$ **pollution error** [Babuska, Sauter, SINUM, 1997]
- FEM discretisations: for quasi-optimality we need [Melenk, Sauter, SINUM, 2011]

$$
h^p\omega^{p+1}\lesssim 1
$$

• For a bounded error **h** ∼ ω−**1**−**1**/**2p** [Du, Wu, SINUM, 2015].

Consequences

- **High-frequency solution** u oscillates at a scale **1**/ω ⇒ **h** ∼ **¹** ^ω large #DoF.
- \cdot **Pollution effect** requires $\textsf{h} \ll \frac{1}{\omega}$, $\textsf{h} \sim \omega^{-1-1/p}$, with p the finite element order \rightsquigarrow even larger #DoF.
- Trade-off: **number of points per wavelength** (ppwl) $G = \frac{\lambda}{h} = \frac{2\pi}{\omega h}$ and polynomial degree \sim **dispersion analysis** (measuring the ratio between the numerical and physical wave speeds).

A large linear system to solve A**u** = **b**

- A is symmetric but **indefinite or non-Hermitian**.
- A can become **arbitrarily ill-conditioned**
- A is getting larger with increasing ω : its size n grows like **N ^d** ∼ ω(**1**+**1**/**p**)**^d** where N ∼ 1/h.

A large linear system to solve A**u** = **b**

- A is symmetric but **indefinite or non-Hermitian**.
- A can become **arbitrarily ill-conditioned**
- A is getting larger with increasing ω : its size n grows like **N ^d** ∼ ω(**1**+**1**/**p**)**^d** where N ∼ 1/h.

Landscape of linear solvers

- **Direct solvers**: MUMPS, SuperLU, PastiX, UMFPACK, PARDISO
- **Iterative methods (Krylov)**: CG, BiCGStab, MINRES, GMRES ...

A large linear system to solve A**u** = **b**

- A is symmetric but **indefinite or non-Hermitian**.
- A can become **arbitrarily ill-conditioned**
- A is getting larger with increasing ω : its size n grows like **N ^d** ∼ ω(**1**+**1**/**p**)**^d** where N ∼ 1/h.

Landscape of linear solvers

- **Direct solvers**: MUMPS, SuperLU, PastiX, UMFPACK, PARDISO
- **Iterative methods (Krylov)**: CG, BiCGStab, MINRES, GMRES ...

... But conventional iterative methods fail. [Ernst, Gander (2012)], [Gander, Zhang (2019)] **Idea**: use domain decomposition! How large is truly large to justify the use of **domain decomposition**?

A large linear system to solve A**u** = **b**

- A is symmetric but **indefinite or non-Hermitian**.
- A can become **arbitrarily ill-conditioned**
- A is getting larger with increasing ω : its size n grows like **N ^d** ∼ ω(**1**+**1**/**p**)**^d** where N ∼ 1/h.

Landscape of linear solvers

- **Direct solvers**: MUMPS, SuperLU, PastiX, UMFPACK, PARDISO
- **Iterative methods (Krylov)**: CG, BiCGStab, MINRES, GMRES ...

... But conventional iterative methods fail. [Ernst, Gander (2012)], [Gander, Zhang (2019)] **Idea**: use domain decomposition! How large is truly large to justify the use of **domain decomposition**?

The main message (from geophysicists)

- Problems in FWI do not need to be over-resolved. (Too much precision not necessary!)
- Use direct solvers whenever possible!

One and two-level methods

"If the only tool you have is a hammer, you tend to see every problem as a nail." (Abraham Maslow)

Solve the preconditioned B**u** = **b**, i.e. $M^{-1}Bu = M^{-1}b$ by GMRES

Definition of the local matrices B_j ($k = \frac{\omega}{c}$)

Bj is the stiffness matrix of the local **Robin problem**

$$
\begin{array}{rcl}\n(-\Delta - k^2)(u_j) & = & f & \text{in } \Omega_j \\
\left(\frac{\partial}{\partial n_j} + ik\right)(u_j) & = & 0 & \text{on } \partial \Omega_j \setminus \partial \Omega.\n\end{array}
$$

$$
\Omega=\cup_{j=1}^N\Omega_j
$$

"If the only tool you have is a hammer, you tend to see every problem as a nail." (Abraham Maslow)

Solve the preconditioned B**u** = **b**, i.e. $M^{-1}Bu = M^{-1}b$ by GMRES

One level is not enough (only neighbouring subdomains communicate)

"If the only tool you have is a hammer, you tend to see every problem as a nail." (Abraham Maslow)

Solve the preconditioned B**u** = **b**, i.e. $M^{-1}Bu = M^{-1}b$ by GMRES

The two-level (additive) preconditioner

$$
M_{AS,2}^{-1} = \sum_{j=1}^{N} R_j^{T} B_j^{-1} R_j + M_0^{-1},
$$
 where

 R_j $\Omega \rightarrow \Omega_j$ restriction operator R T $\Omega_i \rightarrow \Omega$ **prolongation operator** **Definition of the local matrices** B_j ($k = \frac{\omega}{c}$)

Bj : stiffness matrix of the local **Robin problem**

$$
\begin{array}{rcl}\n(-\Delta-k^2)(u_j) & = & f & \text{in } \Omega_j \\
\left(\frac{\partial}{\partial n_j}+ik\right)(u_j) & = & 0 & \text{on } \partial\Omega_j \setminus \partial\Omega.\n\end{array}
$$

How to add a second level or coarse information Z

 $M_0^{-1} = ZE^{-1}Z^*$ is the coarse space correction $Z, E = Z^*AZ$ matrix spanning the coarse space and the coarse matrix

Remark: Hybrid variants of the preconditioner are also possible.

An example of coarse space for Helmholtz

How to choose the coarse information Z? [Graham, Spence, Vainikko, Math. Comp., 2017]

The grid coarse space (Grid CS)

- is based on a **geometrical** coarse mesh of diameter H_{coarse}
- R_0^T interpolation matrix from the fine to the coarse grid
- $Z = R_0^T$ matrix spanning the coarse space
- $E = Z^{T} B Z$ stiffness matrix on the coarse grid

<code>Theory</code> for absorptive problem: $-\Delta - ({\sf k}^2+{\sf i} \boldsymbol{\xi})$

- For scalability and robustness w.r.t to the frequency we need H_{coarse} \sim k^{- α}, 0 < α < = 1.
- $\cdot \ |\xi| \sim \mathsf{k}^2$ and $\delta \sim \mathsf{H}_\mathsf{coarse}$, then weighted GMRES will converge with the number of iterations **independent of the wavenumber**.

Is the grid CS optimal for heterogeneous problems?

[Spectral coarse spaces for indefinite](#page-12-0) [Helmholtz](#page-12-0)

A more general BVP

$$
-\nabla \cdot (A(\mathbf{x})\nabla u) - k^2 u = f \qquad \text{in } \Omega,
$$

$$
u = 0 \qquad \text{on } \partial \Omega,
$$

with A an SPD matrix-valued function, $|\mathbf{a}_{\mathrm{min}}| \xi |^2 \leq \mathsf{A}(\mathbf{x}) \xi \cdot \xi \leq \mathbf{a}_{\mathrm{max}} |\xi |^2, \mathbf{x} \in \Omega, \xi \in \mathbb{R}^{\mathsf{d}}.$

The FEM solution $\bm{{\mathsf{u}}}_\textsf{h} \in \mathsf{V}^\textsf{h}$ satisfies the weak formulation $b(u_h, v_h) = F(v_h)$

$$
b(u,v) = \int_{\Omega} \left(A(\boldsymbol{x}) \nabla u \cdot \nabla v - k^2 u v \right) \, \mathrm{d}\boldsymbol{x}
$$

Discretised symmetric but indefinite linear system

 $Bu = f$

A more general BVP

$$
-\nabla \cdot (A(x)\nabla u) - k^2 u = f \qquad \text{in } \Omega,
$$

$$
u = 0 \qquad \text{on } \partial \Omega,
$$

with A an SPD matrix-valued function, $|\mathbf{a}_{\mathrm{min}}| \xi |^2 \leq \mathsf{A}(\mathbf{x}) \xi \cdot \xi \leq \mathbf{a}_{\mathrm{max}} |\xi |^2, \mathbf{x} \in \Omega, \xi \in \mathbb{R}^{\mathsf{d}}.$

The FEM solution $\bm{{\mathsf{u}}}_\textsf{h} \in \mathsf{V}^\textsf{h}$ satisfies the weak formulation b(u_h , v_h) = F(v_h)

$$
b(u,v) = \int_{\Omega} \left(A(\boldsymbol{x}) \nabla u \cdot \nabla v - k^2 u v \right) \, \mathrm{d}\boldsymbol{x}
$$

Discretised symmetric but indefinite linear system

 B **u** = f

Domain decomposition

- **Overlapping partition** $\{\Omega_i\}_{1\leq i\leq N}$ of Ω , with Ω_i
- H the maximal diameter of the subdomains.

Define
$$
\widetilde{V} = \{v|_{\Omega_j} : v \in V_h\},
$$

\n
$$
V^j = \{v \in \widetilde{V}^j : \text{supp}(v) \subset \Omega_j\}, \text{and for } u, v \in \widetilde{V}^j
$$
\n
$$
b_{\Omega_j}(u, v) := \int_{\Omega_j} (A(x)\nabla u \cdot \nabla v - k^2 uv) \, \mathrm{d}x.
$$

One-level additive Schwarz preconditioner

$$
M_{AS,1}^{-1}=\sum_{j=1}^N R_j^T(R_jBR_j^T)^{-1}R_j.
$$

Spectral Coarse Space - GenEO type - how to achieve robustness

A spectral coarse space can be constructed.

Spillane, Dolean, Hauret, Nataf, Pechstein, Scheichl. [Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps,](https://link.springer.com/article/10.1007/s00211-013-0576-y) Numer. Math., 2014.

Bilinear forms

$$
b_{\Omega_j}(u,v)=\int_{\Omega_j}\left(A\nabla u\cdot\nabla v-k^2uv\right)\,\mathrm{d} x,\quad a_{\Omega_j}(u,v)=\int_{\Omega_j}\left(A\nabla u\cdot\nabla v\right)\,\mathrm{d} x.
$$

∆ **- GenEO**

- Consider a nearby generalised eigenvalue problem a_{Ω;} (e.g. Laplace).
- In each of Ω_{i} , solve the eigenproblem

 $a_{\Omega_i}(u, v) = \lambda a_{\Omega_i} (\Xi_i(u), \Xi_i(v))$, $\forall v \in V_i$.

• At the discrete level

 $\widetilde{L}_i \mathbf{u}_i^{\mathfrak{l}} = \lambda^{\mathfrak{l}} D_i L_i D_i \mathbf{u}_i^{\mathfrak{l}}.$

Bootland, Dolean, Graham, Ma, Scheichl. Overlapping Schwarz methods with GenEO coarse spaces for indefinite and nonself-adjoint problems, IMA, 2023.

Hk**-GenEO**

- Using the complete problem definition, b $_{\Omega_{\text{i}}}$ in combination with a k - weighted scaler product.
- In each of Ω_{i} , solve the eigenproblem

 $b_{\Omega_i}(u,v) = \lambda \left(\Xi_i(u), \Xi_i(v) \right)_{1,k,\Omega_i}, \forall v \in V_i.$

• At the discrete level

 $\widetilde{B}_i \mathbf{u}_i^{\mathfrak{b}} = \lambda^{\mathfrak{b}} D_i B_i D_i \mathbf{u}_i^{\mathfrak{b}}.$

Bootland, Dolean. Can DtN and GenEO Coarse Spaces Be Sufficiently Robust for Heterogeneous Helmholtz Problems?, MCA, 2022.

Spectral Coarse Space - GenEO type

∆ **- GenEO**

- Consider a nearby generalised eigenvalue problem a $_{\Omega_{\rm i}}$ (e.g. Laplace).
- In each of $Ω_i$, solve the eigenproblem

 $a_{\Omega_i}(u, v) = \lambda a_{\Omega_i} (\Xi_i(u), \Xi_i(v))$, $\forall v \in V_i$.

• At the discrete level

 $\widetilde{L}_i \mathbf{u}_i^{\mathfrak{b}} = \lambda^{\mathfrak{b}} D_i L_i D_i \mathbf{u}_i^{\mathfrak{b}}.$

Hk**-GenEO**

- Using the complete problem definition, b $_{\Omega_i}$ in combination with a k - weighted scaler product.
- In each of Ω_{i} , solve the eigenproblem

 $b_{\Omega_i}(u,v) = \lambda \left(\Xi_i(u), \Xi_i(v) \right)_{1,k,\Omega_i}, \forall v \in V_i.$

• At the discrete level

 $\widetilde{B}_i \mathbf{u}_i^{\mathfrak{l}} = \lambda^{\mathfrak{l}} D_i B_i D_i \mathbf{u}_i^{\mathfrak{l}}.$

Definition of the coarse space

GenEO coarse spaces: m_i (dominant) eigenfunctions corresponding to $\lambda_1^{\rm i} \le \lambda_2^{\rm i} \le \ldots \le \lambda_{\rm m_i}^{\rm i}$. The coarse information is defined as the thin and long matrix

$$
Z=\left[\left(R_i^TD_i\bm{u}_i^l\right)_{l=1\dots,m_j}\right]_{i=1,\dots,N}
$$

Spectral Coarse Space - GenEO type

∆ **- GenEO**

- Consider a nearby generalised eigenvalue problem a $_{\Omega_{\rm i}}$ (e.g. Laplace).
- In each of $Ω_i$, solve the eigenproblem

 $a_{\Omega_i}(u,v) = \lambda a_{\Omega_i} (\Xi_i(u), \Xi_i(v))$, $\forall v \in V_i$.

• At the discrete level

 $\widetilde{L}_i \mathbf{u}_i^{\mathfrak{l}} = \lambda^{\mathfrak{l}} D_i L_i D_i \mathbf{u}_i^{\mathfrak{l}}.$

Key advantages

- **Spectral nearby SPD problem**: can apply spectral results!
- Use of the a**-weighted norms**.
- Robustness for mild heterogeneities and low frequencies.

Hk**-GenEO**

- Using the complete problem definition, b $_{\Omega_i}$ in combination with a k - weighted scaler product.
- In each of $Ω_i$, solve the eigenproblem

 $b_{\Omega_i}(u, v) = \lambda \left(\Xi_i(u), \Xi_i(v) \right)_{1, k, \Omega_i}, \forall v \in V_i.$

• At the discrete level

 $\widetilde{B}_i \mathbf{u}_i^l = \lambda^l D_i B_i D_i \mathbf{u}_i^l$.

Key advantages

- **Genuine indefinite problem**: spectral theory for SPD problem does not work!
- Use of the k**-weighted norms**.
- Robustness achieved via a k**-dependent coarse space** \rightsquigarrow high wave-numbers.

Main theoretical results

Work on indefinite Helmholtz with homogeneous Dirichlet BVP. GenEO coarse spaces: m_i (dominant) eigenfunctions corresponding to $\lambda^i_1\leq\lambda^i_2\leq\ldots\leq\lambda^i_{m_i}.$ Notations: $\tau:=\min_{i=1}^N \lambda^i_{m_i+1}$. C $_{\rm stab}>0$ stability constant for the BVP, H- subdomains diameter

∆**-GenEO robustness**

Initial bounds (IMA, 2023 paper)

 $H \lesssim \ \kappa^{-2} \quad \text{and} \quad (\mathsf{C}_{\rm stab} + 1)^2 \, \kappa^8 \lesssim \tau.$

The bounds can be improved:

 $H \lesssim \kappa^{-1}$ and $(1 + C_{\text{Stab}})^2 \kappa^4 \lesssim \tau$.

An A-weighed norm: $||u||_a^2 = \int_{\Omega} A |\nabla u|^2$, dx.

Hk**-GenEO robustness**

Necessary conditions for robustness are:

 $H \lesssim \kappa^{-1}$ and $(1 + C_{\text{Stab}})^2 \kappa^2 \lesssim \tau$.

A k-weighed norm: $||u||_{1,k}^2 = ||u||_a^2 + k^2 ||u||^2$.

Key ingredient: $\lambda_{m_i+1}^i > 0$. (include all the negative modes in the CS) \rightsquigarrow the size of the coarse space increases with k!

GMRES convergence

Under the assumptions on H and τ , weighted GMRES applied to the preconditioned problem yields a robust convergence (iteration count independent of problem parameters).

Remarks and theoretical ingredients

Constraints on H and τ (generally overly pessimistic): robustness is achieved with sufficiently small domains and many modes (increasing drastically with k!). In practice, things are better!

Notations

• Bilinear form

$$
b_\Omega(u,v)=\int_\Omega A\nabla u\nabla v-k^2uv\,dx
$$

- Extension operators: $E_i : V_i \rightarrow V^h$.
- Projectors

 $b_{\Omega_i}(\mathsf{T}_i\mathsf{u},\mathsf{v})=b(\mathsf{u},\mathsf{E}_i\,\mathsf{v}), \forall \mathsf{v}\in \mathsf{V}_i$

• Two-level Schwarz preconditioner:

$$
T=\sum_i E_i T_i.
$$

Technical steps of the proof

• T_i are well defined and stable.

 $||T_iu||_{1k,\Omega} \leq 2||u||_{1k,\Omega}$

- Stable decomposition.
- \cdot T₀ is well defined and stable

 $||u - T_0u||_{1,k} \leq 2||u||_{1,k}$

• Technical estimates

 $c_1 ||u||_{1,k}^2 \leq (Tu, u)_{1,k}, ||Tu||_{1,k}^2 \leq c_2 ||u||_{1,k}^2$

• Apply Elman theory (GMRES convergence)

Summary

Two-level DD preconditioner

Solve B**u** = **b**, i.e. $M_{AS,2}^{-1}Bu = M_2^{-1}b$ by GMRES. DD preconditioner based on N domains of diameter \sim H.

$$
M_{AS,2}^{-1} = \sum_{j=1}^{N} R_j^{T} B_j^{-1} R_j + Z(Z^* BZ)^{-1} Z^*
$$

Different CS according to the choice of Z:

- **Grid CS**: $Z = R_0^T$ with R_0^T **interpolation matrix** from the fine to the coarse grid.
- DtN CS : solve $\mathrm{DtN}_{\Omega_{\widetilde{\mathsf{j}}}}(\mathsf{u^l_{\Gamma_{\widetilde{\mathsf{j}}}}})=\boldsymbol{\lambda^l}\mathsf{u^l_{\Gamma_{\widetilde{\mathsf{j}}}}},$ Z is formed from **local harmonic extensions** (H) of modes, **weighted** (D_j) and **extended globally** $\mathsf{R}_{\mathsf{j}}^{\mathsf{T}}\mathsf{D}_{\mathsf{j}}\mathcal{H}\mathsf{u}_{\mathsf{T}_{\mathsf{j}}}^{\mathsf{l}}$
- \cdot Δ -**GenEO** (\mathcal{H}_k -**GenEO**): solve L_j **u** $_j^l = \lambda^l D_j L_j D_j$ **u** $_j^l$ $(\widetilde{B}_j\textbf{u}_j^l=\boldsymbol{\lambda}^{\textbf{l}}\text{D}_j\text{B}_{j,k}\text{D}_j\textbf{u}_j^l)$, Z is formed from **weighted (D_j) and extended globally** modes $\mathsf{R}_{\bar{\text{j}}}^\intercal \mathsf{D}_{\bar{\text{j}}} \mathsf{u}^{\text{l}}_{\bar{\text{j}}}$

Summary

Two-level DD preconditioner

Solve B**u** = **b**, i.e. $M_{AS,2}^{-1}Bu = M_2^{-1}b$ by GMRES. DD preconditioner based on N domains of diameter \sim H.

$$
M_{AS,2}^{-1} = \sum_{j=1}^{N} R_j^{T} B_j^{-1} R_j + Z(Z^* BZ)^{-1} Z^*
$$

Different CS according to the choice of Z:

- **Grid CS**: $Z = R_0^T$ with R_0^T **interpolation matrix** from the fine to the coarse grid.
- DtN CS : solve $\mathrm{DtN}_{\Omega_{\widetilde{\mathsf{j}}}}(\mathsf{u^l_{\Gamma_{\widetilde{\mathsf{j}}}}})=\boldsymbol{\lambda^l}\mathsf{u^l_{\Gamma_{\widetilde{\mathsf{j}}}}},$ Z is formed from **local harmonic extensions** (H) of modes, **weighted** (D_j) and **extended globally** $\mathsf{R}_{\mathsf{j}}^{\mathsf{T}}\mathsf{D}_{\mathsf{j}}\mathcal{H}\mathsf{u}_{\mathsf{T}_{\mathsf{j}}}^{\mathsf{l}}$
- \cdot Δ -**GenEO** (\mathcal{H}_k -**GenEO**): solve L_j **u** $_j^l = \lambda^l D_j L_j D_j$ **u** $_j^l$ $(\widetilde{B}_j\textbf{u}_j^l=\boldsymbol{\lambda}^{\textbf{l}}\text{D}_j\text{B}_{j,k}\text{D}_j\textbf{u}_j^l)$, Z is formed from **weighted (D_j) and extended globally** modes $\mathsf{R}_{\bar{\text{j}}}^\intercal \mathsf{D}_{\bar{\text{j}}} \mathsf{u}^{\text{l}}_{\bar{\text{j}}}$

Advantages and available results

- ⊕ **Grid CS**: Theoretical/numerical results absorptive problem, robustness for $H \sim k^{-\alpha}$, 0 < α < 1.
- ⊕ ∆**-GenEO** : Theoretical/numerical results and robustness for **mild heterogeneities** and **low frequencies**.
- \oplus \mathcal{H}_{k} **-GenEO** : Theoretical/numerical results and robustness for **high frequencies** in **the indefinite case**.

[Numerical Results](#page-22-0)

Numerical Results: ∆**-GenEO vz.** Hk**-GenEO**

Problem definition:

$$
-\nabla \cdot (A(x)\nabla u) - k^2 u = f \quad \text{in } \Omega,
$$

$$
u = 0 \quad \text{on } \partial \Omega,
$$

Homogeneous Problem

- Helmholtz: $A = I$, varying k.
- Theory ensures robustness for small enough domains with enough modes.

• Hk-GenEO performs better with higher frequencies.

Preconditioned GMRES iteration counts. A uniform decomposition into $\sqrt{\rm N}\times\sqrt{\rm N}$ square subdomains is used.

Numerical Results: ∆**-GenEO vz.** Hk**-GenEO**

 $-\nabla \cdot (A(x)\nabla u) - k^2 u = f$ in Ω , $u = 0$ on $\partial\Omega$.

- Piecewise constant heterogeneity, varying k.
- For the darkest shade, $a(x) = a_{\text{min}}$, for the lightest shade $a(x) = a_{\text{max}}$.

Numerical Results: ∆**-GenEO vz.** Hk**-GenEO**

(a) Increasing layers (b) Alternating layers (c) Diagonal alternating (a) layers

(a) Increasing layers

(b) Alternating layers

Conclusion

- Hk-GenEO is **robust** w.r.t. **heterogeneities, wave number, decomposition**.
- Hk-GenEO outperforms ∆-GenEO model problems.

(a) Increasing layers

(b) Alternating layers

(c) Diagonal alternating layers

Numerical comparison Dirichlet problem: ∆**-Geneo vs.** H**-Geneo modes**

Heterogeneous indefinite Helmholtz

- **Piecewise constant heterogeneity** a(**x**).
- Theory (∆-Geneo) ensures robustness for **small frequencies**, **small enough domains** with **enough modes**.

For the darkest shade $a(x) = 1$, for the lightest shade $a(\mathbf{x}) = a_{\text{max}}$

Bootland, Dolean, Graham, Ma, Scheichl. [Overlapping Schwarz methods with GenEO coarse spaces for indefinite and nonself-adjoint problems,](https://doi.org/10.1093/imanum/drac036) IMAJNA, 2022.

Varying the number of subdomains N for $k = 73.8$

Challenges for time-harmonic wave problems

- **Theoretical**: behaviour of a few methods is not completely understood \rightarrow new mathematical tools are needed.
- **Practical**: exploitation of specific features not covered by theory \rightsquigarrow application specific tuning is necessary.
- **Computational**: interplay between precision and performance: we need explicit bounds in the wavenumber to assess the complexity of the coarse spaces!

Thanks for your attention