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How to solve Helmholtz equation
efficiently



Helmholtz equation

Hermann von Helmholtz (1821-1894)
physicist, physician, philosopher

Time-harmonic wave equation

−∆u− k2u = f

Scalar wave equation (c(x) local speed)

∂ttv− c2(x)∆v = F(x, t),

If F(x, t) = f(x)e−iωt (mono-chromatic) then

v(x, t) = u(x)e−iωt

which leads to

−∆u− n(x)2ω2u = f,

where n(x) = 1
c(x) is the index of refraction,

k2 = n2ω2 is called wave number.

Remark
If k is small, Helmholtz is a perturbation of the
Laplace’s problem, otherwise the solution is
highly oscillatory mathematical and
numerical difficulties.
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Why the high-frequency problem is hard? (Accuracy and pollution)

How to discretise well

• After discretisation maximise accuracy and minimise
the number of degrees of freedom (#DoF)

• If hω is kept constant the error increases with ω  
pollution error [Babuska, Sauter, SINUM, 1997]

• FEM discretisations: for quasi-optimality we need
[Melenk, Sauter, SINUM, 2011]

hpωp+1 ... 1

• For a bounded error h ∼ ω−1−1/2p [Du, Wu, SINUM, 2015].

Consequences

• High-frequency solution u oscillates at a scale 1/ω ⇒ h ∼ 1
ω
 large #DoF.

• Pollution effect requires h � 1
ω
, h ∼ ω−1−1/p, with p the finite element order even larger #DoF.

• Trade-off: number of points per wavelength (ppwl) G = λ
h = 2π

ωh and polynomial degree dispersion
analysis (measuring the ratio between the numerical and physical wave speeds). 2



Efficient solution of the discretised problem

We want: solution of the discretised PDEs in optimal time using solvers with good parallel properties and
robust w.r.t heterogeneities

A large linear system to solve Au = b

• A is symmetric but indefinite or non-Hermitian.

• A can become arbitrarily ill-conditioned

• A is getting larger with increasing ω: its size n
grows like Nd ∼ ω(1+1/p)d where N ∼ 1/h.
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• A is getting larger with increasing ω: its size n
grows like Nd ∼ ω(1+1/p)d where N ∼ 1/h.

Landscape of linear solvers

• Direct solvers: MUMPS, SuperLU, PastiX,
UMFPACK, PARDISO

• Iterative methods (Krylov): CG, BiCGStab,
MINRES, GMRES ...

... But conventional iterative methods fail. [Ernst, Gander (2012)], [Gander, Zhang (2019)]
Idea: use domain decomposition! How large is truly large to justify the use of domain decomposition?

The main message (from geophysicists)

• Problems in FWI do not need to be over-resolved. (Too much precision not necessary!)

• Use direct solvers whenever possible!

Amestoy, Brossier, Buttari, L’Excellent, Mary, Métivier, Miniussi, Operto: Fast 3D frequency-domain full-waveform inversion [...], Geophysics, 2016
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One and two-level methods

“If the only tool you have is a hammer, you tend to see every problem as a nail.” (AbrahamMaslow)

Solve the preconditioned Bu = b, i.e. M−1Bu = M−1b by GMRES

The one-level preconditioner

M−1 =
N∑
j=1

RTj B
−1
j Rj , where

Rj Ω → Ωj restriction operator
RTj Ωj → Ω prolongation operator

Definition of the local matrices Bj (k = ω
c )

Bj is the stiffness matrix of the local Robin problem

(−∆− k2)(uj) = f in Ωj(
∂
∂nj

+ ik
)
(uj) = 0 on ∂Ωj \ ∂Ω.

Ω = ∪N
j=1Ωj

4



One and two-level methods

“If the only tool you have is a hammer, you tend to see every problem as a nail.” (AbrahamMaslow)

Solve the preconditioned Bu = b, i.e. M−1Bu = M−1b by GMRES
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N∑
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RTj B
−1
j Rj , where

Rj Ω → Ωj restriction operator
RTj Ωj → Ω prolongation operator

Definition of the local matrices Bj (k = ω
c )

Bj: stiffness matrix of the local Robin problem

(−∆− k2)(uj) = f in Ωj(
∂
∂nj

+ ik
)
(uj) = 0 on ∂Ωj \ ∂Ω.

One level is not enough (only neighbouring subdomains communicate)
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One and two-level methods

“If the only tool you have is a hammer, you tend to see every problem as a nail.” (AbrahamMaslow)

Solve the preconditioned Bu = b, i.e. M−1Bu = M−1b by GMRES

The two-level (additive) preconditioner

M−1
AS,2 =

N∑
j=1

RTj B
−1
j Rj + M−1

0 , where

Rj Ω → Ωj restriction operator
RTj Ωj → Ω prolongation operator

Definition of the local matrices Bj (k = ω
c )

Bj: stiffness matrix of the local Robin problem

(−∆− k2)(uj) = f in Ωj(
∂
∂nj

+ ik
)
(uj) = 0 on ∂Ωj \ ∂Ω.

How to add a second level or coarse information Z

M−1
0 = ZE−1Z∗ is the coarse space correction

Z, E = Z∗AZ matrix spanning the coarse space and the coarse matrix

Remark: Hybrid variants of the preconditioner are also possible.
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An example of coarse space for Helmholtz

How to choose the coarse information Z? [Graham, Spence, Vainikko, Math. Comp., 2017]

The grid coarse space (Grid CS)

• is based on a geometrical coarse mesh of
diameter Hcoarse

• RT0 interpolation matrix from the fine to the
coarse grid

• Z = RT0 matrix spanning the coarse space

• E = ZTBZ stiffness matrix on the coarse grid

Theory for absorptive problem: −∆− (k2+ iξ)

• For scalability and robustness w.r.t to the
frequency we need Hcoarse ∼ k−α, 0 < α <= 1.

• |ξ| ∼ k2 and δ ∼ Hcoarse, then weighted GMRES
will converge with the number of iterations
independent of the wavenumber.

Is the grid CS optimal for heterogeneous problems?

Bonazzoli, Dolean, Graham, Spence, Tournier. Domain decomposition preconditioning for the high-frequency time-harmonic Maxwell [...] Math. Comp., 2019. 5
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Spectral coarse spaces for indefinite
Helmholtz



A variational framework - GenEO

A more general BVP

−∇ · (A(x)∇u)− k2u = f in Ω,

u = 0 on ∂Ω,

with A an SPD matrix-valued function,
amin|ξ|2 ≤ A(x)ξ · ξ ≤ amax|ξ|2, x ∈ Ω, ξ ∈ Rd.

The FEM solution uh ∈ Vh satisfies the weak
formulation b(uh, vh) = F(vh)

b(u, v) =
∫
Ω

(
A(x)∇u · ∇v− k2uv

)
dx

Discretised symmetric but indefinite linear system

Bu = f
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with A an SPD matrix-valued function,
amin|ξ|2 ≤ A(x)ξ · ξ ≤ amax|ξ|2, x ∈ Ω, ξ ∈ Rd.

The FEM solution uh ∈ Vh satisfies the weak
formulation b(uh, vh) = F(vh)

b(u, v) =
∫
Ω

(
A(x)∇u · ∇v− k2uv

)
dx

Discretised symmetric but indefinite linear system

Bu = f

Domain decomposition

• Overlapping partition {Ωj}1≤j≤N of Ω, with Ωj

• H the maximal diameter of the subdomains.

Define Ṽj = {v|Ωj : v ∈ Vh},
Vj = {v ∈ Ṽj : supp(v) ⊂ Ωj}, and for u, v ∈ Ṽj

bΩj (u, v) :=
∫
Ωj

(
A(x)∇u · ∇v− k2uv

)
dx.

One-level additive Schwarz preconditioner

M−1
AS,1 =

N∑
j=1

RTj (RjBR
T
j )

−1Rj.
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Spectral Coarse Space - GenEO type - how to achieve robustness

A spectral coarse space can be constructed.
Spillane, Dolean, Hauret, Nataf, Pechstein, Scheichl. Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps, Numer. Math., 2014.

Bilinear forms

bΩj (u, v) =
∫
Ωj

(
A∇u · ∇v− k2uv

)
dx, aΩj (u, v) =

∫
Ωj

(A∇u · ∇v) dx.

∆ - GenEO

• Consider a nearby generalised eigenvalue
problem aΩi (e.g. Laplace).

• In each of Ωi, solve the eigenproblem

aΩi (u, v) = λaΩi (Ξi(u),Ξi(v)) , ∀ v ∈ Vi.

• At the discrete level

L̃iuli = λlDiLiDiuli.

Bootland, Dolean, Graham, Ma, Scheichl. Overlapping Schwarz methods with GenEO

coarse spaces for indefinite and nonself-adjoint problems, IMA, 2023.

Hk-GenEO

• Using the complete problem definition, bΩi in
combination with a k - weighted scaler product.

• In each of Ωi, solve the eigenproblem

bΩi (u, v) = λ (Ξi(u),Ξi(v))1,k,Ωi , ∀ v ∈ Vi.

• At the discrete level

B̃iuli = λlDiBiDiuli.

Bootland, Dolean. Can DtN and GenEO Coarse Spaces Be Sufficiently Robust for

Heterogeneous Helmholtz Problems?, MCA, 2022.
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Spectral Coarse Space - GenEO type

∆ - GenEO

• Consider a nearby generalised eigenvalue
problem aΩi (e.g. Laplace).

• In each of Ωi, solve the eigenproblem

aΩi (u, v) = λaΩi (Ξi(u),Ξi(v)) , ∀ v ∈ Vi.

• At the discrete level

L̃iuli = λlDiLiDiuli.

Hk-GenEO

• Using the complete problem definition, bΩi in
combination with a k - weighted scaler product.

• In each of Ωi, solve the eigenproblem

bΩi (u, v) = λ (Ξi(u),Ξi(v))1,k,Ωi , ∀ v ∈ Vi.

• At the discrete level

B̃iuli = λlDiBiDiuli.

Definition of the coarse space
GenEO coarse spaces: mi (dominant) eigenfunctions corresponding to λi1 ≤ λi2 ≤ . . . ≤ λimi .
The coarse information is defined as the thin and long matrix

Z =

[(
RTi Diu

l
i

)
l=1...,mj

]
i=1,...,N
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Spectral Coarse Space - GenEO type

∆ - GenEO

• Consider a nearby generalised eigenvalue
problem aΩi (e.g. Laplace).

• In each of Ωi, solve the eigenproblem

aΩi (u, v) = λaΩi (Ξi(u),Ξi(v)) , ∀ v ∈ Vi.

• At the discrete level

L̃iuli = λlDiLiDiuli.

Key advantages

• Spectral nearby SPD problem: can apply
spectral results!

• Use of the a-weighted norms.

• Robustness for mild heterogeneities and low
frequencies.

Hk-GenEO

• Using the complete problem definition, bΩi in
combination with a k - weighted scaler product.

• In each of Ωi, solve the eigenproblem

bΩi (u, v) = λ (Ξi(u),Ξi(v))1,k,Ωi , ∀ v ∈ Vi.

• At the discrete level

B̃iuli = λlDiBiDiuli.

Key advantages

• Genuine indefinite problem: spectral theory for
SPD problem does not work!

• Use of the k-weighted norms.

• Robustness achieved via a k-dependent coarse
space high wave-numbers.
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Main theoretical results

Work on indefinite Helmholtz with homogeneous Dirichlet BVP.
GenEO coarse spaces: mi (dominant) eigenfunctions corresponding to λi1 ≤ λi2 ≤ . . . ≤ λimi .
Notations: τ := minNi=1 λ

i
mi+1. Cstab > 0 stability constant for the BVP, H- subdomains diameter

∆-GenEO robustness
Initial bounds (IMA, 2023 paper)

H . κ−2 and (Cstab + 1)2 κ8 . τ.

The bounds can be improved:

H . κ−1 and (1+ CStab)2κ4 . τ.

An A-weighed norm: ‖u‖2a =
∫
Ω
A|∇u|2, dx.

Hk-GenEO robustness
Necessary conditions for robustness are:

H . κ−1 and (1+ CStab)2κ2 . τ.

A k-weighed norm: ‖u‖21,k = ‖u‖2a + k2‖u‖2.

Key ingredient: λimi+1 > 0. (include all the
negative modes in the CS) the size of the
coarse space increases with k!

GMRES convergence
Under the assumptions on H and τ , weighted GMRES applied to the preconditioned problem
yields a robust convergence (iteration count independent of problem parameters).

Bootland, Dolean, Graham, Ma, Scheichl. Overlapping Schwarz methods with GenEO coarse spaces for indefinite and nonself-adjoint problems, IMA, 2023. 9



Remarks and theoretical ingredients

Constraints on H and τ (generally overly pessimistic): robustness is achieved with sufficiently
small domains and many modes (increasing drastically with k!). In practice, things are better!

Notations

• Bilinear form

bΩ(u, v) =
∫
Ω

A∇u∇v− k2uv dx

• Extension operators: Ei : Vi → Vh.

• Projectors

bΩi(Tiu, v) = b(u, Ei v),∀v ∈ Vi

• Two-level Schwarz preconditioner:

T =
∑
i

EiTi.

Technical steps of the proof

• Ti are well defined and stable.

‖Tiu‖1,k,Ωi ≤ 2‖u‖1,k,Ωi

• Stable decomposition.

• T0 is well defined and stable

‖u− T0u‖1,k ≤ 2‖u‖1,k

• Technical estimates

c1‖u‖21,k ≤ (Tu,u)1,k, ‖Tu‖21,k ≤ c2‖u‖21,k

• Apply Elman theory (GMRES convergence)
10



Summary

Two-level DD preconditioner
Solve Bu = b, i.e. M−1

AS,2Bu = M−1
2 b by GMRES. DD preconditioner based on N domains of diameter ∼ H.

M−1
AS,2 =

N∑
j=1

RTj B
−1
j Rj + Z(Z∗BZ)−1Z∗

Different CS according to the choice of Z:
• Grid CS: Z = RT0 with R

T
0 interpolation matrix

from the fine to the coarse grid.

• DtN CS : solve DtNΩj (u
l
Γj
) = λlulΓj , Z is formed

from local harmonic extensions (H) of modes,
weighted (Dj) and extended globally RTj DjHu

l
Γj

• ∆-GenEO (Hk-GenEO): solve Ljulj = λlDjLjDjulj
(B̃julj = λlDjBj,kDjulj), Z is formed from weighted
(Dj) and extended globally modes RTj Dju

l
Γj

Advantages and available results

⊕ Grid CS: Theoretical/numerical results
absorptive problem, robustness for
H ∼ k−α, 0 < α ≤ 1.

⊕ ∆-GenEO : Theoretical/numerical results and
robustness for mild heterogeneities and low
frequencies.

⊕ Hk-GenEO : Theoretical/numerical results and
robustness for high frequencies in the
indefinite case.

Bootland, Dolean, Graham, Ma, Scheichl. Overlapping Schwarz methods with GenEO coarse spaces for indefinite and nonself-adjoint problems, IMAJNA, 2022.
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Numerical Results



Numerical Results: ∆-GenEO vz. Hk-GenEO

Problem definition:

−∇ · (A(x)∇u)− k2u = f in Ω,

u = 0 on ∂Ω,

Homogeneous Problem

• Helmholtz: A = I, varying k.

• Theory ensures robustness for small
enough domains with enough modes.

• Hk-GenEO performs better with higher
frequencies.

Preconditioned GMRES iteration counts. A uniform decomposition into
√
N×

√
N square subdomains is used.

∆ - GenEO Hk - GenEO
k\ N 16 25 49 100 16 25 49 100
10 16 16 17 16 15 15 17 16
100 27 25 24 21 17 18 19 19
1000 98 106 123 90 17 18 22 17
10 000 407 468 814 DNC 68 54 42 46
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Numerical Results: ∆-GenEO vz. Hk-GenEO

Problem definition:
−∇ · (A(x)∇u)− k2u = f in Ω,

u = 0 on ∂Ω,

(a) Increasing layers (b) Alternating layers (c) Diagonal alternating layers

Heterogeneous Problem

• Piecewise constant heterogeneity, varying k.

• For the darkest shade, a(x) = amin, for the lightest shade a(x) = amax.
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Numerical Results: ∆-GenEO vz. Hk-GenEO

(a) Increasing layers (b) Alternating layers
(c) Diagonal alternating

layers

∆ - GenEO Hk - GenEO
k\ N 16 25 49 100 16 25 49 100
10 25 26 25 26 25 26 25 26
100 26 26 26 26 25 26 26 26
1000 43 42 46 45 25 32 27 28
10 000 138 145 179 205 35 49 49 75

(a) Increasing layers

∆ - GenEO Hk - GenEO
k\ N 16 25 49 100 16 25 49 100
10 20 19 20 20 20 19 20 20
100 21 20 21 21 20 19 21 20
1000 72 73 76 82 22 22 22 22
10 000 361 213 653 362 41 49 51 33

(b) Alternating layers

∆ - GenEO Hk - GenEO
k\ N 16 25 49 100 16 25 49 100
10 21 20 21 22 20 20 21 21
100 21 21 22 22 21 20 22 22
1000 74 89 81 75 24 26 39 31
10 000 258 304 496 720 53 47 53 61

(c) Diagonal alternating layers
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Numerical Results: ∆-GenEO vz. Hk-GenEO

Conclusion

• Hk-GenEO is robust w.r.t. heterogeneities, wave number, decomposition.

• Hk-GenEO outperforms ∆-GenEO model problems.
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(c) Diagonal alternating layers
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Numerical comparison Dirichlet problem: ∆-Geneo vs. H-Geneo modes

Heterogeneous indefinite Helmholtz

• Piecewise constant heterogeneity a(x).

• Theory (∆-Geneo) ensures robustness
for small frequencies, small enough
domains with enough modes.

For the darkest
shade a(x) = 1,
for the lightest
shade
a(x) = amax

∆-GenEO
H-GenEO H-GenEO
κ = 1000 κ = 10000

Di
ag
on
al
la
ye
rs

λ = 0.057 λ = −0.014 λ = −0.052

Bootland, Dolean, Graham, Ma, Scheichl. Overlapping Schwarz methods with GenEO coarse spaces for indefinite and nonself-adjoint problems, IMAJNA, 2022.
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Numerical comparison. DtN vs. H-GenEO: size1 of the coarse space

Varying the wave number k for N = 25

20 30 40 50 60 70

10
2

10
3

Varying the number of subdomains N for k = 73.8

10
1

10
2

10
2

10
3

10
4
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Conclusions and discussion

Challenges for time-harmonic wave problems

• Theoretical: behaviour of a few methods is not completely
understood new mathematical tools are needed.

• Practical: exploitation of specific features not covered by
theory application specific tuning is necessary.

• Computational: interplay between precision and
performance: we need explicit bounds in the wavenumber to
assess the complexity of the coarse spaces!

Thanks for your attention
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