
Multi-Domain Solutions of PDEs Posed on Perforated Domains

Victorita Dolean
with: M. Boutilier and K. Brenner

Preconditioning, Atlanta, 11 June 2024



Motivation and model problem



Motivation: Urban Flood Modeling

• Efficiently solve problems on perforated domains.
• Expect corner singularities, triangle of varying magnitude, many degrees of freedom.
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Modelling a Realistic Problem

• Realistic topography (zb(x, y) of Nice, France);
• Rainfall data (source term): Can be taken from previous flood events (rain gauge data);
• Flood maps: previous areas of flood risk.
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Nonlinear Problem: Diffusive Wave model and discretisation

A non linear problem
∂tu+ divF(x, u,∇u) = f, in Ω,

F(x, u,∇u) · n = 0, on ∂Ω ∩ ∂ΩS,

u = g, on ∂Ω \ ∂ΩS.

F(x, u,∇u) = cf
h(u, zb(x))α

||∇u||1−γ
∇u,

• zb(x): Bathymetry;

• h(u, zb(x)) = max(u− zb(x), 0): Water depth;

• α > 1, 0 < γ ≤ 1.

• cf > 1 : friction coefficient.

Discretisation
Discretisation in space and time:

F(u) :=
P
∆t

(u− uold) + K(u) = 0, (1)

where P is the (lumped) mass-matrix.

• Backward-Euler for time discretisation;

• K(u) is discretisation of nonlinear term
(FEM/FVM) and source term;

• Perform upwinding on h(u, zb(x))α term (due to
degeneracy);

• Adaptive time-stepping may be necessary for
Newton’s method on this system.

The purpose of this work

• Design a fast solution method for the nonlinear multiscale problem F(u) = 0.

• Simulate the whole time-dependent problem. 3



Overlapping Schwarz: linear and
nonlinear preconditioners



Domain Decomposition Approach

Divide and conquer

• Partition of domain Ω into subdomains
{Ωj}Nj=1;

• Two levels of discretisation: ’Coarse’ and
’Fine’;

• Local subdomain solves can be done in
parallel;

• Schwarz methods: use overlapping
subdomains.

Idea: Solve model problem on each subdomain locally, with boundary conditions taken from
adjacent subdomains.
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Linear preconditioning: Newton-Krylov-Schwarz (NKS)

Newton’s method to solve F(u) = 0
Given initial u0, for outer iteration n = 0, . . . ,
to convergence,

• Solve for δn : ∇F(un)δn = F(un),

• Update un+1 = un − δn.

At each Newton’s iteration we need to solve a
linear system:

Jnδn = Fn

with Jn = ∇F(un), Fn = F(un).

DD preconditioning
Solve the preconditioned system

M−1Jnδn = M−1Fn,

by a Krylov method, for some domain
decomposition preconditioner M−1.

• Does not change convergence/robustness
of Newton’s method.

• M−1 ≈ J−1
n → improves convergence of

linear Krylov solver.

X.-C. Cai, W. D. Gropp, D. E. Keyes, and M. D. Tidriri, Newton-Krylov-Schwarz methods in CFD, 1994
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Nonlinear Preconditioning

Goal
Instead of F(u) = 0, solve N(F(u)) = 0 via
Newton.

• N(v) = 0→ v = 0;

• N(F(v)) straightforward to compute.

Use a fixed point iteration

un+1 = P(un), (2)

solve F(u) = P(u)− u = 0 F(u) = 0 is the
preconditioned nonlinear system.

Nonlinear preconditioning can improve convergence/robustness of Newton’s method and localise
difficult nonlinearities.

X.-C. Cai and D. E. Keyes, Nonlinearly preconditioned inexact newton algorithms, SISC (2002)
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Nonlinear Restricted Additive Schwarz (NRAS) : F(u) = 0

Idea: use nonlinear Schwarz

• Decomposition into subdomains Ωj

• Start from an initial guess u0

• Perform local nonlinear subdomain solves

RjF(RTj Gj(un) + (I− RTj Rj)un)) = 0.

where Rj are restriction operators and Dj
partition of unity matrices.

• “Glue” together local solutions Gj(un)

un+1 =
∑
j

RTj DjGj(un)

Advantages

• Local subproblems are solved via Newton
with negligible cost;

• Local solves can be done in parallel.

• Natural nonlinear solver based on the
decomposition into subdomains.

Downsides: this is the non-linear equivalent of
the iterative version of RAS, hence in general
with a slow convergence.
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Restricted Additive Schwarz Exact Newton (RASPEN)

From NRAS to RASPEN

• Start with the nonlinear fixed point
iteration

un+1 =
∑
j

RTj DjGj(un)

which solves the nonlinear system
F(u) :=

∑
j R

T
j DjGj(u)− u = 0.

• Accelerate via Newton (the equivalent of
GMRES in the nonlinear world) the
RASPEN method.

Main features

• Acceleration of convergent fixed point
iteration;

• Computation of exact Jacobian ∇F , or
specifically the matrix-vector product ∇Fv
for some v.

∇F(un) = ∇(un −
∑
j

RTj DjGj(un))

=
∑
j

RTj Dj[Rj∇F(un)RTj ]−1Rj∇F(un)

V. Dolean, M. J. Gander, W. Kheriji, F. Kwok, and R. Masson, Nonlinear preconditioning: How to use a
nonlinear schwarz method to precondition newton’s method, SISC (2016).
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One-level RASPEN

The algorithm, for each time step, is given by:

One-level algorithm
Given initial u0, for outer iteration n = 0, . . . , do until convergence

• Solve local subproblems RjF(RTj Gj(un) + (I− RTj Rj)un)) = 0 for Gj(un) (Newton);

• Glue local solutions ûn =
∑

j R
T
j DjGj(un);

• Set F(u) = u− ûn;

• Solve ∇F(un)∆n = F(un).

• Update un+1 = un −∆n.

V. Dolean, M. J. Gander, W. Kheriji, F. Kwok, and R. Masson, Nonlinear preconditioning: How to use a
nonlinear schwarz method to precondition newton’s method, SISC (2016).
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Need for coarse correction

Advantages of coarse spaces

• Allow for global communication between
all subdomains.

• Are necessary for scalability for large
number of subdomains for preconditioning
of linear/nonlinear problems.

Aim

• Robustness with respect to perforation
size/location (even along subdomain
interfaces);

• Robustness with respect to the number of
subdomains N.

Two options:

• Coarse space based on the FAS like in Dolean et al. (2016)

• Here, we choose the coarse space specially tailored to perforated domains.

V. Dolean, M. J. Gander, W. Kheriji, F. Kwok, and R. Masson, Nonlinear preconditioning: How to use a
nonlinear Schwarz method to precondition newton’s method, SISC (2016).
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The construction of the coarse space



Coarse grid nodes for coarse space basis functions

• Coarse grid nodes arise at the
intersection of nonoverlapping
skeleton with a perforation boundary;

• (φs)s∈{1,...,Nx} : Locally harmonic basis
functions for each coarse grid node.

• # of coarse grid nodes is automatically
generated.

• Continuously, the coarse space is given
by VH = span{φs}.

• Think of as ’enriching’ Multi-scale FEM
(MsFEM) coarse space.

M. Boutilier, K. Brenner, and V. Dolean, Robust methods for multiscale coarse approximations of diffusion
models in perforated domains, APNUM, 2024.
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Basis functions: Harmonic local solutions

For all nonoverlapping
(
Ω′
j

)
j∈{1,...,N}

and s = 1, . . . ,Nx, to obtain φs,j = φs|Ωj , solve


∆φs,j = 0 in Ω′

j ,
∂φs,j

∂n
= 0 on ∂Ω′

j ∩ ∂ΩS,

φs,j = gs on ∂Ω′
j \ ∂ΩS.

gs : Γ → [0, 1] as: for i = 1, . . .Nx,

gs(xi) =
{
1, s = i,
0, s 6= i,

• gs is linearly extended on the remainder of Γ.
• Can also include higher-order polynomials on coarse edgres.

M. Boutilier, K. Brenner, and V. Dolean, Robust methods for multiscale coarse approximations of diffusion
models in perforated domains, APNUM, 2024. 12



Two-level RASPEN with ”multiscale” coarse space

We add the coarse correction multiplicatively and discretely.

Two-level algorithm
Given initial u0, for outer iteration n = 0, . . . , do until convergence

• Solve local subproblems RjF(RTj Gj(un) + (I− RTj Rj)un)) = 0 for Gj(un) (Newton);

• Glue local solutions ûn =
∑

j R
T
j DjGj(un);

• Set F(u) = u− ûn;

• Solve coarse problem R0F(ûn − RT0cn0) = 0 for cn0 ;

• Set F(un) = un − ûn+RT0cn0;

• Solve ∇F(un)∆n = F(un).

• Update un+1 = un −∆n.
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Numerical Results



Setup example model problem

• Excessive water flow coming from Paillon river in Nice, France;
• Dirichlet boundary conditions with initial condition u0 > zb at leftmost boundary (river).
• α = 3

2 , γ = 1, 0 source term, cf = 30.

initial h = u− zb initial zb
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Solution over time

• zb: black and white (darker = higher elevation)

• h (water depth): colour
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Solution over time

• zb: black and white (darker = higher elevation)

• h (water depth): colour
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Linearised Newton System

We can also perform typical linear DD methods on the linearised system at each Newton iteration
(SNK: Schwarz-Newton-Krylov)

M−1
RAS,2Jnu = M−1

RAS2Fn.

where

M−1
RAS,2 =

N∑
j=1

RTj Dj(RjJnRTj )−1Rj + RT0(R0JnRT0)−1R0.

Question: Will our coarse space (designed for Poisson equation) work well for the linearized
Newton system?  Perform scalability tests.
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Numerical Results: First time step

• 1 and 2 level RASPEN immediately enter region of quadratic convergence, quite insensitive to
initial guess.
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Numerical results: GMRES iterations

Average GMRES iterations per outer iteration for each time step.

N = 2× 2 N = 4× 4 N = 8× 8
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Numerical results: Outer iteration, GMRES iterations, and convergence curves

N = 2× 2 T. steps Outer Its GMRES Its
Newton 160 2216 19497
1-level RASPEN 146 440 2630
2-level RASPEN 146 532 3187(+1300 coarse)

N = 4× 4 T. steps Outer Its GMRES Its
Newton 160 2159 23989
1-level RASPEN 146 554 5026
2-level RASPEN 146 576 4507(+1719 coarse)

N = 8× 8 T. steps Outer Its GMRES Its
Newton 160 2266 30811
1-level RASPEN 146 602 9668
2-level RASPEN 146 609 5627(+2255 coarse)

• 1-level RASPEN: GMRES iterations do not scale with N.
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Closing Remarks

• RASPEN is a very good alternative for our model problem, improving the convergence of
Newton’s method;

• Local time step reduction can be employed for problem subdomains to avoid a global time
step reduction;

• For a larger number of subdomains, a coarse correction is necessary for scalability→ our
coarse space designed for the Poisson equation works well in this nonlinear case;

• As an alternative, the two-level RAS preconditioner with our coarse space provides a scalable
number of Krylov iterations.

M. Boutilier, K. Brenner, and V. Dolean, Two-level Nonlinear Preconditioning Methods for Flood Models
Posed on Perforated Domains, arXiv:2406.06189, 2024.
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