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Motivation and model problem
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- Expect corner singularities, triangle of varying magnitude

- Efficiently solve problems on perforated domains.
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Modelling a Realistic Problem

- Realistic topography (z,(x, y) of Nice, France);
« Rainfall data (source term): Can be taken from previous flood events (rain gauge data);
+ Flood maps: previous areas of flood risk.




Nonlinear Problem: Diffusive Wave model and discretisation

A non linear problem Discretisation
Discretisation in space and time:
ou +divFE(x,u,Vu) = f, inQ, p
{ F(x,u,Vu)-n = 0, ondQn oy, F(u) := Kt(u—u°ld)+K(u):07 (1)
u = g, ondoQ\ 9Qs.

where P is the (lumped) mass-matrix.

h(u, 2 (x))*

VU, + Backward-Euler for time discretisation;
[[Vul[*=>

F(x,u,Vu) = cf

- K(u) is discretisation of nonlinear term

(FEM/FVM) and source term;
* zp(x): Bathymetry;

*+ h(u,zy(x)) = max(u — z,(x), 0): Water depth;
ca>10<y< 1.

+ Perform upwinding on h(u, z,(x))* term (due to
degeneracy);

+ Adaptive time-stepping may be necessary for
- ¢s > 1: friction coefficient. Newton’s method on this system.

Design a fast solution method for the nonlinear multiscale problem F(u) = 0.

Simulate the whole time-dependent problem. 3



Overlapping Schwarz: linear and
nonlinear preconditioners



Domain Decomposition Approach

Divide and conquer

- Partition of domain Q into subdomains
{Qj}jN:ﬁ

- Two levels of discretisation: 'Coarse’ and
'Fine’;

- Local subdomain solves can be done in
parallel;

- Schwarz methods: use overlapping
subdomains.

Idea: Solve model problem on each subdomain locally, with boundary conditions taken from
adjacent subdomains.



Linear preconditioning: Newton-Krylov-Schwarz (NKS)

DD preconditioning

Newton’s method to solve F(u) = 0
Solve the preconditioned system

Given initial u®, for outer iterationn =0, ...,
to convergence, M8, = MTF,

fiSoliEifonottVh(UY oR= R(UE); by a Krylov method, for some domain

- Update u™' = u" — &". decomposition preconditioner M~".
At each Newton'’s iteration we need to solve a - Does not change convergence/robustness
linear system: of Newton’s method.
Jndn = Fn - M~' &~ J;" — improves convergence of
with J, = VF(u"), Fy = F(u"). linear Krylov solver.

@ X.-C. Cai, W. D. Gropp, D. E. Keyes, and M. D. Tidriri, Newton-Krylov-Schwarz methods in CFD, 1994



Nonlinear Preconditioning

Goal Use a fixed point iteration
Instead of F(u) = 0, solve N(F(u)) = 0 via
Newton. u" = p(u"), )

*NV)=0—>v=0; .
solve F(u) = P(u) —u =0~ F(u) =0 is the

* N(F(v)) straightforward to compute. preconditioned nonlinear system.

Nonlinear preconditioning can improve convergence/robustness of Newton’s method and localise
difficult nonlinearities.

@ X.-C. Cai and D. E. Keyes, Nonlinearly preconditioned inexact newton algorithms, SISC (2002)



Nonlinear Restricted Additive Schwarz ( ):F(u)=0

Idea: use nonlinear Schwarz

+ Decomposition into subdomains € Advantages

. s 0 .
Start from an initial guess u + Local subproblems are solved via Newton

+ Perform local nonlinear subdomain solves with negligible cost;

RF(RIG;(u") + (I — RIR;)u")) = 0. + Local solves can be done in parallel.

- Natural nonlinear solver based on the
where R; are restriction operators and D; decomposition into subdomains.

partition of unity matrices.

Downsides: this is the non-linear equivalent of
the iterative version of RAS, hence in general

u™' = "RIDG(u") with a slow convergence.
j

+ “Glue” together local solutions G;(u")



Restricted Additive Schwarz Exact Newton (

From NRAS to RASPEN Ma =St
- Start with the nonlinear fixed point ’ {\ccelgratlon O BRI G e
. . iteration;
iteration
- Computation of exact Jacobian V.7, or
u™! = "RIDG(u") specifically the matrix-vector product V.Fv
i for some v.
which solves the nonlinear system
F(u) = 35 RIDGj(u) —u=0. VF@u") = V(u" - > RiD;G;(u"))
- Accelerate via Newton (the equivalent of j
GMRES in the nonlinear world) ~ the = > RIDj[R;VF(u")R]]'R;VF(u")
j

RASPEN method.

@ V. Dolean, M. ). Gander, W. Kheriji, F. Kwok, and R. Masson, Nonlinear preconditioning: How to use a
nonlinear schwarz method to precondition newton’s method, SISC (2016).



One-level RASPEN

The algorithm, for each time step, is given by:

Given initial u®, for outer iteration n = 0, ..., do until convergence

Solve local subproblems RiF(R{Gj(u") + (I — RR;)u")) = 0 for G;(u") (Newton);
Glue local solutions U" = >, R'D;Gj(u");

Set F(u) =u—1u";

Solve VF(u")A" = F(u").

Update u™' =u" — A"

@ V. Dolean, M. ). Gander, W. Kheriji, F. Kwok, and R. Masson, Nonlinear preconditioning: How to use a
nonlinear schwarz method to precondition newton’s method, SISC (2016).



Need for coarse correction

Advantages of coarse spaces Aim
+ Allow for global communication between - Robustness with respect to perforation
all subdomains. size/location (even along subdomain
« Are necessary for scalability for large interfaces);
number of subdomains for preconditioning - Robustness with respect to the number of
of linear/nonlinear problems. subdomains N.
Two options:

- Coarse space based on the FAS like in Dolean et al. (2016)

- Here, we choose the coarse space specially tailored to perforated domains.

@ V. Dolean, M. J. Gander, W. Kheriji, F. Kwok, and R. Masson, Nonlinear preconditioning: How to use a
nonlinear Schwarz method to precondition newton’s method, SISC (2016).



The construction of the coarse space




Coarse grid nodes for coarse space basis functions

+ Coarse grid nodes arise at the
intersection of nonoverlapping
skeleton with a perforation boundary;

* (¢s)sea,...nyy + Locally harmonic basis
functions for each coarse grid node.

- # of coarse grid nodes is automatically
generated.

- Continuously, the coarse space is given
by Vi = span{¢s}.

- Think of as "enriching’ Multi-scale FEM
(MsFEM) coarse space.

@ M. Boutilier, K. Brenner, and V. Dolean, Robust methods for multiscale coarse approximations of diffusion
models in perforated domains, APNUM, 2024.



Basis functions: Harmonic local solutions

For all nonoverlapping (Q/ ) and s =1,...,Nx, to obtain ¢ ; = ¢s|q., solve
1/jeq1,...,N} =1 i

Adg; = 0 in

8 .
Osi 0 on 9 NoQs,
on )

d)s,j = g on BQJ’ \ 0Qs.

gs: I —[0,1as: fori=1,...Nx,

+ gs is linearly extended on the remainder of I'.
+ Can also include higher-order polynomials on coarse edgres.

@ M. Boutilier, K. Brenner, and V. Dolean, Robust methods for multiscale coarse approximations of diffusion
models in perforated domains, APNUM, 2024. 12



Two-level RASPEN with "multiscale” coarse space

We add the coarse correction multiplicatively and discretely.

Given initial u®, for outer iteration n = 0, ..., do until convergence

Solve local subproblems R;F(R/Gj(u") + (I — R{R;)u")) = 0 for G;(u") (Newton);
Glue local solutions u" = 3=, R/D;Gj(u");

Set F(u) =u—1u";

Solve coarse problem RoF(U" — Rjcj) = 0 for cf;

Set F(u") = u" — u"+Rjcy;

Solve VF(u")A" = F(u").

Update u™' =u" — A"

13



Numerical Results




Setup example model problem

+ Excessive water flow coming from Paillon river in Nice, France;
- Dirichlet boundary conditions with initial condition ug > z, at leftmost boundary (river).
 a=2,4=1,0source term, ¢s = 30.
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Linearised Newton System

We can also perform typical linear DD methods on the linearised system at each Newton iteration
(SNK: Schwarz-Newton-Krylov)

1 1
Mgas 2Jnt = Mgps,Fa.
where

N
Mass.2 = D R Dj(RynR]) 'R + Ro(RoJaR5) ~"Ro.
j=1

Question: Will our coarse space (designed for Poisson equation) work well for the linearized
Newton system? ~ Perform scalability tests.



Numerical Results: First time step
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- 1and 2 level RASPEN immediately enter region of quadratic convergence, quite insensitive to
initial guess.



Numerical results: GMRES iterations

Average GMRES iterations per outer iteration for each time step.
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Numerical results: Outer iteration, GMRES iterations, and convergence curves

N=2x2 T.steps Outerlts GMRES Its

Newton 160 2216 19497

1-level RASPEN 146 440 2630

2-level RASPEN 146 532 3187(+1300 coarse)
N=14x4 T.steps OuterIts GMRES Its

Newton 160 2159 23989

1-level RASPEN 146 554 5026

2-level RASPEN 146 576  4507(+1719 coarse)
N=8x8 T.steps Outerlts GMRES Its

Newton 160 2266 30811

1-level RASPEN 146 602 9668

2-level RASPEN 146 609 5627(+2255 coarse)

+ 1-level RASPEN: GMRES iterations do not scale with N.



Closing Remarks

RASPEN is a very good alternative for our model problem, improving the convergence of
Newton’s method;

Local time step reduction can be employed for problem subdomains to avoid a global time
step reduction;

For a larger number of subdomains, a coarse correction is necessary for scalability — our
coarse space designed for the Poisson equation works well in this nonlinear case;

As an alternative, the two-level RAS preconditioner with our coarse space provides a scalable
number of Krylov iterations.

@ M. Boutilier, K. Brenner, and V. Dolean, Two-level Nonlinear Preconditioning Methods for Flood Models
Posed on Perforated Domains, arXiv:2406.06189, 2024.
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