A new nonlinear PCG in real arithmetic for computing the ground states of rotational Bose-Einstein condensate

Fei Xue¹, and Tianqi Zhang¹

¹School of Mathematical and Statistical Sciences Clemson University

> Preconditioning 2024 Georgia Institute of Technology June 10th, 2024

F. Xue (Clemson Univ)

New PCG for rotational BEC

June 2024 1 / 20

Problem description in PDE form

 Rotational Bose-Einstein condensate (BEC) modeled by a dimensionless Gross-Pitaevskii equation (GPE) [Bao & Cai, 2013]

$$\frac{\partial \psi}{\partial t} = \left(-\frac{1}{2}\Delta + V(\mathbf{x}) + \eta |\psi(\mathbf{x},t)|^2 - \Omega L_z\right) \psi(\mathbf{x},t).$$

where $\Delta = \nabla \cdot \nabla$ is Laplacian, $V(\mathbf{x})$ is an external potential, $\eta \gg 1$ is the repulsive interaction strength, ω is the rotational speed, $L_z = i(y\partial x - x\partial y)$ is the angular momentum operator (around the *z*-axis)

• The dimensionless energy functional per particle is

$$E_{\eta,\Omega}(\psi) = \int_{\mathbb{R}^d} \left(\frac{1}{2} |\nabla \psi|^2 + V(\mathbf{x}) |\psi|^2 + \frac{\eta}{2} |\psi|^4 - \Omega \overline{\psi} L_z \psi \right) d\mathbf{x}$$

· < ∃ > < ∃ >

Problem description in matrix form

• With periodic and homogeneous Dirichlet boundary conditions on $\mathcal{D} = [-L, L]^d$, discretized by Fourier pseudo spectral method on a uniform mesh with mesh size *h*, the discrete form of $E_{\eta,\Omega}$ is

$$E_{\eta,\Omega}(\phi) = \left[-\frac{1}{2}\phi^* L_{\rho}\phi + \phi^* \operatorname{diag}(V)\phi + \frac{\eta}{2}\phi^* \operatorname{diag}(|\phi|^2)\phi - i\Omega\phi^* L_{\omega}\phi\right]h^d,$$

where $L_p = D_{2,x} \otimes I_{N_y} + I_{N_x} \otimes D_{2,y}$ (in 2D) is the discrete Laplacian, $L_{\omega} = \text{diag}(y_0, \dots, y_{N_y-1}) \otimes D_{1,x} - D_{1,y} \otimes \text{diag}(x_0, \dots, x_{N_x-1})$ is the discrete angular momentum.

• The ground state is characterized as a minimization problem

$$\phi = \operatorname{argmin}_{\phi^* \phi h^d = 1} E_{\eta, \Omega}(\phi)$$

Three classes of methods in the literature

- Nonlinear algebraic solver: setting
 <sup>∂E_{η,Ω}/∂φ = 0, and solving by a nonlinear solver (e.g., Picard/Newton, Anderson acceleration) [Forbes et al., 2021]

 </sup>
- Other algebraic solvers designed specifically to handle nonlinearity in eigenvectors, e.g., variants of Newton's method, self-consistent field (SCF) iteration [Jarlebring et al., 2014, 2022]
- Physics/applied math/numerical PDE: Setting
 ^{∂φ}/_{∂t} = -γ
 ^{∂E}_{η,Ω} (imaginary time evolution, gradient flow with discrete normalization), and use implicit ODE system solver [Bao & Du, 2004; Bao & Cai, 2013]
- These methods are expensive (typically a linear system solve) per step, and some converge slowly (many iteration steps needed). Why?

< ロ > < 同 > < 回 > < 回 > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - > < - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >
 - >

Preconditioned conjugate gradient (PCG)

- PCG is well-known for solving symmetric and positive definite linear systems Ax = b, generating an approximate solution & the global minimizer at each step k, x_k ∈ x₀ + K_k(A, r₀) for f(x) = ½x^TAx − b^Tx.
- Nonlinear PCG widely used for nonlinear unconstrained minimization.
- Need two components to achieve robust and rapid convergence
 - (1) an effective and efficient preconditioner, and
 - (2) an inexpensive and accurate line search

An existing PCG algorithm (Antoine, Levitt, & Tang, JCP, 2017)

• Complex arithmetic, approximate line search based on quadratic function $q_2(\theta_k) \approx E_{\eta,\Omega}(\phi_k \cos \theta_k + p_k/||p_k|| \sin \theta_k)$, and a combined preconditioner

$$M^{-1} = M_V^{-\frac{1}{2}} M_\Delta^{-1} M_V^{-\frac{1}{2}}$$

$$= \operatorname{diag}(\alpha_{V} + V + \eta |\phi_{k}|^{2})^{-\frac{1}{2}} (\alpha_{\Delta} - \frac{1}{2}\Delta)^{-1} \operatorname{diag}(\alpha_{V} + V + \eta |\phi_{k}|^{2})^{-\frac{1}{2}},$$

where $\alpha_{V} = \alpha_{\Delta} = \left(-\frac{1}{2}\phi_{k}^{*}L_{\rho}\phi_{k} + \phi_{k}^{*}\text{diag}(V)\phi_{k} + \eta\phi_{k}^{*}\text{diag}(|\phi_{k}|^{2})\phi_{k}\right)h^{d}$

- Pros: preconditioner costs only 5 FFT/IFFTs;
- Cons: (i) line search not robust or optimal in early steps;

(ii) cond. number of preconditioned Hessian is $\mathcal{O}\left(\frac{1}{L^p+h^2}\right)$ near convergence, where p is such that $V(\mathbf{x}) \sim \mathcal{O}(|\mathbf{x}|^p)$ as $\mathbf{x} \to \infty$;

(iii) convergence deteriorates for high-speed rotation Ω (no rotation considered)

< ロ > < 同 > < 三 > < 三 >

The new PCG algorithm: preconditioning

- Real arithmetic computation φ = [φ_r; φ_g] ∈ ℝ^{2N} replacing φ ∈ ℂ^N. Why?
 E_{η,Ω}(φ) is not differentiable w.r.t. φ ∈ ℂ^N, but is differentiable w.r.t. [φ_r; φ_g] ∈ ℝ^{2N}.
- E.g. $f(z) = \overline{z} \cdot z = |z|^2$ is not differentiable w.r.t. z (Cauchy-Riemann), but it is differentiable w.r.t. $x = \operatorname{Re}(z)$ and $y = \operatorname{Im}(z)$: $\frac{\partial f}{\partial x} = 2x$ and $\frac{\partial f}{\partial x} = 2y$
- We also need to incorporate the normalization condition φ^{*}φh^d = 1 into E_{η,Ω}(φ); reformulate the energy s.t. E_{η,Ω}(φ) = E_{η,Ω}(αφ) for any α ≠ 0

$$\overline{E}(\phi) = rac{\phi^T A \phi}{\phi^T \phi} + rac{\eta}{2} rac{\phi^T B(\phi) \phi}{h^d (\phi^T \phi)^2},$$

where

$$A = \begin{pmatrix} L_s & \Omega L_\omega \\ -\Omega L_\omega & L_s \end{pmatrix}, L_s = -\frac{1}{2}L_\rho + \operatorname{diag}(V), \text{ and}$$
$$B(\phi) = \begin{pmatrix} \operatorname{diag}(\phi_r^2 + \phi_g^2) & 0 \\ 0 & \operatorname{diag}(\phi_r^2 + \phi_g^2) \end{pmatrix}.$$

< ロ > < 同 > < 三 > < 三 >

The new PCG algorithm: preconditioning

• With such newly defined $E_{\eta,\Omega}: \mathbb{R}^{2N} \to \mathbb{R}$, we have

$$\frac{\partial E(\phi)}{\partial \phi} = \frac{2}{\phi^T \phi} \left(A(\phi)\phi - \lambda(\phi)\phi \right), \text{ (gradient) where}$$

$$A(\phi) = A + \eta \frac{B(\phi)}{h^d \phi^T \phi}$$
 and $\lambda(\phi) = \frac{\phi^T A \phi}{\phi^T \phi} + \eta \frac{\phi^T B(\phi) \phi}{h^d (\phi^T \phi)^2}$, and

$$\begin{aligned} \frac{\partial^{2} E(\phi)}{\partial \phi^{2}} &= \frac{2}{\phi^{T} \phi} \left\{ A + \frac{\eta}{h^{d} \phi^{T} \phi} \begin{pmatrix} \operatorname{diag}(3\phi_{r}^{2} + \phi_{g}^{2}) & 2\operatorname{diag}(\phi_{r}\phi_{g}) \\ 2\operatorname{diag}(\phi_{r}\phi_{g}) & \operatorname{diag}(\phi_{r}^{2} + 3\phi_{g}^{2}) \end{pmatrix} - \lambda(\phi) I \\ &- 2A \frac{\phi \phi^{T}}{\phi^{T} \phi} - 2 \frac{\phi \phi^{T}}{\phi^{T} \phi} A - 4\eta \frac{B(\phi)}{h^{d} \phi^{T} \phi} \frac{\phi \phi^{T}}{\phi^{T} \phi} - 4\eta \frac{\phi \phi^{T}}{\phi^{T} \phi} \frac{B(\phi)}{h^{d} \phi^{T} \phi} \\ &+ 4 \frac{\phi^{T} A \phi}{\phi^{T} \phi} \frac{\phi \phi^{T}}{\phi^{T} \phi} + 6\eta \frac{\phi \phi^{T}}{\phi^{T} \phi} \frac{\phi^{T} B(\phi) \phi}{h^{d} (\phi^{T} \phi)^{2}} \right\} \text{ (Hessian) }. \end{aligned}$$

The new PCG algorithm: preconditioning

At a stationary point of E_{η,Ω}(φ), i.e., where
 <sup>∂E_{η,Ω}/∂φ
 = 0, we have

</sup>

$$rac{\partial^2 E(\phi)}{\partial \phi^2} \phi = rac{\partial^2 E(\phi)}{\partial \phi^2} \widehat{\phi} = \mathbf{0},$$

where
$$\widehat{\phi} = [-\phi_g; \phi_r]$$
 (the real form of $i\phi$)
• Let $W = \begin{bmatrix} \phi_r & -\phi_g \\ \phi_g & \phi_r \end{bmatrix} \in \mathbb{R}^{2N \times 2}$, and $P = I - W(W^T W)^{-1} W^T = I - h^d W W^T$
be the orthogonal projector with null space span(W), s.t. $P\phi = \phi^T P = 0$.
• With $\phi^T \phi h^d = 1$, the effective Hessian is

$$P\frac{\partial^{2} E(\phi)}{\partial \phi^{2}} P = P\left\{ \begin{pmatrix} L_{s} + \eta \operatorname{diag}(3\phi_{r}^{2} + \phi_{g}^{2}) & \Omega L_{\omega} + 2\eta \operatorname{diag}(\phi_{r}\phi_{g}) \\ -\Omega L_{\omega} + 2\eta \operatorname{diag}(\phi_{r}\phi_{g}) & L_{s} + \eta \operatorname{diag}(\phi_{r}^{2} + 3\phi_{g}^{2}) \end{pmatrix} - \lambda I_{2n} \right\} P$$

Adoption of P shares a similar motivation with the Jacobi-Davidson (JD) method for eigenvalue computation.

< ロ > < 同 > < 三 > < 三 >

The new PCG algorithm: preconditioning

The actual preconditioner is

$$M_{\eta,\Omega} := P \left\{ \begin{pmatrix} L_s + \eta \operatorname{diag}(3\phi_r^2 + \phi_g^2) & \Omega L_\omega + 2\eta \operatorname{diag}(\phi_r \phi_g) \\ -\Omega L_\omega + 2\eta \operatorname{diag}(\phi_r \phi_g) & L_s + \eta \operatorname{diag}(\phi_r^2 + 3\phi_g^2) \end{pmatrix} - (\lambda - \sigma) I_{2n} \right\} P,$$

with $\sigma \geq 0$ to tune convergence rate and stability of factorizations of $M_{\eta,\Omega}$. Smaller σ means faster convergence yet unstable factorizations. In practice, we let $\sigma = \frac{E_{\eta,\Omega} + \lambda_{\eta,\Omega}}{2}$.

- Geometric multigrid (GMG) can be used the evaluate M⁻¹_{η,Ω}r, but expensive and exhibits erratic convergence if *σ* is small.
- We used incomplete Cholesky factorization of a sparse approximation based on high order finite differences, updated once every 200–500 iterations.

(日) (同) (日) (日) (日)

The new PCG algorithm: fast exact line search

- Let p_k ∈ ℝ^{2N} be the search direction found by PCG at step k. How to determine the step size to obtain φ_{k+1} = φ_k + α_kp_k?
- Alternatively, orthogonalize p_k against ϕ_k , normalize it into d_k . Let

$$\phi_{k+1} = \phi_k \cos \theta_k + d_k \sin \theta_k,$$

s.t. ϕ_{k+1} is automatically normalized (Pythagorean Thm.)

We can show that

$$\begin{split} E_{\eta,\Omega}(\phi_{k+1}) &= E_{\eta,\Omega}(\phi_k \cos \theta_k + p_k \sin \theta_k) \\ &= \left[w(\theta_k)^T L_{s(k)} w(\theta_k) + 2\Omega w(\theta_k)^T L_{\omega(k)} w(\theta_k) + \frac{\eta}{2} \left(c_1 \cos^4 \theta_k + c_2 \cos^3 \theta_k \sin \theta_k \right. \\ &+ c_3 \cos^2 \theta_k \sin^2 \theta_k + c_4 \cos \theta_k \sin^3 \theta_k + c_5 \sin^4 \theta_k \right) \right] h^d, \end{split}$$

- = >

The new PCG algorithm: fast exact line search

Here, we have

and c_1 through c_5 are real scalars obtained by vector element-wise product and inner product from ϕ_k and d_k .

 Once L_{ω(k)}, L_{s(k)}, and c_j's (1 ≤ j ≤ 5) are computed at step k once and for all, the evaluation of

$$E(\theta_k) := E_{\eta,\Omega}(\phi_k \cos \theta_k + \rho_k \sin \theta_k)$$

takes little cost (almost like evaluating $f(\theta) : \mathbb{R} \to \mathbb{R}$).

No quadratic approximation needed; can afford exact line search.

Summary of the new PCG

- Solving $\frac{\partial E}{\partial \phi} = 0$ by a nonlinear system solver or energy flow methods $\frac{\partial \phi}{\partial t} = -\frac{\partial E}{\partial \phi}$ by implicit ODE methods are widely known/adopted, but not efficient;
- Use of real arithmetic is essential to obtain the gradient and the Hessian of *E*_{η,Ω}(φ) with respect to φ = [φ_r; φ_g] ∈ ℝ^{2N};
- Approximate shifted Hessian preconditioner $P\left(\frac{\partial^2 E}{\partial \phi^2} + \sigma I_{2N}\right) P$, implemented by incomplete Cholesky factorization of the sparse FD matrix;
- A simple structure-based fast energy evaluation takes care of normalization and enables exact line search;
- Our PCG guarantees that E(φ_{k+1}) ≤ E(φ_k) at every step and global convergence towards a stationary point of E_{η,Ω}(φ).

Numerical Experiments

Test problems and setup

Harmonic plus quartic trapping potential

$$V(\mathbf{x}) = (1 - \alpha)(\gamma_x^2 x^2 + \gamma_y^2 y^2) + \frac{\kappa (x^2 + y^2)^2}{4} + \begin{cases} 0, & d = 2, \\ \gamma_z^2 z^2, & d = 3. \end{cases}$$

Initial wave function $\phi_{(0)}$ as the Thomas Fermi approximation

$$\phi_{(0)} = \frac{\phi^{TF}}{\|\phi^{TF}\|_{\ell^2}} \quad \text{with} \quad \phi^{TF}(\mathbf{x}) = \begin{cases} \sqrt{(\mu^{TF} - V(\mathbf{x}))/\eta}, & V(\mathbf{x}) < \mu^{TF} \\ 0, & \text{otherwise,} \end{cases}$$

where
$$\mu^{TF} = \frac{1}{2} \begin{cases} (4\eta \gamma_{x} \gamma_{y})^{1/2}, & d = 2, \\ (15\eta \gamma_{x} \gamma_{y} \gamma_{z})^{2/5}, & d = 3. \end{cases}$$

The stopping criterion is

$$\frac{|E(\phi_{k+1}) - E(\phi_k)|}{|E(\phi_k)|} \le 10^{-14},$$

F. Xue (Clemson Univ)

June 2024 14 / 20

Comparison of energy evaluation and line search methods

• Test problem: $\eta = 1000$, $\Omega = 2$ and $V(\mathbf{x})$ is chosen with $\gamma_x = \gamma_y = 1$, $\alpha = 1.2$ and $\kappa = 0.3$. Domain $\mathcal{D} = [-10, 10]^2$ and mesh size $h = \frac{1}{32}$.

Table: Comparison of energy evaluation and line search methods

	exact	quadratic		backtracking	
$\eta = 1000, \Omega = 2$	fast	fast	slow	fast	slow
PCG iteration	302	310	309	579	579
time (sec)	53.91	54.30	86.82	100.65	230.62

Numerical Experiments

Contour plots of ground states $|\phi|^2$ (2D)

F. Xue (Clemson Univ)

New PCG for rotational BEC

June 2024 16 / 20

Preconditioner performance comparison (2D)

Table: Performance comparison of PCG with the combined and the Hessian preconditioners for $\eta = 10000$ and different Ω values.

Ω	PCG iteration		time (sec)	final energy $E_{n,\Omega}$		
	Combined	Hessian	Combined	Hessian	Combined	Hessian	
1	724	2088	576.51	2052.01	63.0200754	<u>62.9655373</u>	
1.5	749	697	593.38	583.06	53.2679599	53.2679596	
2	4929	2443	3885.88	2399.98	37.5996200	37.5996200	
2.5	5770	3287	4589.90	3137.76	13.6373947	13.6373947	
3	16435	6226	12885.70	6347.01	-23.4831223	-23.4829583	
3.5	8653	3612	6895.37	3733.51	-82.5456421	-82.5456421	
4	25890	6047	20546.26	6430.85	-172.717109	-172.718827	
4.5	18115	3701	14125.19	3868.01	-303.318303	-303.318584	
5	26522	4488	21126.00	4681.19	-485.028207	-485.030553	

Numerical Experiments

Isosurface plots of ground states $|\phi|^2$ (3D)

F. Xue (Clemson Univ)

New PCG for rotational BEC

June 2024 18 / 20

DQC

< 17 ▶

∃ → < ∃</p>

- e

Preconditioner performance comparison (3D)

Case I: $\mathcal{D} = [-10, 10]^2 \times [-5, 5]$, $h = \frac{1}{16}$, $\gamma_x = \gamma_y = 1$, $\gamma_z = 3$, $\alpha = 0.3$, $\kappa = 1.4$, $\eta = 25000$; Case II: $\mathcal{D} = [-15, 15]^2 \times [-8, 8]$, $h = \frac{1}{16}$, $\gamma_x = \gamma_y = 1$, $\gamma_z = 1$, $\alpha = 0.3$, $\kappa = 1.4$, $\eta = 15000$;

Table: Performance of PCG with two preconditioners

(η, Ω)	PCG iteration		time (sec)		final energy $E_{\eta,\Omega}$	
	Combined	Hessian	Combined	Hessian	Combined	Hessian
(25000, 4)	3509	2325	29258	23824	75.88162	75.88162
(25000, 6)	16929	7611	140571	74431	1.258276	1.258276
(15000, 4)	14568	3864	378007	156914	-210.8746	-210.8746
(15000, 5)	28023	10866	691079	448750	-529.2941	-529.2943

- E →

Bibliography

- X. ANTOINE, A. LEVITT AND Q. TANG, *Efficient spectral computation of the stationary states of rotating Bose–Einstein condensates by preconditioned nonlinear conjugate gradient methods*, J. Comput. Phys., Vol. 343 (2017), pp. 92–109.

W. BAO AND Y. CAI, *Mathematical theory and numerical methods for Bose-Einstein condensation*, Kinet. Relat. Models, Vol. 6 (2013), pp. 1–135.

W. BAO AND Q. DU, Computing the ground state solution of Bose–Einstein condensates by a normalized gradient flow, SIAM J. Sci. Comput., Vol. 25 (2004), pp. 1674–1697.

D. FORBES, L. REBHOLZ AND F. XUE, Anderson acceleration of nonlinear solvers for the stationary Gross-Pitaevskii equation, Adv. Appl. Math. Mech., Vol. 13 (2021), pp. 1096–1125.

E. JARLEBRING, S. KVAAL AND W. MICHIELS, *An inverse iteration method for eigenvalue problems with eigenvector nonlinearities*, SIAM J. Sci. Comput., Vol. 36 (2014), pp. A1978–A2001.

E. JARLEBRING AND P. UPADHYAYA, *Implicit algorithms for eigenvector nonlinearities*, Numer. Algorithms, Vol. 90 (2022), pp. 301–321.

F. XUE AND T. ZHANG, *A new preconditioned nonlinear conjugate gradient method in real arithmetic for computing the ground states of rotational Bose–Einstein condensate*, SIAM J. Sci. Comput., Vol. 46 (2024), pp. A1764–A1792.