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Introduction

Problem description in PDE form

Rotational Bose-Einstein condensate (BEC) modeled by a dimensionless
Gross-Pitaevskii equation (GPE) [Bao & Cai, 2013]

i
∂ψ

∂t
=

(
−1

2
∆ + V (x) + η|ψ(x, t)|2 − ΩLz

)
ψ(x, t).

where ∆ = ∇ · ∇ is Laplacian, V (x) is an external potential, η � 1 is the
repulsive interaction strength, ω is the rotational speed, Lz = i(y∂x − x∂y)
is the angular momentum operator (around the z-axis)

The dimensionless energy functional per particle is

Eη,Ω(ψ) =

∫
Rd

(
1
2
|∇ψ|2 + V (x)|ψ|2 +

η

2
|ψ|4 − ΩψLzψ

)
dx
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Introduction (Cont’d)

Problem description in matrix form

With periodic and homogeneous Dirichlet boundary conditions on
D = [−L, L]d , discretized by Fourier pseudo spectral method on a
uniform mesh with mesh size h, the discrete form of Eη,Ω is

Eη,Ω(φ) =

[
−1

2
φ∗Lpφ+ φ∗diag(V )φ+

η

2
φ∗diag(|φ|2)φ− iΩφ∗Lωφ

]
hd ,

where Lp = D2,x ⊗ INy + INx ⊗ D2,y (in 2D) is the discrete Laplacian,
Lω = diag(y0, · · · , yNy−1)⊗ D1,x − D1,y ⊗ diag(x0, · · · , xNx−1) is the
discrete angular momentum.

The ground state is characterized as a minimization problem

φ = argminφ∗φhd =1Eη,Ω(φ)
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Introduction (Cont’d)

Three classes of methods in the literature

Nonlinear algebraic solver: setting ∂Eη,Ω
∂φ

= 0, and solving by a nonlinear
solver (e.g., Picard/Newton, Anderson acceleration) [Forbes et al., 2021]

Other algebraic solvers designed specifically to handle nonlinearity in
eigenvectors, e.g., variants of Newton’s method, self-consistent field
(SCF) iteration [Jarlebring et al., 2014, 2022]

Physics/applied math/numerical PDE: Setting ∂φ
∂t = −γ ∂Eη,Ω

∂φ
(imaginary

time evolution, gradient flow with discrete normalization), and use implicit
ODE system solver [Bao & Du, 2004; Bao & Cai, 2013]

These methods are expensive (typically a linear system solve) per step,
and some converge slowly (many iteration steps needed). Why?
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Ground state computation by PCG

Preconditioned conjugate gradient (PCG)

PCG is well-known for solving symmetric and positive definite linear
systems Ax = b, generating an approximate solution & the global
minimizer at each step k , xk ∈ x0 +Kk (A, r0) for f (x) = 1

2 xT Ax − bT x .

Nonlinear PCG widely used for nonlinear unconstrained minimization.

Need two components to achieve robust and rapid convergence
(1) an effective and efficient preconditioner, and
(2) an inexpensive and accurate line search
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Ground state computation by PCG

An existing PCG algorithm (Antoine, Levitt, & Tang, JCP, 2017)

Complex arithmetic, approximate line search based on quadratic function
q2(θk ) ≈ Eη,Ω(φk cos θk + pk/‖pk‖ sin θk ), and a combined preconditioner

M−1 = M
− 1

2
V M−1

∆ M
− 1

2
V

= diag
(
αV + V + η|φk |2

)− 1
2
(
α∆ − 1

2 ∆
)−1

diag
(
αV + V + η|φk |2

)− 1
2 ,

where αV = α∆ =
(
− 1

2φ
∗
k Lpφk + φ∗

k diag(V )φk + ηφ∗
k diag(|φk |2)φk

)
hd

Pros: preconditioner costs only 5 FFT/IFFTs;

Cons: (i) line search not robust or optimal in early steps;

(ii) cond. number of preconditioned Hessian is O
(

1
Lp+h2

)
near convergence,

where p is such that V (x) ∼ O(|x|p) as x→∞;

(iii) convergence deteriorates for high-speed rotation Ω (no rotation considered)
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Ground state computation by PCG

The new PCG algorithm: preconditioning

Real arithmetic computation φ = [φr ;φg ] ∈ R2N replacing φ ∈ CN . Why?
Eη,Ω(φ) is not differentiable w.r.t. φ ∈ CN , but is differentiable w.r.t. [φr ;φg ] ∈ R2N .

E.g. f (z) = z · z = |z|2 is not differentiable w.r.t. z (Cauchy-Riemann), but it is
differentiable w.r.t. x = Re(z) and y = Im(z): ∂f

∂x = 2x and ∂f
∂x = 2y

We also need to incorporate the normalization condition φ∗φhd = 1 into Eη,Ω(φ);
reformulate the energy s.t. Eη,Ω(φ) = Eη,Ω(αφ) for any α 6= 0

E(φ) =
φT Aφ
φTφ

+
η

2
φT B(φ)φ

hd (φTφ)2 ,

where

A =

(
Ls ΩLω
−ΩLω Ls

)
, Ls = −1

2
Lp + diag(V ), and

B(φ) =

(
diag(φ2

r + φ2
g) 0

0 diag(φ2
r + φ2

g)

)
.
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Ground state computation by PCG

The new PCG algorithm: preconditioning

With such newly defined Eη,Ω : R2N → R, we have

∂E(φ)

∂φ
=

2
φTφ

(A(φ)φ− λ(φ)φ) , (gradient) where

A(φ) = A + η
B(φ)

hdφTφ
and λ(φ) =

φT Aφ
φTφ

+ η
φT B(φ)φ

hd (φTφ)2 , and

∂2E(φ)

∂φ2 =
2
φTφ

{
A +

η

hdφTφ

(
diag(3φ2

r + φ2
g) 2diag(φrφg)

2diag(φrφg) diag(φ2
r + 3φ2

g)

)
− λ(φ)I

−2A
φφT

φTφ
− 2

φφT

φTφ
A− 4η

B(φ)

hdφTφ

φφT

φTφ
− 4η

φφT

φTφ

B(φ)

hdφTφ

+4
φT Aφ
φTφ

φφT

φTφ
+ 6η

φφT

φTφ

φT B(φ)φ

hd (φTφ)2

}
(Hessian) .
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Ground state computation by PCG

The new PCG algorithm: preconditioning

At a stationary point of Eη,Ω(φ), i.e., where ∂Eη,Ω
∂φ

= 0, we have

∂2E(φ)

∂φ2 φ =
∂2E(φ)

∂φ2 φ̂ = 0,

where φ̂ = [−φg ;φr ] (the real form of iφ)

Let W =

[
φr −φg

φg φr

]
∈ R2N×2, and P = I −W (W T W )−1W T = I − hd WW T

be the orthogonal projector with null space span(W ), s.t. Pφ = φT P = 0.

With φTφhd = 1, the effective Hessian is

P
∂2E(φ)

∂φ2 P = P
{(

Ls + ηdiag(3φ2
r + φ2

g) ΩLω + 2ηdiag(φrφg)
−ΩLω + 2ηdiag(φrφg) Ls + ηdiag(φ2

r + 3φ2
g)

)
− λI2n

}
P

Adoption of P shares a similar motivation with the Jacobi-Davidson (JD) method
for eigenvalue computation.
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Ground state computation by PCG

The new PCG algorithm: preconditioning

The actual preconditioner is

Mη,Ω := P
{(

Ls + ηdiag(3φ2
r + φ2

g) ΩLω + 2ηdiag(φrφg)
−ΩLω + 2ηdiag(φrφg) Ls + ηdiag(φ2

r + 3φ2
g)

)
− (λ− σ)I2n

}
P,

with σ ≥ 0 to tune convergence rate and stability of factorizations of Mη,Ω.
Smaller σ means faster convergence yet unstable factorizations.
In practice, we let σ =

Eη,Ω+λη,Ω
2 .

Geometric multigrid (GMG) can be used the evaluate M−1
η,Ωr , but expensive and

exhibits erratic convergence if σ is small.

We used incomplete Cholesky factorization of a sparse approximation based on
high order finite differences, updated once every 200–500 iterations.
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Ground state computation by PCG

The new PCG algorithm: fast exact line search

Let pk ∈ R2N be the search direction found by PCG at step k . How to determine
the step size to obtain φk+1 = φk + αk pk ?

Alternatively, orthogonalize pk against φk , normalize it into dk . Let

φk+1 = φk cos θk + dk sin θk ,

s.t. φk+1 is automatically normalized (Pythagorean Thm.)

We can show that

Eη,Ω(φk+1) = Eη,Ω(φk cos θk + pk sin θk )

=
[
w(θk )T Ls(k)w(θk ) + 2Ωw(θk )T Lω(k)w(θk ) +

η

2

(
c1 cos4 θk + c2 cos3 θk sin θk

+c3 cos2 θk sin2 θk + c4 cos θk sin3 θk + c5 sin4 θk

)]
hd ,
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Ground state computation by PCG

The new PCG algorithm: fast exact line search

Here, we have

w(θk ) = [cos θk sin θk ]T , Lω(k) = [φk,r dk,r ]
T Lω[φk,g dk,g ] ∈ R2×2,

Ls(k) = [φk,r dk,r ]
T Ls[φk,r dk,r ] + [φk,g dk,g ]T Ls[φk,g dk,g ] ∈ R2×2,

and c1 through c5 are real scalars obtained by vector element-wise product and
inner product from φk and dk .

Once Lω(k), Ls(k), and cj ’s (1 ≤ j ≤ 5) are computed at step k once and for all,
the evaluation of

E(θk ) := Eη,Ω(φk cos θk + pk sin θk )

takes little cost (almost like evaluating f (θ) : R→ R).

No quadratic approximation needed; can afford exact line search.
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Ground state computation by PCG

Summary of the new PCG

Solving ∂E
∂φ

= 0 by a nonlinear system solver or energy flow methods ∂φ
∂t = − ∂E

∂φ

by implicit ODE methods are widely known/adopted, but not efficient;

Use of real arithmetic is essential to obtain the gradient and the Hessian of
Eη,Ω(φ) with respect to φ = [φr ; φg ] ∈ R2N ;

Approximate shifted Hessian preconditioner P
(
∂2E
∂φ2 + σI2N

)
P, implemented by

incomplete Cholesky factorization of the sparse FD matrix;

A simple structure-based fast energy evaluation takes care of normalization and
enables exact line search;

Our PCG guarantees that E(φk+1) ≤ E(φk ) at every step and global convergence
towards a stationary point of Eη,Ω(φ).
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Numerical Experiments

Test problems and setup

Harmonic plus quartic trapping potential

V (x) = (1− α)(γ2
x x2 + γ2

y y2) +
κ(x2 + y2)2

4
+

{
0, d = 2,
γ2

z z2, d = 3.

Initial wave function φ(0) as the Thomas Fermi approximation

φ(0) =
φTF

‖φTF‖`2
with φTF (x) =

{√
(µTF − V (x))/η, V (x) < µTF

0, otherwise,

where µTF =
1
2

{
(4ηγxγy )1/2, d = 2,
(15ηγxγyγz )2/5, d = 3.

The stopping criterion is

| E(φk+1)− E(φk ) |
| E(φk ) |

≤ 10−14,
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Numerical Experiments

Comparison of energy evaluation and line search methods

Test problem: η = 1000, Ω = 2 and V (x) is chosen with γx = γy = 1, α = 1.2
and κ = 0.3. Domain D = [−10, 10]2 and mesh size h = 1

32 .

Table: Comparison of energy evaluation and line search methods

η = 1000, Ω = 2 exact quadratic backtracking
fast fast slow fast slow

PCG iteration 302 310 309 579 579
time (sec) 53.91 54.30 86.82 100.65 230.62
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Numerical Experiments

Contour plots of ground states |φ|2 (2D)
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Numerical Experiments

Preconditioner performance comparison (2D)

Table: Performance comparison of PCG with the combined and the Hessian
preconditioners for η = 10000 and different Ω values.

Ω
PCG iteration time (sec) final energy Eη,Ω

Combined Hessian Combined Hessian Combined Hessian

1 724 2088 576.51 2052.01 63.0200754 62.9655373
1.5 749 697 593.38 583.06 53.2679599 53.2679596
2 4929 2443 3885.88 2399.98 37.5996200 37.5996200
2.5 5770 3287 4589.90 3137.76 13.6373947 13.6373947
3 16435 6226 12885.70 6347.01 −23.4831223 −23.4829583
3.5 8653 3612 6895.37 3733.51 −82.5456421 −82.5456421
4 25890 6047 20546.26 6430.85 −172.717109 −172.718827
4.5 18115 3701 14125.19 3868.01 −303.318303 −303.318584
5 26522 4488 21126.00 4681.19 −485.028207 −485.030553
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Numerical Experiments

Isosurface plots of ground states |φ|2 (3D)

Figure: Isosurface |φg(x)|2 = 10−3 and surface plot of |φg(x , y , z = 0)|2.
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Numerical Experiments

Preconditioner performance comparison (3D)

Case I: D = [−10, 10]2 × [−5, 5], h = 1
16 , γx = γy = 1, γz = 3, α = 0.3, κ = 1.4, η = 25000;

Case II: D = [−15, 15]2 × [−8, 8], h = 1
16 , γx = γy = 1, γz = 1, α = 0.3, κ = 1.4, η = 15000;

Table: Performance of PCG with two preconditioners

(η, Ω)
PCG iteration time (sec) final energy Eη,Ω

Combined Hessian Combined Hessian Combined Hessian

(25000, 4) 3509 2325 29258 23824 75.88162 75.88162
(25000, 6) 16929 7611 140571 74431 1.258276 1.258276
(15000, 4) 14568 3864 378007 156914 −210.8746 −210.8746
(15000, 5) 28023 10866 691079 448750 −529.2941 −529.2943
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