TorchBraid: High-Performance Layer-Parallel Training of DNNs with MPI and GPU Acceleration

Prof. Jacob B. Schroder

University of New Mexico
Dept. of Mathematics and Statistics

Collaborators:

E. C. Cyr, J. Hahne, N. Gauger, S. Günther, M. Jiang, A. Kopanicakova, R. Krause, N. S. Moore, L. Ruthotto, M. Salvado, B. S. Southworth, D. A. Vargas

Precond 24: International Conference On Preconditioning Techniques For Scientific and Industrial Applications

June 12th, 2024

Outline

- Need for parallelism driven by DNNs
 - Consider various forms of parallelism
 - Leverage wealth of parallel algorithms available from the CS&E community
- Deep neural networks
 - Interpret as an ODE (ResNets, Transformers, GRU)
- Layer-parallelism
 - Parallel-in-time applied to layers-as-time-steps
- Results
 - Code (TorchBraid)
 - Combine with coarsening inside layer (spatial coarsening)
 - Combine with data-parallelism
 - Tiny ImageNet: Combine with pooling and batch-norm
 - Transformers

Need for parallelism driven by DNNs

- Deep neural networks (DNNs) routinely used to solve learning tasks with state-of-the-art accuracies
 - Image classification and recognition, natural language processing, selfdriving cars, healthcare, ...
- However, the training time and cost is increasing
- ChatGPT-4 likely took month(s) to train using many GPUs
- Other sophisticated deep learning architectures also have long training times
- But the results of deep learning can be impressive!

But the results are impressive!

8

You

how do I get more parallelism for my deep neural network?

ChatGPT

Increasing parallelism in deep neural networks can lead to improved performance and faster training. Here are several strategies you can consider:

1. Model Architecture:

- Utilize parallelizable layers such as convolutional layers, which are inherently parallelizable due to their local receptive fields.
- Use architectures designed for parallel processing, such as residual networks (ResNets) or dense networks (DenseNets), which facilitate parallel computation across layers.

2. Hardware Utilization:

- Invest in hardware specifically designed for parallel computation, such as GPUs (Graphics Processing Units) or TPUs (Tensor Processing Units), which excel at parallel matrix operations commonly found in deep learning.
- Utilize multiple GPUs or TPUs to distribute computation across devices. Frameworks like TensorFlow and PyTorch support this through data parallelism and model parallelism techniques.

3. Data Parallelism:

- Divide your dataset into smaller batches and process them simultaneously across multiple devices. This is the most common form of parallelism and is supported by most deep learning frameworks.
- Ensure that your batch size is large enough to fully utilize the available hardware without causing memory issues.

4. Model Parallelism:

But ChatGPT, you forgot about my favorite type of parallelism!

ChatGPT doesn't quite have all the details yet.

You

What about layer parallelism?

(5)

ChatGPT

Layer parallelism is a technique where different layers of a neural network are executed in parallel across multiple processing units. It's a form of model parallelism, where the model is divided into parts, and each part is processed independently. Here's how layer parallelism can be implemented:

1. Dividing Layers:

- Divide the layers of your neural network into groups, with each group containing a subset of layers.
- The division can be based on various criteria, such as layer type (e.g., convolutional layers, fully connected layers) or computational complexity.

2. Processing Layers in Parallel:

- Assign each group of layers to a separate processing unit (e.g., GPU or TPU).
- Ensure that the layers within each group do not have dependencies on each other, allowing them to be executed concurrently.

3. Communication between Layers:

- Implement mechanisms for communication between layers processed in parallel, as some layers may require input from preceding layers or provide output to subsequent layers.
- Minimize communication overhead by optimizing data transfer between processing units.

4. Synchronization:

• Ensure proper synchronization between processing units to maintain consistency during training.

Need for parallelism driven by DNNs

- With these long training times, we naturally search for parallelism
- Popular classic approaches for DNNs (as ChatGPT reminded us) include:
 - Data parallelism
 - Model (spatial) parallelism

Review of model/data parallelism: Demystifying parallel and distributed deep learning: An in-depth concurrency analysis. T. Ben-Nun, T. Hoefler ACM Computing Surveys (CSUR), 2019.

Proposed Solution: Layer-Parallelism

- The ancient bargain: trade-off between parallelism and exactness
- Relax exactness for layer evolution in return for greater parallelism
 - Dotted arrows below become inexact (same is true for back-prop)
 - Trade accuracy for performance
 - But we don't need exact gradients (experiments tell us)
- Can be combined with other forms of parallelism, e.g., data parallelism

Philosophically, we leverage parallel frameworks from CS&E to help accelerate DNN training

- This is an active field of research.
- Domain decomposition (patch-based) approaches
 - Apply (mostly) independent models to distinct regions of data (e.g., image), for parallelism
 - Combine region results in a variety of ways
 - Parallelism likely limited by largest reasonable patch size

Parallel decomposition for a CT scan (2D) of a webcam.

- 1. Machine learning and domain decomposition methods -- a survey,
 A. Klawonn, M.n Lanser, J. Weber, https://arxiv.org/abs/2312.14050
- 2. Multifidelity DD-based PINNs for time-dependent problems, A. Heinlein et al., https://arxiv.org/abs/2401.07888, 2024.
- 3. Patch-based Convolutional Neural Network for Whole Slide Tissue Image Classification, Hou et al. IEEE conference on computer vision and pattern recognition. 2016.
- 4. Image scoring: Patch based CNN model for small or medium dataset,C. Zhang, J. Cheng, 3rd IEEE International Conference on Computer and Communications, 2017.
- 5. The Unreasonable Effectiveness of Patches in Deep Convolutional Kernels Methods, L. Thiry et al., ICLR, 2021.
- 6. A domain decomposition-based CNN-DNN architecture for model parallel training applied to image recognition problems, A Klawonn, M Lanser, J Weber, https://arxiv.org/abs/2312.14050

Philosophically, we leverage parallel frameworks from CS&E to help accelerate DNN training

- This is an active field of research.
- Multilevel optimization: target algorithmic speedup
 - Methods first used for PDE-constrained optimization
 - Construct coarse optimization problem(s) that can accelerate convergence for the finest-level optimization problem
 - Do forward and back-propagation on coarse- and fine-levels, interpolating parameters between levels
- Multilevel trust-region optimization methods^{1,3}, for typical ML tasks like image classification
- MGOPT (FAS) approaches for optimization², initially PDE approximation
- 1. Globally convergent multilevel training of deep residual networks, A. Kopanicáková, R. Krause, SISC, 2022.
- 2. Multilevel-in-width training for deep neural network regression, C. Ponce, R. Li, C. Mao, P. Vassilevski, NLAA, 2023.
- 3. Multilevel minimization for deep residual networks, L. Gaedke-Merzhäuser, A. Kopaničáková, R. Krause, ESAIM, 2021.

Philosophically, we leverage parallel frameworks from CS&E to help accelerate DNN training

- This is an active field of research.
- Related layer-parallel approach based on parallel solution to the linearized Jacobian of the optimization problem¹
 - 1. Put your forward or backward network evaluation inside Newton's method
 - 2. Linearize the block lower bi-diagonal system
 - 3. Apply parallel cyclic reduction
 - 4. Rinse and repeat.
- Very nice idea and generalizes to non-ODE networks
 - Current formulation suffers from "The main bottleneck for our DeepPCR implementation is represented by the decay in performance associated with the growth in size of the Jacobian blocks"
- → These are just a **few examples** of current work, where CS&E inspires ML algorithms!
- 1. DeepPCR: Parallelizing Sequential Operations in Neural Networks, F. Danieli, M. Sarabia, X. Suau Cuadros, P. Rodriguez, L. Zappella, Advances in Neural Information Processing Systems 36, 2024.

Outline

- Need for parallelism driven by DNNs
 - Consider various forms of parallelism
 - Leverage wealth of parallel algorithms available from the CS&E community
- Deep neural networks
 - Interpret as an ODE (ResNets, Transformers, GRU)
- Layer-parallelism
 - Parallel-in-time applied to layers-as-time-steps
- Results
 - Code (TorchBraid)
 - Combine with coarsening inside layer (spatial coarsening)
 - Combine with data-parallelism
 - · Tiny ImageNet: Combine with pooling and batch-norm
 - Transformers

Deep Neural Networks (DNNs)

- DNNs are routinely used for many tasks
- However, training cost/times can be prohibitive (days, weeks, months...)
 - Due to the many forwards and backwards passes through the network

Layer 0

- → Goal: parallelize, speed up training
- Feed-forward network
 - Training pair: (y_{data}, c_{data})
 - W_n, b_n, y_n : Layer n weights, biases, state
 - ResNet Propagation (forward problem):

$$y_0 = y_{data}$$
 $y_{n+1} = y_n + F(W_n y_n + b_n) \quad \forall n = 0, \dots, N-1$

• Learning problem:

 $\min_{W_n,b_n} \mathsf{Loss}(y_N,c_{data})$ subject to above forward problem

Layer 1 ... Layer N

ODE Perspective on Deep ResNets

- DNNs are routinely used for many tasks
- However, training cost/times can be prohibitive, in days or weeks
 - Due to the many forwards and backwards passes through the network
- → Goal: parallelize, speed up training
- Feed-forward network
 - Training pair: (y_{data}, c_{data})
 - W_n, b_n, y_n : Layer n weights, biases, state
 - ResNet Propagation (forward problem):

ODE Perspective on Deep ResNets

- Some popular deep networks (e.g., ResNets) have an equivalence to time-stepping^{1,2}
- Expand the ResNet architecture with a time-step parameter h

$$y_0 = y_{data}$$

$$y_{n+1} = y_n + hF(W_n y_n + b_n) \quad \forall n = 0, \dots, N-1$$

$$\Leftrightarrow$$

$$y(0) = y_{data}$$

$$\frac{dy(t)}{dt} = F(W(t)y(t) + b(t)), \quad \forall t \in (0, T)$$

Training problem becomes

$$\min_{W(t),b(t)} \mathsf{Loss}(y(T),c_{data})$$
 subject to above ODE

- 1. Haber, Ruthotto. Stable Architectures for Deep Neural Networks. Inverse Probl., 2017.
- 2. Weinan, A Proposal on Machine Learning via Dynamical Systems, Comm. Math. Stat., 2017.

ODE Perspective on Deep ResNets

- Some popular deep networks (e.g., ResNets) have an equivalence to time-stepping^{1,2}
- Expand the ResNet architecture with a time-step parameter h

$$y_0 = y_{data}$$

$$y_{n+1} = y_n + hF(W_n y_n + b_n) \quad \forall \, n = 0, \dots, N-1$$

$$\Leftrightarrow \qquad \qquad \qquad \text{Resnet} \quad \equiv \text{Forward Euler discretization}$$

$$y(0) = y_{data} \qquad \qquad \text{Backprop} \equiv \text{Discrete adjoint}$$

$$\frac{dy(t)}{dt} = F(W(t)y(t) + b(t)), \quad \forall t \in (0,T)$$

Training problem becomes

$$\min_{W(t),b(t)} \mathsf{Loss}(y(T),c_{data})$$
 subject to above ODE

- 1. Haber, Ruthotto. Stable Architectures for Deep Neural Networks. Inverse Probl., 2017.
- 2. Weinan, A Proposal on Machine Learning via Dynamical Systems, Comm. Math. Stat., 2017.

ODE Perspective on Transformers

- Transformers are powerful (e.g., ChatGPT), where attention mechanisms capture long-range dependencies within sequences
- Transformers can also be extended to the layer-parallel setting
 - Ignoring pre- and post-processing
 - Transformers consist of encoder and decoder layers of the following form:

$$\mathbf{X}^{[n+1]} = \mathbf{X}^{[n]} + \mathbf{F}_{enc}(t_n, \mathbf{X}^{[n]}) \qquad \mathbf{X}^{[n+1]} = \mathbf{X}^{[n]} + \mathbf{F}_{dec}(t_n, \mathbf{X}^{[n]})$$

$$\mathbf{F}_{enc}(t_n, x) := \varphi_1(x) + \varphi_2(x + \varphi_1(x)) \qquad \mathbf{F}_{dec}(t_n, x) := \varphi_1(x) + \varphi_3(x + \varphi_1(x)) + \varphi_2(x + \varphi_1(x) + \varphi_3(x + \varphi_1(x)))$$

• Where $\mathbf{X}^{[n]}$ is the network state at layer n, and $\varphi_1 := \mathrm{SA} \circ \mathrm{LN}, \varphi_2 := \mathrm{MLP} \circ \mathrm{LN}, \varphi_3 := \mathrm{CA} \circ \mathrm{LN}$ for self-attention (SA), cross-attention (CA), and layer-norm (LN)

Related ODE Transformer works:

- 1. Understanding and improving transformer from a multiparticle dynamic system point of view, Y. Lu et al., 2019. https://www.arxiv.org/abs/1906.02762
- 2. Stateful ODE-Nets using basis function expansions, A. Queiruga et al., Advances in Neural Information Processing Systems, 2021.

ODE Perspective on Transformers

- Transformers are powerful (e.g., ChatGPT), where attention mechanisms capture long-range dependencies within sequences
- Transformers can also be extended to the layer-parallel setting
 - Ignoring pre- and post-processing
 - Transformers consist of encoder and decoder layers of the following form:

$$\mathbf{X}^{[n+1]} = \mathbf{X}^{[n]} + \mathbf{F}_{\text{enc}}(t_n, \mathbf{X}^{[n]}) \qquad \mathbf{X}^{[n+1]} = \mathbf{X}^{[n]} + \mathbf{F}_{\text{dec}}(t_n, \mathbf{X}^{[n]})$$

$$\mathbf{F}_{\text{enc}}(t_n, x) := \varphi_1(x) + \varphi_2(x + \varphi_1(x)) \qquad \mathbf{F}_{\text{dec}}(t_n, x) := \varphi_1(x) + \varphi_3(x + \varphi_1(x)) + \varphi_3(x + \varphi_1(x))$$
Insert time-step parameter²! Insert time-step parameter²!
$$(x + \varphi_1(x))$$

• Where $\mathbf{X}^{[n]}$ is the network state at layer n, and

$$\varphi_1 := SA \circ LN, \varphi_2 := MLP \circ LN, \varphi_3 := CA \circ LN$$

for self-attention (SA), cross-attention (CA), and layer-norm (LN)

Related ODE Transformer works:

- 1. *Understanding and improving transformer from a multiparticle dynamic system point of view*, Y. Lu et al., 2019. https://www.arxiv.org/abs/1906.02762
- 2. Stateful ODE-Nets using basis function expansions, A. Queiruga et al., Advances in Neural Information Processing Systems, 2021.

ODE Perspective on Transformers

- Transformers are powerful (e.g., ChatGPT), where attention mechanisms capture long-range dependencies within sequences
- Transformers can also be extended to the layer-parallel setting
 - Ignoring pre- and post-processing
 - Transformers consist of encoder and decoder layers of the following form:

$$\mathbf{X}^{[n+1]} = \mathbf{X}^{[n]} + \mathbf{F}_{\text{enc}}(t_n, \mathbf{X}^{[n]}) \qquad \mathbf{X}^{[n+1]} = \mathbf{X}^{[n]} + \mathbf{F}_{\text{dec}}(t_n, \mathbf{X}^{[n]})$$

$$\mathbf{F}_{\text{enc}}(t_n, x) := \varphi_1(x) + \varphi_2(x + \varphi_1(x)) \qquad \mathbf{F}_{\text{dec}}(t_n, x) := \varphi_1(x) + \varphi_3(x + \varphi_1(x)) + \varphi_3(x + \varphi_1(x))$$
 Insert time-step parameter²! Insert time-step parameter²!

• Where $\mathbf{X}^{[n]}$ is the network state at layer n, and

$$\varphi_1 := SA \circ LN, \varphi_2 := MLP \circ LN, \varphi_3 := CA \circ LN$$

for self-attention (SA), cross-attention (CA), and layer-norm (LN)

Learning problem remains unchanged

ODE Perspective on GRU

- Gated recurrent unit (GRU) networks are powerful recurrent networks for sequence processing (NLP, video classification, ...)
- The basic GRU architecture at time t takes input data x_t and the previous hidden state h_{t-1} and computes a new hidden state h_t

$$r_{t} = \sigma(W_{xr}x_{t} + b_{xr} + W_{hr}h_{t-1} + b_{hr})$$

$$z_{t} = \sigma(W_{xz}x_{t} + b_{xz} + W_{hz}h_{t-1} + b_{hz})$$

$$n_{t} = \phi(W_{xn}x_{t} + b_{xn} + r_{t} \odot (W_{hn}h_{t-1} + b_{hn}))$$

$$h_{t} = z_{t} \odot h_{t-1} + (1 - z) \odot n_{t}.$$

• The implicit GRU formulation changes the computation of h_t and achieves similar accuracy for considered test problems 1

$$h_t = (1 + \Delta t(1 - z_t))^{-1} \odot (h_{t-1} + \Delta t(1 - z_t) \odot n_t).$$

Learning problem remains unchanged

Original Layer-parallel GRU work:

Outline

- Need for parallelism driven by DNNs
 - Consider various forms of parallelism
 - Leverage wealth of parallel algorithms available from the CS&E community
- Deep neural networks
 - Interpret as an ODE (ResNets, Transformers, GRU)
- Layer-parallelism
 - Parallel-in-time applied to layers-as-time-steps
- Results
 - Code (TorchBraid)
 - Combine with coarsening inside layer (spatial coarsening)
 - Combine with data-parallelism
 - Tiny ImageNet: Combine with pooling and batch-norm
 - Transformers

Layer $i \equiv i$ -th time-step

- Network state y_i is "like" a spatial vector
- Distribute layers (time-steps) across N processors with parallel-in-time
- Forwards (backwards) network evaluations done iteratively in parallel
- Time-step Φ : Propagation from layer n to layer n+1

Layer $i \equiv i$ -th time-step

- Network state y_i is "like" a spatial vector
- Distribute layers (time-steps) across N processors with parallel-in-time
- Forwards (backwards) network evaluations done iteratively in parallel
- Time-step Φ : Propagation from layer k to layer k+1

Layer $i \equiv i$ -th time-step

- Network state y_i is "like" a spatial vector
- Distribute layers (time-steps) across N processors with parallel-in-time
- Forwards (backwards) network evaluations done iteratively in parallel
- Time-step Φ : Propagation from layer k to layer k+1

Carry out local layer-to-layer propagation in parallel

Similar to a 1D red-black coloring of the layers

Layer $i \equiv i$ -th time-step

- Network state y_i is "like" a spatial vector
- Distribute layers (time-steps) across N processors with parallel-in-time
- Forwards (backwards) network evaluations done iteratively in parallel
- Time-step Φ : Propagation from layer k to layer k+1

Carry out local layer-to-layer propagation in parallel

Similar to a 1D red-black coloring of the layers

Layer $i \equiv i$ -th time-step

- Network state y_i is "like" a spatial vector
- Distribute layers (time-steps) across N processors with parallel-in-time
- Forwards (backwards) network evaluations done iteratively in parallel
- Time-step Φ : Propagation from layer k to layer k+1

Result is a layer-parallel forward (backward) inexact network evaluation on the finest level

But, how do we account for longer-range interactions? A coarse-grid!

Layer $i \equiv i$ -th time-step

- Network state y_i is "like" a spatial vector
- Distribute layers (time-steps) across N processors with parallel-in-time
- Forwards (backwards) network evaluations done iteratively in parallel
- Time-step Φ : Propagation from layer k to layer k+1

$$\Phi(y_n) \Rightarrow y_{n+1}, \ n = 1, ..., N-1$$

Use a coarse level to improve inexact forward (backward) evaluation

$$\Phi(y_n) \Rightarrow y_{n+m}, n = m, 2m, \dots$$

Layer $i \equiv i$ -th time-step

- Network state y_i is "like" a spatial vector
- Distribute layers (time-steps) across N processors with parallel-in-time
- Forwards (backwards) network evaluations done iteratively in parallel
- Time-step Φ : Propagation from layer k to layer k+1

$$\Phi(y_n) \Rightarrow y_{n+1}, \ n = 1, ..., N-1$$

Serial evaluation on coarse-level interpolates correction to fine-level

$$\Phi(y_n) \Rightarrow y_{n+m}, \ n = m, 2m, \dots$$

Layer $i \equiv i$ -th time-step

- Network state y_i is "like" a spatial vector
- Distribute layers (time-steps) across N processors with parallel-in-time
- Forwards (backwards) network evaluations done iteratively in parallel
- Time-step Φ : Propagation from layer k to layer k+1

Recurse for multi-level method

$$\Phi(y_n) \Rightarrow y_{n+m}, n = m, 2m, \dots$$

Multigrid-in-Time for an Evolution Problem

Consider the general one-step method

$$u_i = \Phi_i(u_{i-1}) + g_i, \quad i = 1, 2, ..., N$$

- Below, time marching = forward solve
 - This is an *O(N)* direct method, **but sequential**

$$A\mathbf{u} \equiv egin{pmatrix} I & & & & & \ -\Phi & I & & & \ & \ddots & \ddots & & \ & & -\Phi & I \end{pmatrix} egin{pmatrix} oldsymbol{u}_0 \ oldsymbol{u}_1 \ dots \ oldsymbol{u}_N \end{pmatrix} = egin{pmatrix} oldsymbol{g}_0 \ oldsymbol{g}_1 \ dots \ oldsymbol{g}_N \end{pmatrix} \equiv \mathbf{g}_1$$

- We solve this system iteratively with multigrid reduction in time (MGRIT)
 - Extend multigrid reduction (MGR, 1979) to the time dimension
 - Coarsens only in time \rightarrow non-intrusive, i.e. Φ is arbitrary, PDE or non-PDE-based
 - O(N), highly parallel

Multigrid reduction in time (MGRIT)

$$T_0 \qquad T_1 \qquad \Delta T = m \delta t \qquad - F\text{-point (fine grid only)}$$

$$t_0 \quad t_1 \quad t_2 \quad t_3 \quad \cdots \qquad \delta t \qquad t_N$$

$$- C\text{-point (coarse & fine grid)}$$

- Relaxation is highly parallel
 - Block-Jacobi alternating between *F*-points and *C*-points

- ullet Coarse system is a time rediscretization with N/m block rows
 - Approximate impractical Φ^m with Φ_Δ a rediscretization with ΔT

$$A_{\Delta} = \begin{pmatrix} I & & & \\ -\Phi^m & I & & \\ & \ddots & \ddots & \\ & & -\Phi^m & I \end{pmatrix} \quad \Rightarrow \quad B_{\Delta} = \begin{pmatrix} I & & & \\ -\Phi_{\Delta} & I & & \\ & \ddots & \ddots & \\ & & -\Phi_{\Delta} & I \end{pmatrix}$$

Apply recursively for multilevel hierarchy

A broad summary of MGRIT

- Expose concurrency in the "time" dimension with multigrid
- Non-intrusive, with unchanged fine-grid problem
- Optimal for variety of parabolic problems
- Converges to same solution as sequential marching → Learning problem is essentially unchanged

- Extends to **nonlinear** problems with FAS formulation
- In simple two-level setting, $MGRIT \equiv Parareal$
- Large speedups available, but in a new way
 Time stepping is already O(N)

 Sevond a crossover

 Speedup potential

Parallel-in-time and ODE-like neural networks

- Network propagation is equivalent to a forward Euler discretization, and backpropagation is equivalent to discrete adjoint!
 - \rightarrow Remember: Φ is layer-step in a DNN
 - → Use equivalence to apply XBraid to forward and backward problems

Assign each block of layers to different procs

- Parallel-in-time goals¹
 - Treat layers as time-steps and apply MGRIT

- Good strong and weak scaling with respect to number of network layers
 → Train a network with 5 layers with same wall-clock time as 1000 layers
- Solve the same training problem (no shortcuts) as the sequential training version
- Provide novel layer-parallelism (decoupled layer computations in parallel)

Outline

- Need for parallelism driven by DNNs
 - Consider various forms of parallelism
 - Leverage wealth of parallel algorithms available from the CS&E community
- Deep neural networks
 - Interpret as an ODE (ResNets, Transformers, GRU)
- Layer-parallelism
 - Parallel-in-time applied to layers-as-time-steps
- Results
 - Code (TorchBraid)
 - Combine with coarsening inside layer (spatial coarsening)
 - Combine with data-parallelism
 - Tiny ImageNet: Combine with pooling and batch-norm
 - Transformers

Code: Layer-parallelism with multigrid TorchBRAID

TorchBraid: XBraid (MGRIT code in MPI/C) and PyTorch

```
https://github.com/Multilevel-NN/torchbraid
$ pip install path/to/torchbraid
```

- Python, C/MPI coupling with Cython (a little messy, but also impressive)
- Parallel Dataset and Dataloader functions inherited from PyTorch
 - Only load on root processor
- GPU-to-GPU direct communication key for performance
 - Requires CUDA-capable MPI, which you can test with \$ make tests -direct -qpu

Code: Layer-parallelism with multigrid TorchBRAID

- Automatic differentiation (AD) done over MPI with distributed layers
 - Designed so root rank behaves like serial training when only one processor is used
 - During last MGRIT iteration, AD is turned on and constructs a correct computational graph in the distributed setting
 - Backward inherits from PyTorch and sends gradient info between ranks with MPI

Sample TorchBraid Code:

•	Rank 0	Rank 1
<pre>1. optimizer.zero_grad()</pre>	zero grads.	zero grads.
output=model(data)	MGRIT fwd. prop.,	MGRIT fwd. prop.,
	recv. last layer	send last layer
<pre>3.loss=compose(criterion, output, target)</pre>	evaluate loss	no-op
4.loss.backward()	MGRIT bwd. prop	MGRIT bwd. prop.
<pre>5. optimizer.step()</pre>	update params.	update params.

Results: Simple MNIST

- To begin, consider an ODENet (no pooling or layer-norm) and MNIST
- Simplest example using only CPUs; Dense closing layer w/ softmax

- Speedup up at 2 cores on laptop (36 steps, 3 channels)
- Larger networks and larger computers \rightarrow large speedup possibilities, 10x-20x, ...

Results: Layerparallelism and data-parallelism

- Data-parallelism proceeds as normal
- Split the MPI communicator into sub-communicators for layer- and dataparallelism
- → More parallelism!

Results: Layer-parallelism and data-parallelism

- For demonstration purposes: 12 channels and 128 steps used on MNIST
- Serial network uses only data parallelism, which quickly exhausts
- Layer-parallelism allows for extra dimension of parallelism and speedup
 - Easy to use sub-package: torchbraid.utils.data_parallel

Results: Coarsening inside layers

- Coarsen in space (inside layers) for extra performance
- Particularly efficient for 3D problems
 - Coarse MGRIT levels decrease in "space" by a factor of 8
 - Distribute large dataset and large network (which could be too large for a single GPU) across many GPUs
- Sample MGRIT hierarchy

- F-point (layer on fine grid only)
- C-point (layer on coarse & fine grid)

Move information between *C*-point layers by interpolating between different image sizes

Results: Coarsening inside layers

- ModelNet10 dataset of 3D object recognition of various furniture items
 - 64³ sized images
 - 4K training images, 1K validation images

- 128 layers, 3D convolutional ResNet with ReLU
- Opening: expand to 4 channels
- Dense closing layer w/ softmax
- Coarsening in layer provides substantial speedup!
 - 2.3x over layer-parallel
 - 11.0x over serial
 - Option (1) best accuracy

- Extend TorchBraid ODENets to use max pooling and batch normalization
- Maintain max pooling layers as C-points on coarse levels
- Layer-parallel batch normalization
 - · During inference, batch norm is identical to standard
 - During training, batch norm running averages are only updated during final finelevel evaluation at a layer

- Train on PLEIADES cluster at University of Wuppertal
 - 5 compute nodes, each containing 8 A100 GPUs
 - Utilize GPUs for training and compare to serial time on GPU
- Training setup
 - 256 total layers
 - 64 layers per ODENet block
 - 30 epochs and batch size of 50
 - 16 training runs
 - Vertical bars: std. dev
- Accuracy essentially unchanged

- Strong scaling on Glinda
 - One A100 per node
 - Compare forward, backward, and overall times

Crossover point: 4 GPUs

- 2.5x speedup at 16 GPUs
- Major coding effort! But, still work to be done on efficiency!

- Weak scaling on Glinda
 - One A100 per node
 - Work per GPU fixed, and consider larger networks
- Serial has two data points due to out of memory
 → Extrapolate linearly
- Layer-Parallel: scales well
 - → Large speedup potential for large networks
 - → Distributed network allows for much more memory!

- Apply layer-parallel to ODE-inspired transformer
 - Piz-Daint, Swiss National Supercomputer Center, 1 Tesla P100 GPU per node
 - Leading the effort: student, Marc Salvado, and post-doc, Marshall Jiang
- Morphological classification (noun, verb, adverb, ...) with GUM corpus^{1,2}
- Results shown for encoder only
- Decoder is still a work-in-progress
 - MGRIT convergence rate deteriorates for larger networks
 - Exploring regularization techniques to encourage "continuity" between layers (no sacrifice of learning)
 - Exploring splitting CA and MLP blocks into separate layers for more parallelism

33

^{1.} The GUM corpus: Creating multilayer resources in the classroom, A. Zeldes, Language Resources and Evaluation, 2017.

^{2.} *Universal Dependencies*, J. Nivre, D. Zeman, F. Ginter, and F. Tyers, Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, 2017.

- Morphological classification example with 64 transformer blocks
- 1 GPU represents serial training with PyTorch
- No degradation in learning when using layer-parallel

- Maximum speedup at 128 transformer blocks is 2.5x at 8 GPUS
- Baseline is serial PyTorch (no TorchBraid)

- Greater speedups available when combined with data-parallelism
- Baseline is serial PyTorch (no TorchBraid)
- Data-parallelism with
 1, 2, and 4 GPUs
 (1 GPU in LP dimension)

- Greater speedups available when combined with data-parallelism
- Baseline is serial PyTorch (no TorchBraid)

- Greater speedups available when combined with data-parallelism
- Baseline is serial PyTorch (no TorchBraid)
- Data-parallelism with
 1, 2, and 4 GPUs
 (1 GPU in LP dimension)
- Then, addition of GPUs for LP yields ~5x speedups

Conclusion: Layer-parallelism allows for parallel speedup across layers

- Applicable to various architectures beyond original ODENet, e.g., ResNets (layer-norm, max-pooling), transformer, GRU
- Finds same gradient as sequential propagation (to within tolerance)
- Combine with data-parallelism to maximize machine utilization and speedup
- Combine with coarsening inside layer for increased speedup and efficiency
- Scales strongly and weakly
- Deeper networks → More speedup
- Distribute large datasets and large networks across MPI
 - Allows for much larger datasets and networks (3D, Videos, ...)
- Philosophically, leverage parallel frameworks from CS&E to accelerate DNNs

Layer-parallel References

- 1. Cyr, Hahne, Moore, Schroder, Southworth, Vargas. TorchBraid: High-Performance Layer-Parallel Training of Deep Neural Networks with MPI and GPU Acceleration. Submitted.
- 2. Günther, Ruthotto, Schroder, et al. *Parallel-in-Layer Optimization for Training of Deep Residual Networks*. SIMODS, 2020.
- 3. Cyr, Günther, Schroder, Multilevel Initialization for Layer-Parallel DNN Training. Int. J. Comput. Vis. Sci. Eng. (2021).

Code

 TorchBraid: layer-parallelism with PyTorch <u>https://github.com/Multilevel-NN/torchbraid</u>

 XBraid: MGRIT library for layer-parallelism https://github.com/XBraid/xbraid

Other References

- 1. Haber, Ruthotto. Stable Architectures for Deep Neural Networks. Inverse Probl., 2017.
- 2. Falgout, Friedhoff, Kolev, MacLachlan, Schroder, *Parallel Time Integration with Multigrid*, SISC, 2014.
- 3. Guinther, Gauger, Schroder, Non-Intrusive Parallel-in-Time Adjoint Solver with the XBraid Library, CVS, 2017.