TorchBraid: High-Performance Layer-Parallel
Training of DNNs with MPIl and GPU Acceleration

Prof. Jacob B. Schroder

University of New Mexico
Dept. of Mathematics and Statistics

Collaborators:

E. C. Cyr, J. Hahne, N. Gauger, S. Gunther, M. Jiang, A. Kopanicakova, R. Krause,
N. S. Moore, L. Ruthotto, M. Salvado, B. S. Southworth, D. A. Vargas

Precond 24: International Conference On Preconditioning Techniques

For Scientific and Industrial Applications
June 12th, 2024

Outline

= Need for parallelism driven by DNNs

- Consider various forms of parallelism
- Leverage wealth of parallel algorithms available from the CS&E community

= Deep neural networks
 Interpret as an ODE (ResNets, Transformers, GRU)

= Layer-parallelism
- Parallel-in-time applied to layers-as-time-steps

= Results
« Code (TorchBraid)

« Combine with coarsening inside layer (spatial coarsening)
« Combine with data-parallelism

- Tiny ImageNet: Combine with pooling and batch-norm
« Transformers

Need for parallelism driven by DNNs

Deep neural networks (DNNs) routinely used to solve learning tasks
with state-of-the-art accuracies

- Image classification and recognition, natural language processing, self-
driving cars, healthcare, ...

However, the training time and cost is increasing

ChatGPT-4 likely took month(s) to train using many GPUs

Other sophisticated deep learning architectures also have long
training times

But the results of deep learning can be impressive!

But the
results are
impressive!

)

You
how do | get more parallelism for my deep neural network?

ChatGPT
Increasing parallelism in deep neural networks can lead to improved performance and faster training.

Here are several strategies you can consider:
1. Model Architecture:

» Utilize parallelizable layers such as convolutional layers, which are inherently parallelizable
due to their local receptive fields.

» Use architectures designed for parallel processing, such as residual networks (ResNets) or
dense networks (DenseNets), which facilitate parallel computation across layers.

2. Hardware Utilization:

» Invest in hardware specifically designed for parallel computation, such as GPUs (Graphics
Processing Units) or TPUs (Tensor Processing Units), which excel at parallel matrix

operations commonly found in deep learning.

» Utilize multiple GPUs or TPUs to distribute computation across devices. Frameworks like
TensorFlow and PyTorch support this through data parallelism and model parallelism

techniques.
3. Data Parallelism:

» Divide your dataset into smaller batches and process them simultaneously across multiple
devices. This is the most common form of parallelism and is supported by most deep
learning frameworks.

» Ensure that your batch size is large enough to fully utilize the available hardware without
causing memory issues.

4. Model Parallelism:

But ChatGPT,
you forgot
about my
favorite type
of parallelism!

ChatGPT doesn't quite
have all the details yet.

You
What about layer parallelism?

ChatGPT
Layer parallelism is a technigque where different layers of a neural network are executed in parallel

across multiple processing units. It's a form of model parallelism, where the model is divided into

parts, and each part is processed independently. Here's how layer parallelism can be implemented:
1. Dividing Layers:

* Divide the layers of your neural network into groups, with each group containing a subset of

layers.

* The division can be based on various criteria, such as layer type (e.g., convolutional layers,

fully connected layers) or computational complexity.
2. Processing Layers in Parallel:

* Assign each group of layers to a separate processing unit (e.g., GPU or TPU).

* Ensure that the layers within each group do not have dependencies on each other, allowing

them to be executed concurrently.
3. Communication between Layers:

* |Implement mechanisms for communication between layers processed in parallel, as some

layers may require input from preceding layers or provide output to subsequent layers.

* Minimize communication overhead by optimizing data transfer between processing units.
4. Synchronization:

* Ensure proper synchronization betwein processing units to maintain consistency during

training. 4

Need for parallelism driven by DNNs

= With these long training times, we naturally search for parallelism

= Popular classic approaches for DNNs (as ChatGPT reminded us) include:
- Data parallelism
« Model (spatial) parallelism

Proc 3
Proc 4

Proc 3

Output

.
Q
>

8

©

£

i

Proc 2

Data Parallel
Proc 2
Model Parallel

Proc1
Proc1

Review of model/data parallelism: Demystifying parallel and distributed deep learning: An in-depth
concurrency analysis. T. Ben-Nun, T. Hoefler ACM Computing Surveys (CSUR), 2019. 5

Proposed Solution: Layer-Parallelism

= The ancient bargain: trade-off between parallelism and exactness

= Relax exactness for layer evolution in return for greater parallelism
Dotted arrows below become inexact (same is true for back-prop)
- Trade accuracy for performance
- But we don't need exact gradients (experiments tell us)

= (Can be combined with other forms of parallelism, e.g., data parallelism

(N\ N\ N\ N
Proc 1 Proc 2 Proc 3 Proc 4

Input
Output

Layer Parallel

Philosophically, we leverage parallel frameworks
from CS&E to help accelerate DNN training

= This is an active field of research.

Region 0

= Domain decomposition (patch-based)
approaches

- Apply (mostly) independent models to distinct
regions of data (e.g., image), for parallelism

- Combine region results in a variety of ways

- Parallelism likely limited by largest reasonable
patch size

1. Machine learning and domain decomposition methods -- a survey, Parallel decomposition for a CT scan (2D) of a
A. Klawonn, M.n Lanser, J. Weber, https://arxiv.org/abs/2312.14050 webcam.

2. Multifidelity DD-based PINNs for time-dependent problems, A. Heinlein et al., https://arxiv.org/abs/2401.07888, 2024.

3. Patch-based Convolutional Neural Network for Whole Slide Tissue Image Classification,
Hou et al. IEEE conference on computer vision and pattern recognition. 2016.

4. Image scoring: Patch based CNN model for small or medium dataset,
C. Zhang, J. Cheng, 3rd IEEE International Conference on Computer and Communications, 2017.

5. The Unreasonable Effectiveness of Patches in Deep Convolutional Kernels Methods, L. Thiry et al., ICLR, 2021.

6. A domain decomposition-based CNN-DNN architecture for model parallel training applied to image recognition
problems, A Klawonn, M Lanser, J Weber, https://arxiv.org/abs/2312.14050 7

https://arxiv.org/abs/2312.14050
https://arxiv.org/abs/2401.07888
https://arxiv.org/abs/2312.14050

Philosophically, we leverage parallel frameworks
from CS&E to help accelerate DNN training

= This is an active field of research.

= Multilevel optimization: target algorithmic speedup
« Methods first used for PDE-constrained optimization

- Construct coarse optimization problem(s) that can accelerate convergence for the
finest-level optimization problem

- Do forward and back-propagation on coarse- and fine-levels, interpolating
parameters between levels

= Multilevel trust-region optimization methods'3, for typical ML tasks like
image classification

= MGOPT (FAS) approaches for optimization?, initially PDE approximation

1. Globally convergent multilevel training of deep residual networks, A. Kopanicakova, R. Krause, SISC, 2022.
2. Multilevel-in-width training for deep neural network regression, C. Ponce, R. Li, C. Mao, P. Vassilevski,
NLAA, 2023.

3. Multilevel minimization for deep residual networks, L. Gaedke-Merzhauser, A. Kopanicakova, R. Krause,
ESAIM, 2021. 8

Philosophically, we leverage parallel frameworks
from CS&E to help accelerate DNN training

= This is an active field of research.

= Related layer-parallel approach based on parallel solution to the
linearized Jacobian of the optimization problem’
1. Put your forward or backward network evaluation inside Newton's method
2. Linearize the block lower bi-diagonal system
3. Apply parallel cyclic reduction
4. Rinse and repeat.

= Very nice idea and generalizes to non-ODE networks

« Current formulation suffers from "The main bottleneck for our DeepPCR implementation
is represented by the decay in performance associated with the growth in size of the
Jacobian blocks"

= These are just a few examples of current work, where CS&E inspires ML
algorithms!

1. DeepPCR: Parallelizing Sequential Operations in Neural Networks, F. Danieli, M. Sarabia, X. Suau
Cuadros, P. Rodriguez, L. Zappella, Advances in Neural Information Processing Systems 36, 2024. 9

Outline

= Need for parallelism driven by DNNs

- Consider various forms of parallelism
- Leverage wealth of parallel algorithms available from the CS&E community

= Deep neural networks
- Interpret as an ODE (ResNets, Transformers, GRU)

= Layer-parallelism
- Parallel-in-time applied to layers-as-time-steps

= Results
« Code (TorchBraid)
« Combine with coarsening inside layer (spatial coarsening)
« Combine with data-parallelism
« Tiny ImageNet: Combine with pooling and batch-norm
« Transformers

10

Deep Neural Networks (DNNs)

= DNNs are routinely used for many tasks

= However, training cost/times can be prohibitive (days, weeks, months...)
- Due to the many forwards and backwards passes through the network

- Goal: parallelize, speed up training

Layer O Layer 1 ...Layer N
= Feed-forward network C} @ ----------------- @

i Training pair: (ydata7 Cda,ta,) E n : ,,

- Wy,bn,yn : Layer n weights, biases, state @} @”’-’-’-’ff.: :::: @

- ResNet Propagation (forward problem): =~ .= A .
Yo = Ydata Q @ @

Ynt1 = Yn + FWryn +b,) Yn=0,...,N—1

« Learning problem:

Vrvni? Loss(yn, caata) SuUbject to above forward problem

11

ODE Perspective on Deep ResNets

= DNNs are routinely used for many tasks

= However, training cost/times can be prohibitive, in days or weeks
- Due to the many forwards and backwards passes through the network

- Goal: parallelize, speed up training

Layer O Layer 1 ...Layer N
= Feed-forward network O @ ----------------- @

* Training pair:(ydataacdata>_._,...-"11,.n:'

« Wi, bn,yn: Layer n weights, biases, state @ @ @

- ResNet Propagation (forward problem): T N S
Yo = Ydata Q @ @

Ynt1 = Yn + FWpyn +b,) Yn=0,...,N—1

|

Insert time-step
parameter !

11

ODE Perspective on Deep ResNets

= Some popular deep networks (e.g., ResNets) have an equivalence to
time-stepping':2

= Expand the ResNet architecture with a time-step parameter /

Yo = Ydata
Yni1 = Yn + hFWoyn +b,) Vn=0,...,N—1
Rt
y(()) — Ydata
dy(t
WG _ pw @) +b(t), Ve (0,T)

= Training problem becomes

min Loss(y(T), cqata) SuUbject to above ODE
W (t),b(t)

1. Haber, Ruthotto. Stable Architectures for Deep Neural Networks. Inverse Probl., 2017.
2. Weinan, A Proposal on Machine Learning via Dynamical Systems, Comm. Math. Stat., 2017.

12

ODE Perspective on Deep ResNets

= Some popular deep networks (e.g., ResNets) have an equivalence to
time-stepping’:2
= Expand the ResNet architecture with a time-step parameter /

Yo = Ydata
Ynt1 = Yn + hEWoyn +b,) Vn=0,...,N —1

< Resnet = Forward Euler discretization
Y(0) = Ydata Backprop = Discrete adjoint
dy(t
W) _ pw eyt +b(t), Ve e (0.7)

= Training problem becomes

in Loss(y(T),cqqtq) Subject to above ODE
i (y(T), cdata) j

1. Haber, Ruthotto. Stable Architectures for Deep Neural Networks. Inverse Probl., 2017.
2. Weinan, A Proposal on Machine Learning via Dynamical Systems, Comm. Math. Stat., 2017.

12

ODE Perspective on Transformers

= Transformers are powerful (e.g., ChatGPT), where attention
mechanisms capture long-range dependencies within sequences

= Transformers can also be extended to the layer-parallel setting
« Ignoring pre- and post-processing
- Transformers consist of encoder and decoder layers of the following form:

X[n+1] — X[n] + Fenc(tn, Xln]) X[n+1] — X[n] + Fec (tn; Xln])

Fenc(tn:) == 91(z) + 02 (2 + ¢1(z)) Faeeltn, z) := ¢1(z) + @3 (2 + ¢1(z)) +
p2 (T + p1(z) + @3 (z + p1(7)))
. WhereX™ is the network state at layer »n, and
¢1 := SAoLN,ps := MLPoLN,y3 := CAoLN

for self-attention (SA), cross-attention (CA), and layer-norm (LN)

Related ODE Transformer works:

1. Understanding and improving transformer from a multiparticle dynamic system point of view, Y. Lu et al., 2019. 13
https://www.arxiv.org/abs/1906.02762

2. Stateful ODE-Nets using basis function expansions, A. Queiruga et al., Advances in Neural Information Processing Systems, 2021.

https://www.arxiv.org/abs/1906.02762

ODE Perspective on Transformers

= Transformers are powerful (e.g., ChatGPT), where attention
mechanisms capture long-range dependencies within sequences

= Transformers can also be extended to the layer-parallel setting
« Ignoring pre- and post-processing
- Transformers consist of encoder and decoder layers of the following form:

X[+l — xln] o Fenc (tn, X[n]) xlntl] — xnl 4 dec(tn, X[n])

Fenc(tn, z) := v](w) + 2 (+¢1(2)) Faee(tn,) := pi(2) + 3 (2 + ¢1(z)) +
Insert time-step parameter? ! Insert time-step parameter? ! (z + ¢1(2)))

. WhereX™ is the network state at layer »n, and
01 := SAoLN,yps := MLPoLN,p3 = CAoLN

for self-attention (SA), cross-attention (CA), and layer-norm (LN)

Related ODE Transformer works:

1. Understanding and improving transformer from a multiparticle dynamic system point of view, Y. Lu et al., 2019. 13
https://www.arxiv.org/abs/1906.02762

2. Stateful ODE-Nets using basis function expansions, A. Queiruga et al., Advances in Neural Information Processing Systems, 2021.

https://www.arxiv.org/abs/1906.02762

ODE Perspective on Transformers

= Transformers are powerful (e.g., ChatGPT), where attention
mechanisms capture long-range dependencies within sequences

= Transformers can also be extended to the layer-parallel setting
« Ignoring pre- and post-processing
- Transformers consist of encoder and decoder layers of the following form:

X[+l — xln] o Fenc (tn, X[n]) xlntl] — xnl 4 dec(tn, X[n])

Fenc(tn, z) := v](w) + 2 (+¢1(2)) Faee(tn,) := pi(2) + 3 (2 + ¢1(z)) +
Insert time-step parameter? ! Insert time-step parameter? ! (z + ¢1(2)))

. WhereX™ is the network state at layer »n, and
01 := SAoLN,yps := MLPoLN,p3 = CAoLN

for self-attention (SA), cross-attention (CA), and layer-norm (LN)

= Learning problem remains unchanged 13

ODE Perspective on GRU

= Gated recurrent unit (GRU) networks are powerful recurrent
networks for sequence processing (NLP, video classification, ...)

= The basic GRU architecture at time ¢ takes input data x, and the
previous hidden state %, ; and computes a new hidden state 7,

ry = 0(Wary 4 gy + Whphi—1 + bpy)

2t = 0(Waoxy + by + Whohe1 + bp2)

ng = qﬁ(met + by + 1 ® (Whnht_l + bhn))
hi =2 O hi_14+ (1 —2) ©ng.

= The implicit GRU formulation’ changes the computation of %, and
achieves similar accuracy for considered test problems!

he = (1 4+ At(1 — 2)) O (heeq + At(1 — z) @ ny).

= Learning problem remains unchanged

Original Layer-parallel GRU work:
1. Parallel Training of GRU Networks with a Multi-Grid Solver for Long Sequences, E. Moon and E. C. Cyr, ICLR 2022.

14

Outline

= Need for parallelism driven by DNNs

- Consider various forms of parallelism
- Leverage wealth of parallel algorithms available from the CS&E community

= Deep neural networks
- Interpret as an ODE (ResNets, Transformers, GRU)

= Layer-parallelism
- Parallel-in-time applied to layers-as-time-steps

= Results
« Code (TorchBraid)

« Combine with coarsening inside layer (spatial coarsening)
« Combine with data-parallelism

« Tiny ImageNet: Combine with pooling and batch-norm
« Transformers

15

Parallel-in-time for DNNs

Layer i = i-th time-step

= Network state ¥ is "like" a spatial vector

= Distribute layers (time-steps) across N processors with parallel-in-time
= Forwards (backwards) network evaluations done iteratively in parallel
= Time-step @ : Propagation from layer » to layer n+1

Layer: O 1 2 3 4
t=0 h 2h 3h 4h
©....- ©....' . @. @.- . @
\(l)/

16

Parallel-in-time for DNNs

Layer i = i-th time-step

= Network state ¥ is "like" a spatial vector

= Distribute layers (time-steps) across N processors with parallel-in-time
= Forwards (backwards) network evaluations done iteratively in parallel
= Time-step @ : Propagation from layer & to layer k+1

Layer: 0 1 2 3 4
=0 h 2h 3h 4h

OO =000 2tw=umnn=1...8-1
proc 1 proc 2 proc 3

16

Parallel-in-time for DNNs

Layer i = i-th time-step

= Network state ¥ is "like" a spatial vector

= Distribute layers (time-steps) across N processors with parallel-in-time
= Forwards (backwards) network evaluations done iteratively in parallel
= Time-step @ : Propagation from layer & to layer k+1

Layer: 0 1 2 3 4
=0 h 2h 3h 4h
~2> ~ ~$ _~
proc 1 proc 2 proc 3

Carry out local layer-to-layer propagation in parallel

Similar to a 1D red-black coloring of the layers

16

Parallel-in-time for DNNs

Layer i = i-th time-step

= Network state ¥ is "like" a spatial vector

= Distribute layers (time-steps) across N processors with parallel-in-time
= Forwards (backwards) network evaluations done iteratively in parallel
= Time-step @ : Propagation from layer & to layer k+1

Layer: O 1 2 3 4
=0 h 2h 3h 4h
~2 ~ ~2 _~
proc 1 proc 2 proc 3

Carry out local layer-to-layer propagation in parallel

Similar to a 1D red-black coloring of the layers

16

Parallel-in-time for DNNs

Layer i = i-th time-step

= Network state ¥ is "like" a spatial vector

= Distribute layers (time-steps) across N processors with parallel-in-time
= Forwards (backwards) network evaluations done iteratively in parallel
= Time-step @ : Propagation from layer & to layer k+1

Layer: 0 1 2 3 4
=0 h 2h 3h 4h
~2 ~ ~2 _~
proc 1 proc 2 proc 3

Result is a layer-parallel forward (backward) inexact network evaluation
on the finest level

But, how do we account for longer-range interactions? A coarse-grid!

16

Parallel-in-time for DNNs

Layer i = i-th time-step

= Network state ¥ is "like" a spatial vector
= Distribute layers (time-steps) across N processors with parallel-in-time
= Forwards (backwards) network evaluations done iteratively in parallel
= Time-step @ : Propagation from layer & to layer k+1

1 2 3 4
= h 2h 3h 4h

G O
@ @
~— b > L

@ (I)(yn) = Yn+1, = 17"'7N_ I!

Use a coarse level to improve inexact
forward (backward) evaluation

16

Parallel-in-time for DNNs

Layer i = i-th time-step

= Network state ¥ is "like" a spatial vector
= Distribute layers (time-steps) across N processors with parallel-in-time
= Forwards (backwards) network evaluations done iteratively in parallel
= Time-step @ : Propagation from layer & to layer k+1

1 2 3 4
= h 2h 3h 4h

@ (I)(yn) = Yn+1, = 17"'7N_ I!

Serial evaluation on coarse-level
interpolates correction to fine-level

O — O -O
OO0 %) > v = 0200
@ """""""""""""" O @

16

Parallel-in-time for DNNs

Layer i = i-th time-step

= Network state ¥ is "like" a spatial vector

= Distribute layers (time-steps) across N processors with parallel-in-time
= Forwards (backwards) network evaluations done iteratively in parallel
= Time-step @ : Propagation from layer & to layer k+1

2 3 4
2h 3h 4h

< <

Recurse for multi-level method

........
ves®®® lo::::
.....

Multigrid-in-Time for an Evolution Problem

= Consider the general one-step method
i=1,2,...N

u; = ®;(u;—1) + g;,

= Below, time marching = forward solve
- This is an O(N) direct method, but sequential

1
(—CID I

Au

\

)

o 1)

(o)

i)

(90)

o)

Il
03

We solve this system iteratively with multigrid reduction in time (MGRIT)

- Extend multigrid reduction (MGR, 1979) to the time dimension
- Coarsens only in time = non-intrusive, i.e. ® is arbitrary, PDE or non-PDE-based

« O(N), highly parallel

17

Multigrid reduction in time (MGRIT)

T T AT = mot
0 1 n — F-point (fine grid only)
44+

- (C-point (coarse & fine grid

= Relaxation is highly parallel Frelaxation
- Block-Jacobi alternating between F-points and C-points EEEER

\WAVAVLY

= Coarse system is a time rediscretization with N/m block rows
- Approximate impractical ®" with ® o a rediscretization with AT’
(I \ I \
—om] —Op T
AA = . = BA =

\ | —.cf.m Iy, \ —.<.I>.A 1)

- Apply recursively for multilevel hierarchy

Falgout, Friedhoff, Kolev, MacLachlan, Schroder, Parallel Time Integration with Multigrid, SISC, 2014. 18

A broad summary of MGRIT

= Expose concurrency in the "time" dimension with multigrid
= Non-intrusive, with unchanged fine-grid problem
= Optimal for variety of parabolic problems

= Converges to same solution as sequential marching
- Learning problem is essentially unchanged

= Extends to nonlinear problems with FAS formulation
= In simple two-level setting, MGRIT = Parareal

102

. Large speedups available, but in a new way _

Time stepping is already O(N) 10°

257% x 16384 space-time grld
Max speedup is 52
 Cross-over at & 32 cores

n

Useful only beyond a crossover
10°

« More time steps - more speedup potential
« XBraid is our MGRIT code

Runtime (min

e—e Sequential Time-Stepping
#~—a XBraid: Time only parallel
10~1|| === XBraid: Space-time parallel

10

10 10°

Total Core Count

19

Parallel-in-time and ODE-like neural networks

= Network propagation is equivalent to a forward Euler discretization,
and backpropagation is equivalent to discrete adjoint!

- Remember: ® is layer-step in a DNN
- Use equivalence to apply XBraid to forward and backward problems

Assign each block of layers to different procs

= Parallel-in-time goals’
- Treat layers as time-

SRR B R oo o

to t1 tn
- Good strong and weak scaling with respect to number of network layers

- Train a network with 5 layers with same wall-clock time as 1000 layers

- Solve the same training problem (no shortcuts) as the sequential training version
- Provide novel layer-parallelism (decoupled layer computations in parallel) 20

1. Gunther, Ruthotto, Schroder, Cyr, Gauger. Parallel-in-Layer Optimization for Training of Deep ResNets. SIMODS, 2020.

Outline

Need for parallelism driven by DNNs

- Consider various forms of parallelism
- Leverage wealth of parallel algorithms available from the CS&E community

Deep neural networks
- Interpret as an ODE (ResNets, Transformers, GRU)

Layer-parallelism
- Parallel-in-time applied to layers-as-time-steps

Results

- Code (TorchBraid)

- Combine with coarsening inside layer (spatial coarsening)
- Combine with data-parallelism

- Tiny ImageNet: Combine with pooling and batch-norm

- Transformers

21

Torcih

Code: Layer-parallelism with multigrid
éaAm

= TorchBraid: XBraid (MGRIT code in MPI/C) and PyTorch

https://github.com/Multilevel -NN/torchbraid

$ pip install path/to/torchbraid
= Python, C/MPI coupling with Cython (a little messy, but also impressive)

= Parallel Dataset and Dataloader functions inherited from PyTorch
« Only load on root processor

= GPU-to-GPU direct communication key for performance

- Requires CUDA-capable MPI, which you can test with
$ make tests -direct -gpu

22

https://github.com/Multilevel-NN/torchbraid

Code: Layer-parallelism with multigrid
TorcghBRAID

= Automatic differentiation (AD) done over MPI with distributed layers
- Desighed so root rank behaves like serial training when only one processor is used

« During last MGRIT iteration, AD is turned on and constructs a correct computational
graph in the distributed setting

— Backward inherits from PyTorch and sends gradient info between ranks with MPI

Sample TorchBraid Code:

Rank 0 Rank 1
1. optimizer.zero_grad() zero grads. zero grads.
2. output=model (data) MGRIT fwd. prop., MGRIT fwd. prop.,
recv. last layer send last layer
3. loss=compose(criterion, output, target) evaluate loss no-op
4. loss.backward() MGRIT bwd. prop MGRIT bwd. prop.
5.optimizer.step() update params. update params.

23

Results: Simple MNIST

= To begin, consider an ODENet (no pooling or layer-norm) and MNIST

= Simplest example using only CPUs; Dense closing layer w/ softmax

0.40 On a MacBook 93 OpenMP on Attaway Computer
’ = Steps=32
\%_/ Steps=64
= Steps=128
0.35- = Steps=256
) f Steps=512
Iy 2, Steps=1024
é 2 2 Steps=2048
3 Layer-Parallel
0.30+ 9 :
v Serial
%O erla.
‘q;) 2
0.25 - 2
' 2 4 6 1 2 4 8 16 32 64 128 256
Cores Ranks (9 cores per rank)

- Speedup up at 2 cores on laptop (36 steps, 3 channels)

- Larger networks and larger computers - large speedup possibilities, 10x—20x, ...
24

Forward - serial Backward - serial

...

Data 2
GPU 2

Results: Layer-
parallelism and
data-parallelism

Allreduce

Data-Parallelism

= Data-parallelism
proceeds as normal

Data 1
GPU 1

= Split the MPI

communicator into E °
sub-communicators for g 5 ¢ Layer parallel Layer parallel
)) = < GPU4|GPUS5 | GPU 6 GPU 4| GPU 5 |GPU 6
layer apd data T 5
parallelism S ; : :
: S : : =
=>» More parallelism! - ; : g
) = : 2
+ " 4
- ; o Layer parallel Layer parallel
g ot é GPU1|GPU2|GPU3 GPU1|GPU 2 |GPU3
© O

Results: Layer-parallelism and data-parallelism

= For demonstration purposes: 12 channels and 128 steps used on MNIST
= Serial network uses only data parallelism, which quickly exhausts

= |Layer-parallelism allows for extra dimension of parallelism and speedup
- Easy to use sub-package: torchbraid.utils.data parallel

Data parallel training time: MNIST digit

0.30 15 ’
—&— Serial network

- —&— Layer-Parallel: 4 data parallel ranks

0.15 \ \

S 0.104

)

-
o
|

p—
—_
()
Lo—

Average time per batch (s

1 2 4 8 16 32
Number of GPUs 26

Results: Coarsening inside layers

= Coarsen in space (inside layers) for extra performance

= Particularly efficient for 3D problems
- Coarse MGRIT levels decrease in "space” by a factor of 8
- Distribute large dataset and large network (which could be too large for a single
GPU) across many GPUs

= Sample MGRIT hierarchy

H_L;f i - i
1| — Il—= 1—: J—= l

n T n

n

; — F-point (layer on fine grid only)
L — (C-point (layer on coarse & fine grid)

: Move information between C-point layers by
i vi interpolating between different image sizes

ﬂ
!
%j
!
13
]
T

n/2 n/2 n/2 n/2 n/2
| 1 1 | | |
| 1 1 1 1
Ty T

27

Results: Coarsening inside layers

Original Coarse

ModelNet10 dataset of 3D object
recognition of various furniture items

« 643 sized images
« 4K training images, 1K validation images

OpenMP on Attaway Computer

128 layers, 3D convolutional 2°
ResNet with ReLU

Opening: expand to 4 channels 96

Dense closing layer w/ softmax

244 === Serial

Coarsening in layer provides —8— Laver Paralle]

substantial speedup!

Average time per batch (sec)
o
e

3 3 : lel 23« —#— LP: spatial coarsening (1)
-IX OvVer ayer-para € —— LP: spatial coarsening (1,2)
11.0x over serial 2
. 2“ T T T T T T
Option (1) best accuracy 1 2 4 8 16 32 64
Ranks (9 cores per rank) 28

Results: Tiny ImageNet

= Extend TorchBraid ODENets to use max pooling and batch normalization
= Maintain max pooling layers as C-points on coarse levels

= |Layer-parallel batch normalization
« During inference, batch norm is identical to standard

« During training, batch norm running averages are only updated during final fine-
level evaluation at a layer

Input Open Transition Transition Transition Close
Transform

Image Layer Layer Layer Layer La{er

14 diy el @l @\l g

»

N 4T T TS P N T P ST Faws ST P S N Ll
N R R R EEEN EERE EERN RN RN i rr

-

lllllllll
lllllllll

S o R R T N gl N e

L L] L L} L}] 1 L L} L] L L}

] = Seria operationson rank 0 = Tensor dimension changes B = MGRIT parallel operations

29

Results: Tiny ImageNet

= Train on PLEIADES cluster at University of Wuppertal

- 5 compute nodes, each containing 8 A100 GPUs

- Utilize GPUs for training and compare to serial time on GPU

= Training setup
- 256 total layers
- 64 layers per ODENet block
« 30 epochs and batch size of 50
« 16 training runs
— Vertical bars: std. dev

= Accuracy essentially
unchanged

Accuracy for Tiny ImageNet

—+— Serial

Layer-Parallel

10

20
Epochs

30

30

Results: Tiny ImageNet

= Strong scaling on Glinda A
« One A100 per node —
« Compare forward, <
backward, and =
overall times f
2.
O
£
+ —— TorchBraid
gcéo TorchBraid FWD
= Crossover point: 4 GPUs & 54 | ™% TochBrid BWD
= === PyTorch
< PyTorch FWD
=== PyTorch BWD
2_5 I [[[I
1 2 4 8 16 32
GPUs

= 2.5x speedup at 16 GPUs

= Major coding effort! But, still work to be done on efficiency!
31

Results: Tiny ImageNet

= Weak scaling on Glinda

> —#— Serial (PyTorch) ot 1
+ One A100 per ngde g 2 Layer-Paralle]
- Work per GPU fixed, and < ——~ Serial (extrapolated) e
consider larger networks % o1 s
o) R
. . = 20_ ///
= Serial has two data points 2 e
due to out of memory S o1 el
- Extrapolate linearly go x
S 92 /
= Layer-Parallel: scales well =
- Large speedup potential 27'/2 28'/4 29|/8 210|/16 211'/32
for large networks Layers/GPUs

- Distributed network
allows for much more memory!

32

Results: Layer-parallelism and Transformers

Apply layer-parallel to ODE-inspired transformer

« Piz-Daint, Swiss National Supercomputer Center, 1 Tesla P100 GPU per node
- Leading the effort: student, Marc Salvado, and post-doc, Marshall Jiang

Morphological classification (noun, verb, adverb, ...) with GUM corpus?'2
Results shown for encoder only

= Decoder is still a work-in-progress
- MGRIT convergence rate deteriorates for larger networks

- Exploring regularization techniques to encourage "continuity” between layers
(no sacrifice of learning)

- Exploring splitting CA and MLP blocks into separate layers for more parallelism

1. The GUM corpus: Creating multilayer resources in the classroom, A. Zeldes, Language Resources and Evaluation, 2017. 33

2. Universal Dependencies, J. Nivre, D. Zeman, F. Ginter, and F. Tyers, Proceedings of the 15th Conference of the European Chapter
of the Association for Computational Linguistics, 2017.

Results: Layer-parallelism and Transformers

= Morphological classification example with 64 transformer blocks
= 1 GPU represents serial training with PyTorch
= No degradation in learning when using layer-parallel

— 1 GPU ==== 2GPUs =eeeee 4 GPUs =ome= 8 GPUs

Val. acc

39

Results: Layer-parallelism and Transformers

= Maximum speedup at 128 transformer blocks is 2.5x at 8 GPUS
= Baseline is serial PyTorch (no TorchBraid)

1 2 4 8 1 2 4 8 1 2 4 8
MPI ranks (GPUs) S
Forward Only Backward Only Combined

35

Results: Layer-parallelism and Transformers

= Greater speedups available when combined with data-parallelism

= Baseline is serial PyTorch (no TorchBraid)

= Data-parallelism with
1, 2, and 4 GPUs

(1 GPU in LP dimension)

Speedup

S —

MPI ranks (GPUs) 36

Results: Layer-parallelism and Transformers

= Greater speedups available when combined with data-parallelism

= Baseline is serial PyTorch (no TorchBraid)

= Data-parallelism with
1, 2, and 4 GPUs 5
(1 GPU in LP dimension)

S E i A —

MPI ranks (GPUs)

36

Results: Layer-parallelism and Transformers

= Greater speedups available when combined with data-parallelism

= Baseline is serial PyTorch (no TorchBraid)

= Data-parallelism with
1, 2, and 4 GPUs
(1 GPU in LP dimension)

= Then, addition of
GPUs for LP
yields ~5x speedups

MPI ranks (GPUs)

36

Conclusion: Layer-parallelism allows for
parallel speedup across layers

= Applicable to various architectures beyond original ODENet, e.g.,
ResNets (layer-norm, max-pooling), transformer, GRU

= Finds same gradient as sequential propagation (to within tolerance)

= Combine with data-parallelism to maximize machine utilization and speedup

= Combine with coarsening inside layer for increased speedup and efficiency

= Scales strongly and weakly

= Deeper networks - More speedup

= Distribute large datasets and large networks across MPI
- Allows for much larger datasets and networks (3D, Videos, ...)

= Philosophically, leverage parallel frameworks from CS&E to accelerate DNNs

Layer-parallel References

1. Cyr, Hahne, Moore, Schroder, Southworth, Vargas. TorchBraid: High-Performance Layer-
Parallel Training of Deep Neural Networks with MPI and GPU Acceleration. Submitted.

2. Gunther, Ruthotto, Schroder, et al. Parallel-in-Layer Optimization for Training of Deep
Residual Networks. SIMODS, 2020.

3. Cyr, Gunther, Schroder, Multilevel Initialization for Layer-Parallel DNN Training. Int. J.
Comput. Vis. Sci. Eng. (2021).

Code

= TorchBraid: layer-parallelism with PyTorch
https://github.com/Multilevel-NN/torchbraid TorcdhBRAID

https://github.com/XBraid/xbraid

= XBraid: MGRIT library for layer-parallelism x /\/\

Other References
1. Haber, Ruthotto. Stable Architectures for Deep Neural Networks. Inverse Probl., 2017.

2. Falgout, Friedhoff, Kolev, MacLachlan, Schroder, Parallel Time Integration with
Multigrid, SISC, 2014.

3. Gunther, Gauger, Schroder, Non-Intrusive Parallel-in-Time Adjoint Solver with the
XBraid Library, CVS, 2017. 38

https://github.com/Multilevel-NN/torchbraid
https://github.com/XBraid/xbraid

