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Introduction

Interest in problems posed in H(curl) with irregular
subdomains

J.C., Domain Decomposition Methods for Problems in
H(curl), PhD Thesis, NYU 2015. Advisor: Prof. Olof Widlund.

Met Juan Galvis at the (virtual) Mathematical Congress of
the Americas 2021 (Session: Applied Math and
Computational Methods and Analysis across the Americas).
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Introduction

For simplicity, consider the problem

−div(κ∇u) = f , x ∈ D ⊂ R2,

with homogeneous Dirichlet boundary conditions

The coefficient κ = κ(x) represents the permeability of the
porous media D

Problem: Find u ∈ H1
0 (D) such that

a(u, v) :=

∫
Ω
κ∇u · ∇v dx = (f , v)0,D ∀ v ∈ H1

0 (D)
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Two ideas:

Given the contrast η = maxκ(x)/minκ(x), obtain bounds
that are independent of κ (work by Juan Galvis)

Handle irregular decompositions/interfaces (work by J.C.)
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Discretization

Consider a polygonal mesh and
virtual elements.

Find uh ∈ Vh such that

ah(uh, vh) = (f , vh) ∀ vh ∈ Vh.

In order to solve the associated
linear system we build a
preconditioner and use PCG.

For simplicity we consider a
two-level overlapping additive
Schwarz
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Virtual elements

B. Ahmad, A. Alsaedi, F. Brezzi, L. D. Marini, and A. Russo,
Equivalent projectors for virtual element methods, Comput. Math. Appl.,
66 (2013), pp. 376–391.

L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D.
Marini, and A. Russo, Basic principles of virtual element methods,
Math. Models Methods Appl. Sci., 23 (2013), pp. 199–214.

L. Beirão da Veiga, F. Brezzi, L. D. Marini, and A. Russo, The
hitchhiker’s guide to the virtual element method, Math. Models Methods
Appl. Sci., 24 (2014), pp. 1541–1573.
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Virtual elements

For any subdomain Ωi , let

B1(∂E ) := {v ∈ C 0(∂E ) : v |e ∈ P1(e) ∀ e ⊂ ∂E},

where e represents any edge on the boundary of Ωi

Local virtual space:

V E
1 := {v ∈ H1(E ) : v |∂E ∈ B1(∂E ), ∆v = 0}.

V E
1 is piecewise-linear on the boundary and harmonic in the

interior, and its dof are the values at the vertices of the
polygon
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Virtual elements

Bilinear form:

ah(u, v) =
∑
E∈T h

∫
E
∇Π∇

E ,1u · ∇Π∇
E ,1v+

NE
dof∑

r=1

dofr ((I − Π∇
E ,1)u)dofr ((I − Π∇

E ,1)v)

Π∇
E ,1 : V1(E ) → P1(E ) is the L2 projection of the gradient

defined as the linear polynomial w = Π∇
E ,1v such that∫

E
∇w · ∇p =

∫
E
∇v · ∇p ∀ p ∈ P1(E )

and

1

NE
V

NE
V∑

i=1

v(xi ) =
1

NE
V

NE
V∑

i=1

w(xi ).
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Discretization

Find uh ∈ Vh such that

ah(uh, vh) = (f , vh) ∀ vh ∈ Vh.

If Vh = ⟨φi ⟩i , the problem is rewritten as

Ax = b

with (A)ij = ah(ϕj , ϕi ), (b)j = (f ,Πϕj) and x is the vector of
coordinates of the solution u
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Domain Decomposition

Efficient parallel computing algorithms

How to define coarse functions for irregular subdomains?
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Some previous work

For scalar elliptic problems in H1 with irregular subdomains:

C. R. Dohrmann, A. Klawonn, and O. B. Widlund,
Domain decomposition for less regular subdomains:
Overlapping Schwarz in two dimensions, SIAM J. Numer. Anal.
2008.

O. B. Widlund, Accommodating irregular subdomains in
domain decomposition theory, 2009.

C. R. Dohrmann and O. B. Widlund, An alternative
coarse space for irregular subdomains and an overlapping
Schwarz algorithm for scalar elliptic problems in the plane,
SIAM J. Numer. Anal., 2012.
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Domain Decomposition - Overlapping version

We divide the domain Ω into subdomains {Di}Ni=1

Then construct overlapping subdomains {D ′
i}Ni=1

Subdomains Di Overlapping subdomains D ′
i

METIS Subdomains for a triangular mesh
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DD - Local solvers in D ′
i

Homogeneous Dirichlet problems in Ω′
i , i = 1, 2, . . . ,N.

Local spaces:
Vi := H1

0 (Ω
′
i ) ∩ Vh

Zero extension operator RT
i : Vi → Vh

Exact solvers: Ãi = RiAR
T
i

Ãi : block of A that corresponds to the interior nodes of Ω′
i

J. G. Calvo DDM for high-contrast problems



Two-level Preconditioner

Suppose we have a coarse space V0 (with just a few dof per
subdomain) and an operator RT

0 : V0 → Vh

Exact solvers: Ã0 = R0AR
T
0

Preconditioner:

A−1
ad = RT

0 Ã−1
0 R0 +

N∑
i=1

RT
i Ã−1

i Ri

Question: How to define a proper coarse space V0 and
RT
0 : V0 → Vh for irregular subdomains?
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Partition of unity for decomposition

One coarse function per subdomain
vertex

Common approach: define values on
interface and then use discrete
harmonic extensions.

{Ωi}Ni=1
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Partition of unity
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Partition of unity - values on interface
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Partition of unity - extensions

Usually, boundary values are extended as harmonic extensions
to the interior of the subdomains.

J.C., On the approximation of a virtual coarse space for Domain
Decomposition Methods in two dimensions., Mathematical Models
and Methods in Applied Sciences, 2018.

Partition of unity is constructed by computing projections to
polynomial spaces of degree k ≥ 2 in the interior of each
subdomain

No discrete harmonic extensions required
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High-contrast coefficient

For high-contrast elliptic problems in H1 (regular
subdomains):

Y. Efendiev, J. Galvis, and T. Hou. Generalized
multiscale finite element methods, Journal of Computational
Physics, 251:116–135, 2013.

J. Galvis and Y. Efendiev. Domain decomposition
preconditioners for multiscale flows in high contrast media.,
SIAM J. Multiscale Modeling and Simulation, 8:1461–1483,
2010.

J. Galvis, E.T. Chung, Y. Efendiev, and W. T.
Leung. On overlapping domain decomposition methods for
high-contrast multiscale problems, in International Conference
on Domain Decomposition Methods, pages 45–57. Springer,
2017.
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High-contrast coefficient

We assume that

0 < κmin ≤ κ(x) ≤ κmax ∀x ∈ D

Define the contrast of κ restricted to Ω by

ηΩ :=
maxx∈Ω κ(x)

minx∈Ω κ(x)
.

It is known that the performance of iterative methods for the
solution depend on ηD and on the local variations of κ across
D
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High-contrast multiscale coefficient

Example of a multiscale subdomain with interior high-contrast inclusions
in green (left), boundary inclusions in orange (center), and long channels
in red (right). We have κ = 1 in the gray background, and κ ≍ η ≫ 1
inside the channels and inclusions.
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High-contrast multiscale coefficient

The label “multiscale coefficient” refers to the fact that the
coefficient varies at multiple scales

There is a large quantity of high-contrast subdomains
scattered everywhere around the whole domain.
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Theoretical analysis

For the bound of the preconditioned system, we need a
decomposition for a global field v ∈ V = V h(D) as

v = RT
0 v0 +

NS∑
j=1

RT
j vj (vi ∈ Vi ). (1)

The decomposition (1) is stable in the sense that there exists
C0 > 0 such that

ah(R
T
0 v0,R

T
0 v0) +

NS∑
j=1

ah(R
T
i vi ,R

T
i vi ) ≤ C 2

0 ah(v , v).
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Theoretical analysis

A global function v ∈ Vh is restricted to ωi , by identifying a
local field Iωi

0 v that will contribute to the coarse space

A subdomain vertex and the associated region ωi
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Theoretical analysis

A global function v ∈ Vh is restricted to ωi , by identifying a
local field Iωi

0 v that will contribute to the coarse space

A global coarse field can be assembled as

v0 = I0v =

NS∑
i=1

I h(χi (I
ωi
0 v)), (2)

where I h is the fine-scale nodal value interpolation.

In classical two-level domain decomposition methods, Iωi
0 v is

the average of v in ωi

Note that in each coarse block K ∈ T H we have

v − v0 =
∑
xi∈K

I h(χi (v − Iωi
0 v)), (3)

where the sum goes over the subdomain vertices of K .
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Theoretical analysis

For each overlapping subdomain D ′
j , the corresponding local

part of the stable decomposition is defined by

vj = I h(ξj(v − v0)),

with v0 = I0v .

{ξj}Nj=1 is a partition of unity for the overlapping subdomains

To bound the energy of vj , we have that∫
K
κ|∇I h(ξj(v − v0))|2 ⪯

∫
ωi

κ(ξjχi )
2|∇(v − Iωi

0 v)|2

+

∫
ωi

κ|∇(ξjχi )|2|v − Iωi
0 v |2,
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Theoretical analysis - previous works

Poincaré inequality for the case of bounded coefficient
combined with a small overlap trick; for high-contrast
multiscale coefficients, the resulting bound depends on the
contrast η in general

L∞ estimates:∫
ωi

κ|∇(ξjχi )|2|v − Iωi
0 v |2 ⪯ ||κ|∇(ξjχi )|2||∞

∫
ωi

|v − Iωi
0 v |2.

Partitions of unity can be constructed such that the term
||κ|∇(ξjχi )|2||∞ is bounded independently of the contrast

Local generalized eigenvalue problems
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Theoretical analysis

We can write∫
ωi

κ|∇(ξjχi )|2|v − Iωi
0 v |2 ⪯ 1

δ2H2

∫
ωi

κ|(v − Iωi
0 v)|2

⪯ C

∫
ωi

κ|∇v |2,

where we need to justify the last inequality with constant
independence of the contrast

Consider the Rayleigh quotient

Q(v) :=

∫
ωi
κ|∇v |2∫

ωi
κ|v |2

with v ∈ V h(ωi ).
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Eigenvalue problem

The associated eigenproblem is given by

−div(κ(x)∇ψωi
ℓ ) = λℓκ(x)ψ

ωi
ℓ in ωi ,

with homogeneous Neumann boundary conditions for floating
subdomains and a mixed homogeneous Neumann-Dirichlet
condition for subdomains that touch the boundary

Write the spectrum as

λ1 ≤ λ2 ≤ . . . ≤ λL < λL+1 ≤ . . .

where λ1, ..., λL are small, asymptotically vanishing
eigenvalues, and λL can be bounded below independently of
the contrast.
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Eigenvalue problem

Define the matrix Aωi corresponding to homogeneous Neumann
problem by

vTAωiw =

∫
ωi

κ∇v · ∇w for all v ,w ∈ V h(ωi ),

and the modified mass matrix of same dimension Mωi by

vTMωiw =

∫
ωi

κvw for all v ,w ∈ Ṽ h(Ω), (4)

where Ṽ h = V h(ωi ) if Ω ∩ ∂D = ∅ and
Ṽ h = {v ∈ V h(ωi ) : v = 0 on ∂ωi ∩ ∂D} otherwise. We have then
the generalized eigenvalue problem

Aωiψ = λMωiψ. (5)
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Eigenvalue problem

Given an integer L and v ∈ V h(ωi ), we define

Iωi
L v =

L∑
ℓ=1

(∫
ωi

κvψωi
ℓ

)
ψωi
ℓ . (6)

It is easy to prove that∫
ωi

κ(v − Iωi
L v)2 ≤ 1

λωi
L+1

a(v − Iωi
L v , v − Iωi

L v) ≤ 1

λωi
L+1

a(v , v).

(7)

When L = 1, κ = 1 (or κ is smooth and bounded) and ∂ωi is
smooth (Lipschitz), we obtain the classical Poincaré inequality
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Eigenvalue problem

Define the set of coarse basis functions

Φi ,ℓ = I h(χiψ
ωi
ℓ ) for 1 ≤ i ≤ Nc and 1 ≤ ℓ ≤ Li ,

where I h is the fine-scale nodal value interpolation and Li is
an integer number for each i = 1, . . . ,Nc .

Denote by V0 the local spectral multiscale space

V0 = span{Φi ,ℓ : 1 ≤ i ≤ Nc and 1 ≤ ℓ ≤ Li}.

Define also the coarse interpolation I0 : V
h(D) → V0 by

I0v =
Nc∑
i=1

Li∑
ℓ=1

(∫
ωi

κvψωi
ℓ

)
I h(χiψ

ωi
ℓ ) =

Nc∑
i=1

I h
(
(Iωi
Li
v)χi

)
,
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Eigenvalues for high-contrast subdomains

0 2 4 6 8 10 12 14 16 18 20
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(left) A subdomain vertex with three METIS subdomains. The coefficient
κ is κ = η inside the small rectangular channels, and κ = 1 in the
background. (right) Eigenvalue distribution for η = 1 (circles) and
η = 106 (black dots). The effect of having a high contrast coefficient
implies the addition of four eigenfunctions, associated to the four
eigenvalues smaller than 1.
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Condition number

Theorem [J.C and J. Galvis (2023)]

cond(M−1
2 A) ⪯ C 2

0 ⪯ max

{
1 +

1

δ2λL+1
, 1 +

1

H2λL+1

}
,

where λL+1 = min
1≤i≤Nc

λωi
Li+1.
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Condition number

Corollary [J.C and J. Galvis (2023)]

If we select Li appropriately, it holds that

cond(M−1
2 A) ⪯ C

(
1 +

H2

δ2

)
,

where C is independent of the contrast and the mesh size.
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Numerical experiments

We solve the resulting linear systems using a PCG method, to
a relative residual tolerance of 10−6.
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Numerical examples - triangular mesh

Figure: κ = η ∈ {1, 102, 104, 106} for red elements, and η = 1 in the
background for (left) square and (right) METIS subdomains
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Numerical examples - triangular mesh

Subdomains η
Non adaptive, harmonic Adaptive, k = 2/harmonic
Cond Iter dimV0 Cond Iter dimV0

Squares

1e0 17.3 22 36 23.8/23.8 21/21 4
1e2 44.5 36 36 26.8/21.0 28/26 56
1e4 4827 87 36 5.0/6.3 18/18 96
1e6 1.7e6 148 36 5.3/5.3 19/18 96

METIS

1e0 17.8 29 52 25.4/25.3 34/34 16
1e2 31.3 45 52 28.4/12.7 43/27 96
1e4 3741 167 52 6.9/6.0 23/22 190
1e6 3.0e5 342 52 7.2/6.0 25/24 190

Number of iterations (Iter) and estimated condition number (Cond) for a
triangular mesh with 12800 elements, 25 subdomains, H/h ≈ 16,
H/δ ≈ 4.
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Numerical examples - triangular mesh
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Smaller eigenvalues (circles) for (left) square and (right) METIS
subdomains with a triangular mesh with 12800 elements and η = 106.
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Numerical examples - triangular mesh

Four eigenfunctions associated to a subdomain vertex for a triangular
mesh and METIS subdomains. Thick black lines correspond to the
subdomains and thin black lines correspond to the boundary of the
channels.
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Numerical examples - hexagonal and Voroni meshes

κ = η ∈ {1, 102, 104, 106} for red elements, and η = 1 in the background
for (left) hexagonal and (right) Voronoi-type meshes with METIS
subdomains.
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Numerical examples - hexagonal and Voronoi meshes

Fine mesh and 16 subdomains (thick black lines) with METIS
subdomains.
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Numerical examples - hexagonal mesh

η
Non adaptive, harmonic Adaptive, harmonic Adaptive, k = 2
Cond Iter dimV0 Cond Iter dimV0 Cond Iter dimV0

1e0 29.6 35 202 52.1 48 96 47.7 48 96
1e2 34.3 45 202 20.8 37 191 52.5 61 191
1e4 1027 129 202 11.2 30 335 12.8 34 335
1e6 1.0e5 236 202 11.8 34 335 13.6 37 335

Number of iterations (Iter) until convergence of the PCG and condition
number (Cond), for different values of the contrast η, with κ as shown in
Figure 44, for an hexagonal mesh with 9699 elements, 100 subdomains,
H/h ≈ 20, δ ≈ 2h.
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Numerical examples - Voroni mesh

η
Non adaptive, harmonic Adaptive, harmonic Adaptive, k = 2
Cond Iter dimV0 Cond Iter dimV0 Cond Iter dimV0

1e0 43.6 42 202 62.7 54 97 68.3 55 97
1e2 45.5 48 202 21.1 37 199 63.5 53 199
1e4 1448 130 202 13.3 34 382 17.1 39 382
1e6 1.2e5 246 202 13.6 37 382 15.7 42 382

Number of iterations (Iter) until convergence of the PCG and condition
number (Cond), for different values of the contrast η for a Voronoi mesh
with 12325 elements, 100 subdomains, H/h ≈ 34, h ≈ 0.136, δ ≈ 2h.
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Final remarks and future work

Applications to different PDEs

Particular interest for problems posed in H(curl) and H(div)
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J.C., J. Galvis, Robust domain decomposition methods for
high-contrast multiscale problems on irregular domains with
virtual element discretizations, Journal of Computational
Physics, 2024.

Thank you!
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