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✓ We focus on coupled elasticity and flow models in porous media written in mixed form (three-field formulation):

Mathematical model
Coupled poromechanics (Biot’s model)
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𝛻 ∙ ∁𝑑𝑟: 𝛻𝑠𝒖 − 𝑏𝑝𝟏 = 𝟎 in Ω × 0, 𝑡𝑚𝑎𝑥  linear momentum balance

𝜇𝜿−1 ∙ 𝒒 + 𝛻𝑝 = 𝟎 in Ω × 0, 𝑡𝑚𝑎𝑥  (Darcy′s law)

𝑏𝛻 ∙ ሶ𝒖 + 𝑀−1 ሶ𝑝 + 𝛻 ∙ 𝒒 = 𝑓 in Ω × 0, 𝑡𝑚𝑎𝑥  (fluid mass balance)

✓ Coupled poromechanical models are widely used in real-world applications, such as environmental, geoscience and 

biomedical problems



Mathematical model
Mixed hybrid discretization

✓ A widely used discretization is based on low-order 

elements, e.g. lowest-order continuous (ℚ1), lowest-

order Raviart-Thomas (ℝ𝕋0), piecewise constant (ℙ0) 

spaces for displacements, Darcy’s velocity and fluid 

pore pressure, respectively

✓ Hybridization of the mixed three-field coupled poromechanics problem:

• One DoF per face per element for the normal component of Darcy’s velocity

• One Lagrange multiplier per face, i.e. interface pressure, to restore the flux continuity
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✓ Attractive features of this formulation: (1) Local (element-wise) mass conservation, (2) Robustness to heterogeneity of 

material properties, (3) Interesting algebraic properties through static condensation



Mathematical model
Mixed hybrid discretization

✓ Weak problem: find 𝒖𝑛
ℎ , 𝒒𝑛

ℎ , 𝑝𝑛
ℎ, 𝜋𝑛

ℎ ∈ 𝓤ℎ × 𝓠ℎ × 𝒫ℎ × ℬℎ for time steps 𝑛 = 1, … , 𝑁:

✓ The mixed-hybrid finite element discretization of coupled poromechanics produces the sequence of linear systems:
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𝛻𝑠𝜼𝑖 , ∁𝑑𝑟: 𝛻𝑠𝒖𝑛
ℎ

Ω
− 𝛻 ∙ 𝜼𝑖 , 𝑏𝑝𝑛

ℎ
Ω

= 𝜼𝑖 , 𝒕𝑛 Γ𝜎
 𝜼𝑖 ∈ 𝓤ℎ , 𝑖 = 1, … , 𝑛𝑢

𝝋𝑗 , 𝜇𝜿−1 ∙ 𝒒𝑛
ℎ

Ω
− 𝛻 ∙ 𝝋𝑗 , 𝑝𝑛

ℎ
Ω

+ 𝝋𝑗 ∙ 𝒏𝑒 , 𝜋𝑛
ℎ 

𝜕Ω
= 0 𝝋𝑗 ∈ 𝓠ℎ , 𝑗 = 1, … , 𝑛𝑞

𝜒𝑘 , 𝑏𝛻 ∙ 𝒖𝑛
ℎ

Ω
+ ∆𝑡 𝜒𝑘 , 𝛻 ∙ 𝒒𝑛

ℎ
Ω

+ 𝜒𝑘 , 𝑀−1𝑝𝑛
ℎ

Ω
= 𝜒𝑘 , ሚ𝑓

Ω
 𝜒𝑘 ∈ 𝒫ℎ , 𝑘 = 1, … , 𝑛𝑝

𝜁𝑙 , 𝒒𝑛
ℎ ∙ 𝒏𝑒 𝜕Ω

= 𝜁𝑙 , ҧ𝑝𝑛 Γ𝑝
 𝜁𝑙 ∈ ℬℎ , 𝑙 = 1, … , 𝑛𝜋

𝐀𝐱 = 𝐛 with 𝐀 =

𝐴𝑢𝑢 0
0 𝐴𝑞𝑞

𝐴𝑢𝑝 0

𝐴𝑞𝑝 𝐴𝑞𝜋

𝐴𝑝𝑢 Δ𝑡𝐴𝑝𝑞

0 𝐴𝜋𝑞

𝐴𝑝𝑝 0

0 0

, 𝐱 =

𝐮
𝐪
𝐩
𝛑

, 𝐛 =

𝐟𝑢

𝐟𝑞

𝐟𝑝

𝐟𝜋

✓ For the selected low-order discretization, we have 𝑛𝑞 > 𝑛𝑢 > 𝑛𝜋 > 𝑛𝑝



Mathematical model
Mixed hybrid discretization

✓ Since 𝐴𝑞𝑞 is block diagonal, the matrix 𝐀 can be reduced by static condensation:
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𝐀 =

𝐴𝑢𝑢 𝐴𝑢𝑝 0

𝐴𝑝𝑢 𝐴𝑝𝑝 − Δ𝑡𝐴𝑝𝑞𝐴𝑞𝑞
−1𝐴𝑞𝑝 −Δ𝑡𝐴𝑝𝑞𝐴𝑞𝑞

−1𝐴𝑞𝜋

0 −𝐴𝜋𝑞𝐴𝑞𝑞
−1𝐴𝑞𝑝 −𝐴𝜋𝑞𝐴𝑞𝑞

−1𝐴𝑞𝜋

 ⟹  𝐀 =

𝐴𝑢𝑢 𝐴𝑢𝑝 0

𝐴𝑝𝑢
ҧ𝐴𝑝𝑝 ∆𝑡𝐴𝑝𝜋

0 𝐴𝜋𝑝 𝐴𝜋𝜋

✓ The blocks ҧ𝐴𝑝𝑝, 𝐴𝑝𝜋, 𝐴𝜋𝑝 and 𝐴𝜋𝜋 are assembled directly element-by-element, with ҧ𝐴𝑝𝑝 a diagonal matrix with non-

negative entries and 𝐴𝑢𝑢 and 𝐴𝜋𝜋 symmetric positive definite

✓ The selected low-order discretization spaces can be unstable:

• Undrained conditions (𝑞≅0) for low permeability (𝜅→0) or small time step size (∆𝑡→0)

• Incompressible fluid and solid constituents (𝑀→∞)

✓ We use the pressure-jump stabilization based on the macro-element construction



Mathematical model
Mixed hybrid discretization
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✓ The stabilization consists of adding the functional 𝐽 𝜒𝑘 , 𝑝𝑛
ℎ to the balance equation such that the solvability 

condition is restored in a macro-element:

𝛻𝑠𝜼𝑖 , ∁𝑑𝑟: 𝛻𝑠𝒖𝑛
ℎ

Ω
− 𝛻 ∙ 𝜼𝑖 , 𝑏𝑝𝑛

ℎ
Ω

= 𝜼𝑖 , 𝒕𝑛 Γ𝜎
 𝜼𝑖 ∈ 𝓤ℎ , 𝑖 = 1, … , 𝑛𝑢

𝜒𝑘 , 𝑏𝛻 ∙ 𝒖𝑛
ℎ

Ω
+ 𝐽 𝜒𝑘 , 𝑝𝑛

ℎ = 0 𝜒𝑘 ∈ 𝒫ℎ , 𝑘 = 1, … , 𝑛𝑝

✓ The functional introduces fictitious fluxes balancing the spurious pressure jumps in adjacent element, weighted by a 

stabilization parameter 𝛽𝑀 automatically selected so as to preserve the non-zero eigenspectrum limits for the local 

Schur complement:

𝐽 𝜒𝑘 , 𝑝𝑛
ℎ = ෍

𝑀∈ℳℎ

𝛽𝑀 𝑀 ෍
𝑒∈Γ𝑀

𝜒𝑘 𝑒 𝑝𝑛
ℎ

𝑒
 𝜒𝑘 ∈ 𝒫ℎ , 𝑘 = 1, … , 𝑛𝑝

✓ The stabilized discrete matrix reads (𝐴𝑠𝑡𝑎𝑏 symmetric positive semidefinite with the stencil of a Laplacian):

𝐀 =

𝐴𝑢𝑢 𝐴𝑢𝑝 0

𝐴𝑝𝑢
ҧ𝐴𝑝𝑝 + 𝐴𝑠𝑡𝑎𝑏 ∆𝑡𝐴𝑝𝜋

0 𝐴𝜋𝑝 𝐴𝜋𝜋



Linear solver
Block triangular preconditioning

✓ The robust, efficient and scalable solution to the linear systems arising in large-size real-world applications is a major 

issue

✓ The matrix arising from mixed hybrid coupled poromechanics has a double saddle-point structure:
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𝐀 =

𝐴𝑢𝑢 𝐴𝑢𝑝 0

−𝐴𝑝𝑢 −( ҧ𝐴𝑝𝑝 + 𝐴𝑠𝑡𝑎𝑏) −∆𝑡𝐴𝑝𝜋

0 Δ𝑡𝐴𝜋𝑝 Δ𝑡𝐴𝜋𝜋

 𝐀 =
𝐴 𝐵𝑇 0
𝐵 −𝐷 𝐶𝑇

0 𝐶 𝐸

✓ We use Krylov subspace methods (right-preconditioned GMRES) accelerated by a class of block upper triangular 

preconditioners with the following form:

𝐏 =

መ𝐴 𝐵𝑇 0
0 − መ𝑆 𝐶𝑇

0 0 ෠𝑋

መ𝐴 ≅ 𝐴
መ𝑆 ≅ ሚ𝑆 = 𝐷 + 𝐵 መ𝐴−1𝐵𝑇

෠𝑋 ≅ ෨𝑋 = 𝐸 + 𝐶 መ𝑆−1𝐶𝑇



Linear solver
Eigenvalue analysis
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✓ In order to bound the eigenvalues of 𝐀𝐏−1 we consider the scaled eigenproblem:

𝐃−1/2𝐀𝐃−1/2𝐰 = 𝜆𝐃−1/2𝐏𝐃−1/2𝐰
ҧ𝐴 𝑅𝑇 0

𝑅 −ഥ𝐷 𝐾𝑇

0 𝐾 ത𝐸

𝑥
𝑦
𝑧

= 𝜆
𝐼 𝑅𝑇 0
0 −𝐼 𝐾𝑇

0 0 𝐼

𝑥
𝑦
𝑧

ҧ𝐴 ≅ መ𝐴−1/2𝐴 መ𝐴−1/2 ഥ𝐷 ≅ መ𝑆−1/2𝐷 መ𝑆−1/2 ത𝐸 ≅ ෠𝑋−1/2𝐸 ෠𝑋−1/2 𝑅 ≅ መ𝑆−1/2𝐵 ෠𝑋−1/2 𝐾 ≅ ෠𝑋−1/2𝐶 መ𝑆−1/2

✓ We define the Rayleigh quotient associated to each block as:

𝛾𝐴 =
𝑤𝑇 ҧ𝐴𝑤

𝑤𝑇𝑤
∈ 𝛾𝐴

𝑚𝑖𝑛, 𝛾𝐴
𝑚𝑎𝑥 𝛾𝑆 =

𝑤𝑇 ҧ𝑆𝑤

𝑤𝑇𝑤
∈ 𝛾𝑆

𝑚𝑖𝑛, 𝛾𝑆
𝑚𝑎𝑥 𝛾𝑋 =

𝑤𝑇 ത𝑋𝑤

𝑤𝑇𝑤
∈ 𝛾𝑋

𝑚𝑖𝑛, 𝛾𝑋
𝑚𝑎𝑥

𝛾𝐷 =
𝑤𝑇 ഥ𝐷𝑤

𝑤𝑇𝑤
∈ 𝛾𝐷

𝑚𝑖𝑛, 𝛾𝐷
𝑚𝑎𝑥 𝛾𝐸 =

𝑤𝑇 ത𝐸𝑤

𝑤𝑇𝑤
∈ 𝛾𝐸

𝑚𝑖𝑛, 𝛾𝐸
𝑚𝑎𝑥 𝛾𝑅 =

𝑤𝑇𝑅𝑅𝑇𝑤

𝑤𝑇𝑤
∈ 𝛾𝑅

𝑚𝑖𝑛, 𝛾𝑅
𝑚𝑎𝑥

𝛾𝐾 =
𝑤𝑇𝐾𝐾𝑇𝑤

𝑤𝑇𝑤
∈ 𝛾𝐾

𝑚𝑖𝑛, 𝛾𝐾
𝑚𝑎𝑥

𝛾𝑆 = 𝛾𝑅 + 𝛾𝐷 𝛾𝑋 = 𝛾𝐾 + 𝛾𝐸



Linear solver
Eigenvalue analysis
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Theorem. If 0 ≤ 𝛾𝐷
𝑚𝑖𝑛 < 1, any complex eigenvalue 𝜆 of 𝑨𝑷−1 is such that

𝜆 − 1 ≤ 1 − 𝜌,  𝜌 =
𝛾𝐴

𝑚𝑖𝑛 𝑥 2 + 𝛾𝐷
𝑚𝑖𝑛 𝑦 2 + 𝛾𝐸

𝑚𝑖𝑛 𝑧 2

𝑦 2 + 𝛾𝐸
𝑚𝑖𝑛 𝑧 2

< 1

otherwise all eigenvalues are real.

Proof (sketch). Rewrite the scaled eigenproblem as:

𝑥∗ ҧ𝐴𝑥 − 𝜆 𝑥 2 = 𝜆 − 1 𝑥∗𝑅𝑇𝑦

𝑦∗𝑅𝑇𝑥 − 𝑦∗ ഥ𝐷𝑦 − ҧ𝜆 − 1 𝑧∗𝐾𝑦 = − ҧ𝜆 𝑦 2

𝑧∗𝐾𝑦 − 𝑧∗ ത𝐸𝑧 = 𝜆 𝑧 2

and reduce it to a single equation by successive substitutions. Introduce the Rayleigh quotients associated to 

each block, then separate the real and the imaginary parts assuming that 𝜆 = 𝑎 + 𝑖𝑏. It can be observed that 𝑏 ≠

0 only if 𝛾𝐷
𝑚𝑖𝑛 < 1 and the modulus of 𝜆 is bounded by the thesis. ❑

Precond 24



Linear solver
Eigenvalue analysis
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Theorem. If 𝜆 is a real eigenvalue of 𝑨𝑷−1, then the following bound holds:

𝑚𝑖𝑛 𝛾𝐸
𝑚𝑖𝑛, 𝛾𝐴

𝑚𝑖𝑛,
𝛾𝑅

𝑚𝑖𝑛

𝛾𝐴
𝑚𝑎𝑥 + 𝛾𝑅

𝑚𝑖𝑛 + 𝛾𝐷
𝑚𝑎𝑥

≤ 𝜆 ≤ 𝛾𝐴
𝑚𝑎𝑥 + 𝛾𝑆

𝑚𝑎𝑥 + 𝛾𝑋
𝑚𝑎𝑥

Proof (sketch). Compute 𝑥 and 𝑦 from the first two equations of the scaled eigenproblem, then using them in the 

third one yields:

𝜆 − 1 𝐾𝑍−1 𝜆 𝐾𝑇 + ത𝐸 − 𝜆𝐼 𝑧 = 0

where 𝑍(𝜆) is a particular symmetric positive definite matrix. Introduce the Rayleigh quotients and use the 

properties of 𝑍(𝜆) to obtain the third-degree polynomial in 𝜆: 

𝜆3 − 𝛾𝐴 + 𝛾𝑆 + 𝛾𝑋 𝜆2 − 𝛾𝐴𝛾𝑋 + 𝛾𝐾 + 𝛾𝐸𝛾𝑆 + 𝛾𝐷𝛾𝐴 + 𝛾𝑅 𝜆 + 𝛾𝐴𝛾𝐾 + 𝛾𝐸𝛾𝐴𝛾𝐷 + 𝛾𝐸𝛾𝑅 = 0

whose roots are real, positive and bounded by the thesis. ❑



Linear solver
Schur complement approximation
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✓ For the first Schur complement ሚ𝑆 ≅ 𝐷 + 𝐵 መ𝐴−1𝐵𝑇 

we use a lumped approximation for the 

contribution 𝐵 መ𝐴−1𝐵𝑇 taken from the algebraic 

interpretation of the “fixed-stress” matrix in 

coupled flow-deformation problems

✓ The matrix 𝐷 can be also lumped being the sum 

of a diagonal matrix and a Laplacian

✓ Consider a set of 𝑚 adjacent rows 𝐵(𝑖) and adjacent columns 𝐵𝑇,(𝑖), the 𝑖-th 𝑚 × 𝑚 diagonal block of ෫𝐵 መ𝐴−1𝐵𝑇 reads:

𝐷(𝑖) = 𝑟 𝐵(𝑖) 𝐴|𝑖
−1𝑟 𝐵𝑇,(𝑖)

✓ The second Schur complement ෨𝑋 ≅ 𝐸 + 𝐶 መ𝑆−1𝐶𝑇 we simply replace መ𝑆 with its diagonal

✓ The application of ሚ𝐴−1 is carried out by an inner AMG, while either Jacobi, IC or AMG is used for ሚ𝑆−1 and ෨𝑋−1



Numerical results
Bound validation
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✓ 2D cantilever beam problem with 𝑛𝑢 = 3362, 

𝑛𝑝 = 1600, 𝑛𝜋 = 3200

✓ The intervals for the coefficients 𝛾 are: 

𝛾𝐴 ∈ 5.0𝑒 − 5, 1.0346 , 𝛾𝑆 ∈ 0.3665, 1.5582 ,

𝛾𝑅 ∈ 4.4𝑒 − 3, 0.9411 ,  𝛾𝐷 ∈ 3.8𝑒 − 3, 0.7512 ,  𝛾𝑋 ∈  0.5007, 1.5122 ,  𝛾𝐾 ∈ 0, 0.0112 ,  𝛾𝑋 ∈  0.5007, 1.5046

✓ The theoretical bounds appear to be sufficiently reliable, especially for the 

minimum eigenvalue of the preconditioned matrix

✓ It is confirmed that the complex eigenvalues lie in a circle centered in 1 with 

radius smaller than 1



Numerical results
Bound validation
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✓ 3D Mandel’s problem with 𝑛𝑢 = 3969, 𝑛𝑝 = 800, 

𝑛𝜋 = 2880

✓ The intervals for the coefficients 𝛾 are: 

𝛾𝐴 ∈ 5.0𝑒 − 5, 1.0346 , 𝛾𝑆 ∈ 0.0100, 1.2132 ,

𝛾𝑅 ∈ 7.8𝑒 − 5, 1.2033 ,  𝛾𝐷 ∈ 8.0𝑒 − 5, 0.0100 ,  𝛾𝑋 ∈  0.9999, 1.0020 ,  𝛾𝐾 ∈ 0, 0.0021 ,  𝛾𝑋 ∈  0.9998, 1.0000

✓ As before, the bounds are verified also in a 3D problem with a sufficiently 

tight outcome



Numerical results
Comparison with block diagonal preconditioners
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✓ A block triangular preconditioner requires the use of GMRES as a solver, while MINRES could be used with a block 

diagonal option:

𝐏𝐷 =

መ𝐴 0 0
0 መ𝑆 0
0 0 ෠𝑋

መ𝐴 ≅ 𝐴
መ𝑆 ≅ ሚ𝑆 = 𝐷 + 𝐵 መ𝐴−1𝐵𝑇

෠𝑋 ≅ ෨𝑋 = 𝐸 + 𝐶 መ𝑆−1𝐶𝑇

Precond 24

2D Cantilever beam 3D Mandel’s problem



Numerical results
Computational efficiency
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✓ Augmented SPE-10 benchmark

✓ 288-m thick layers added on top and bottom to 

the original setup

✓ The grid totals 3,410,693 nodes, 10,062,960 

faces and 3,326,400 cells, global size of 

23,621,439 dofs

✓ Time-step size of 0.1 days

Precond 24



Numerical results
Computational efficiency
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✓ 3D cantilever beam

✓ Weak scalability analysis

✓ GAMG for ሚ𝐴, diagonal fixed-stress 

approximation for ሚ𝑆, Boomer AMG for ෨𝑋

✓ Different time steps

∆𝑡 = 10−1 s

∆𝑡 = 10−5 s

Separate Displacement 

Component

Rigid Body 

Modes
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Conclusions
Take-home message and future work

✓ Work objective: development and analysis of block triangular preconditioners for the double saddle-point problems 

arising from a mixed hybrid discretization of coupled poromechanics

✓ Main results:

Future work

✓ Generalizing the method for other applications

Precond 24

1. Theoretical analysis of the eigenvalue distribution of 𝐀𝐏−1, where the double saddle-point problem has all non-

zero diagonal blocks

2. The bounds prove sufficiently tight, with complex eigenvalues all lying in a circle centered at 1 with unitary radius

3. Block triangular preconditioners with GMRES generally outperform block diagonal ones with MINRES

4. The proposed implementation appears to be robust and efficient for the solution to large-size real-world problems 

in coupled poromechanics



Massimiliano Ferronato: Massimiliano.ferronato@unipd.it

Thanks for attending!

Questions?

The authors gratefully acknowledge Matteo Frigo (Stanford University), Nicola Castelletto and Joshua 

White (Lawrence Livermore National Lab) for their contribution to the numerical results section
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