# Overlapping Schwarz Preconditioner with Geneo Coarse Space for Nonlocal Equations

Christian Glusa<sup>1</sup> <u>Pierre Marchand</u><sup>2</sup>

June 11, 2024 — Preconditioning 2024

<sup>1</sup>Sandia National Laboratories

<sup>2</sup>Inria

Fractional derivatives are interesting alternative tools for modelling. In particular, fractional space-derivatives

- have been used to model anomalous diffusion (e.g. porous media),
- and, attract interests from the mathematical community.<sup>1234</sup>

Focus of this talk: Parallel solver for the Fractional Laplacian.

<sup>&</sup>lt;sup>1</sup>Bonito, Borthagaray, Nochetto, Otárola, and Salgado 2018.

<sup>&</sup>lt;sup>2</sup>Čiegis, Starikovičius, Margenov, and Kriauzienė 2017.

<sup>&</sup>lt;sup>3</sup>Duo, Wang, and Zhang 2019.

<sup>&</sup>lt;sup>4</sup>Lischke, Pang, Gulian, Song, Glusa, Zheng, Mao, Cai, Meerschaert, Ainsworth, and Karniadakis 2020.

• In  $\mathbb{R}^d$ , for 0 < s < 1, a definition is

$$(-\Delta)^{s}u(\mathbf{x}) = C(d,s) \operatorname{p.v.} \int_{\mathbb{R}^{d}} \frac{u(\mathbf{x}) - u(\mathbf{y})}{|\mathbf{x} - \mathbf{y}|^{d+2s}} \, \mathrm{d}\mathbf{y}$$

but several other equivalent definitions exist<sup>5</sup>.

<sup>&</sup>lt;sup>5</sup>Kwaśnicki 2017.

• In  $\mathbb{R}^d$ , for 0 < s < 1, a definition is

$$(-\Delta)^{s}u(\mathbf{x}) = C(d,s) \operatorname{p.v.} \int_{\mathbb{R}^{d}} \frac{u(\mathbf{x}) - u(\mathbf{y})}{|\mathbf{x} - \mathbf{y}|^{d+2s}} \, \mathrm{d}\mathbf{y}$$

but several other equivalent definitions exist<sup>5</sup>.

 $\cdot$  On a bounded domain  $\Omega,$  several definitions exist, we use: the Dirichlet Fractional Laplacian

$$\begin{cases} (-\Delta)^{s} u(\mathbf{x}) = f(\mathbf{x}), & \text{for } \mathbf{x} \in \Omega \\ u(\mathbf{x}) = 0, & \text{for } \mathbf{x} \in \mathbb{R}^{d} \setminus \Omega \end{cases}$$

<sup>&</sup>lt;sup>5</sup>Kwaśnicki 2017.

$$\begin{split} a(u,v) &:= \frac{C(d,S)}{2} \iint_{\Omega \times \Omega} \frac{(u(\mathbf{x}) - u(\mathbf{y}))(v(\mathbf{x}) - v(\mathbf{y}))}{|\mathbf{x} - \mathbf{y}|^{d+2s}} \, \mathrm{d}\mathbf{x} \, \mathrm{d}\mathbf{y} \\ &+ \frac{C(d,S)}{2s} \int_{\Omega} \int_{\partial \Omega} \frac{u(\mathbf{x})v(\mathbf{x})\mathbf{n} \cdot (\mathbf{x} - \mathbf{y})}{|\mathbf{x} - \mathbf{y}|^{d+2s}}, \quad \forall v \in \widetilde{H}^{s}(\Omega) \end{split}$$

#### Difficulties with finite element approximation

- Entry computation
- Dense linear system
- Conditioning of linear system

$$\begin{split} a(u,v) &:= \frac{C(d,S)}{2} \iint_{\Omega \times \Omega} \frac{(u(\mathbf{x}) - u(\mathbf{y}))(v(\mathbf{x}) - v(\mathbf{y}))}{|\mathbf{x} - \mathbf{y}|^{d+2s}} \, \mathrm{d}\mathbf{x} \, \mathrm{d}\mathbf{y} \\ &+ \frac{C(d,S)}{2s} \int_{\Omega} \int_{\partial \Omega} \frac{u(\mathbf{x})v(\mathbf{x})\mathbf{n} \cdot (\mathbf{x} - \mathbf{y})}{|\mathbf{x} - \mathbf{y}|^{d+2s}}, \quad \forall v \in \widetilde{H}^{s}(\Omega) \end{split}$$

#### Difficulties with finite element approximation

- Entry computation
- Dense linear system
- $\rightarrow$  Sauter and Schwab guadratures
- $\rightarrow$  Compression using  $\mathcal{H}/\mathcal{H}^2$ -matrices
- Conditioning of linear system  $\rightarrow$  condition number  $\sim O(h^{-2s})$
- $\rightarrow$  techniques developed for Boundary integral equations!<sup>67</sup>

<sup>&</sup>lt;sup>6</sup>Acosta and Borthagaray 2017.

<sup>&</sup>lt;sup>7</sup>Ainsworth and Glusa 2018.

Domain decomposition methods (DDM), and in particular, *Schwarz methods*, define preconditioners,

- · adapted to parallel computations,
- with some theoretical guarantees.



But they usually require a second level/coarse space.

Domain decomposition methods (DDM), and in particular, *Schwarz methods*, define preconditioners,

- · adapted to parallel computations,
- with some theoretical guarantees.



- Coarse space based on coarse meshes<sup>8</sup>
- Adaptive coarse spaces with GenEO<sup>910</sup>

#### $\rightarrow$ Goal: Adapt the GenEO coarse space to the Fractional Laplacian.

<sup>9</sup>Spillane, Dolean, Hauret, Nataf, Pechstein, and Scheichl 2014.



<sup>&</sup>lt;sup>8</sup>Hebeker 1990; Stephan and Tran 2021.

<sup>&</sup>lt;sup>10</sup>Marchand, Claeys, Jolivet, Nataf, and Tournier 2020.

- **PyNucleus**<sup>11</sup>: (developed by C. Glusa)
  - discretization for the fractional Laplacian
  - $\cdot \, {oldsymbol{\mathcal{H}}}^2$  compression
- Htool-DDM<sup>12</sup>: (developed P.M. and P.H. Tournier)
  - distributed parallelized operator
  - DDM preconditioners
  - $\cdot$   $\mathcal{H}$ -matrices
- HPDDM<sup>13</sup>: (developed P. Jolivet)
  - DDM solvers
  - iterative methods

<sup>6</sup>https://htool-documentation.readthedocs.io/en/latest/

<sup>7</sup>https://github.com/hpddm/hpddm

<sup>&</sup>lt;sup>5</sup>https://sandialabs.github.io/PyNucleus/

- **PyNucleus**<sup>11</sup>: (developed by C. Glusa)
  - $\cdot$  discretization for the fractional Laplacian
  - $\cdot$   ${\cal H}^2$  compression
- Htool-DDM<sup>12</sup>: (developed P.M. and P.H. Tournier)
  - distributed parallelized operator
  - $\cdot\,$  DDM preconditioners
  - $\cdot \ \mathcal{H}$ -matrices
- HPDDM<sup>13</sup>: (developed P. Jolivet)
  - DDM solvers
  - iterative methods

<sup>6</sup>https://htool-documentation.readthedocs.io/en/latest/

<sup>7</sup>https://github.com/hpddm/hpddm

<sup>&</sup>lt;sup>5</sup>https://sandialabs.github.io/PyNucleus/

- **PyNucleus**<sup>11</sup>: (developed by C. Glusa)
  - $\cdot$  discretization for the fractional Laplacian
  - $\cdot$   ${\cal H}^2$  compression
- Htool-DDM<sup>12</sup>: (developed P.M. and P.H. Tournier)
  - distributed parallelized operator
  - DDM preconditioners
  - $\cdot$   $\mathcal{H}$ -matrices
- HPDDM<sup>13</sup>: (developed P. Jolivet)
  - DDM solvers
  - $\cdot$  iterative methods

<sup>6</sup>https://htool-documentation.readthedocs.io/en/latest/

<sup>7</sup>https://github.com/hpddm/hpddm

<sup>&</sup>lt;sup>5</sup>https://sandialabs.github.io/PyNucleus/

1. Dirichlet integral Fractional Laplacian

2. Domain decomposition

3. (Preliminary) Numerical experiments

# Dirichlet integral Fractional Laplacian

#### **Function spaces**

#### Geometry

•  $\Omega \subset \mathbb{R}^d$  for d = 2 or d = 3, Lipschitz domain

**Fractional Sobolev spaces**: For  $\Omega$  bounded and  $\Lambda \subseteq \mathbb{R}^d$  and 0 < s < 1:

•  $H^{s}(\Lambda) := \{u \in L^{2}(\Lambda) \mid |u|_{H^{s}(\Lambda)} < \infty\}$  where  $|u|_{H^{s}(\Lambda)} := (u, u)^{1/2}_{H^{s}(\Lambda)}$ and

$$(u,v)_{H^{s}(\Lambda)} := \frac{C(d,s)}{2} \iint_{\Lambda \times \Lambda} \frac{(u(\mathbf{x}) - u(\mathbf{y}))(v(\mathbf{x}) - v(\mathbf{y}))}{|\mathbf{x} - \mathbf{y}|^{d+2s}} \, \mathrm{d}\mathbf{x} \, \mathrm{d}\mathbf{y}$$

#### **Function spaces**

#### Geometry

•  $\Omega \subset \mathbb{R}^d$  for d = 2 or d = 3, Lipschitz domain

**Fractional Sobolev spaces**: For  $\Omega$  bounded and  $\Lambda \subseteq \mathbb{R}^d$  and 0 < s < 1:

•  $H^{s}(\Lambda) := \{u \in L^{2}(\Lambda) \mid |u|_{H^{s}(\Lambda)} < \infty\}$  where  $|u|_{H^{s}(\Lambda)} := (u, u)_{H^{s}(\Lambda)}^{1/2}$ and

$$(u,v)_{H^{s}(\Lambda)} := \frac{C(d,s)}{2} \iint_{\Lambda \times \Lambda} \frac{(u(\mathbf{x}) - u(\mathbf{y}))(v(\mathbf{x}) - v(\mathbf{y}))}{|\mathbf{x} - \mathbf{y}|^{d+2s}} \,\mathrm{d}\mathbf{x} \,\mathrm{d}\mathbf{y}$$

•  $\widetilde{H}^{s}(\Omega) := \{ u \in H^{s}(\mathbb{R}^{d}) | \operatorname{supp}(u) \subset \overline{\Omega} \}$  equipped with the norm

$$\|\varphi\|^2_{\widetilde{H}^{\mathrm{s}}(\Omega)}:=(arphi,arphi)_{\mathrm{H}^{\mathrm{s}}(\mathbb{R}^d)}.$$

# Weak formulation

# For $u, v \in \widetilde{H}^{s}(\Omega)$ , we have

$$\begin{split} \langle (-\Delta)^{s} u, v \rangle &= C(d, s) \iint_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \frac{(u(\mathbf{x}) - u(\mathbf{y}))v(\mathbf{x})}{|\mathbf{x} - \mathbf{y}|^{d+2s}} \, \mathrm{d}\mathbf{x} \, \mathrm{d}\mathbf{y} \\ &= \frac{C(d, s)}{2} \iint_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \frac{(u(\mathbf{x}) - u(\mathbf{y}))(v(\mathbf{x}) - v(\mathbf{y}))}{|\mathbf{x} - \mathbf{y}|^{d+2s}} \, \mathrm{d}\mathbf{x} \, \mathrm{d}\mathbf{y} \\ &= (u, v)_{H^{s}(\mathbb{R}^{d})}, \quad \forall u, v \in \widetilde{H}^{s}(\Omega) \end{split}$$

$$(u,v)_{H^{s}(\mathbb{R}^{d})} = \langle f,v \rangle, \quad \forall v \in \widetilde{H}^{s}(\Omega).$$

$$(u,v)_{H^{s}(\mathbb{R}^{d})} = \langle f,v \rangle, \quad \forall v \in \widetilde{H}^{s}(\Omega).$$

**Finite element discretization**: Find  $u_h \in V_h \subset \widetilde{H}^s(\Omega)$  such that

$$(u_h, v_h)_{H^s(\mathbb{R}^d)} = \langle f, v_h \rangle, \quad \forall v_h \in V_h,$$

where  $V_h$  can be the usual  $P^1$  Lagrange finite elements.

$$(u,v)_{H^{s}(\mathbb{R}^{d})} = \langle f,v \rangle, \quad \forall v \in \widetilde{H}^{s}(\Omega).$$

**Finite element discretization**: Find  $u_h \in V_h \subset \widetilde{H}^s(\Omega)$  such that

$$(u_h, v_h)_{H^s(\mathbb{R}^d)} = \langle f, v_h \rangle, \quad \forall v_h \in V_h,$$

where  $V_h$  can be the usual  $P^1$  Lagrange finite elements.

#### Remark

$$(u_h, v_h)_{H^s(\mathbb{R}^d)} = (u_h, v_h)_{H^s(\Omega)} + C(d, s) \int_{\Omega} \int_{\mathbb{R}^d \setminus \overline{\Omega}} \frac{u(\mathbf{x})v(\mathbf{x})}{|\mathbf{x} - \mathbf{y}|^{d+2s}} \, \mathrm{d}\mathbf{x} \, \mathrm{d}\mathbf{y}$$

$$(u,v)_{H^{s}(\mathbb{R}^{d})} = \langle f,v \rangle, \quad \forall v \in \widetilde{H}^{s}(\Omega).$$

**Finite element discretization**: Find  $u_h \in V_h \subset \widetilde{H}^s(\Omega)$  such that

$$(u_h, v_h)_{H^s(\mathbb{R}^d)} = \langle f, v_h \rangle, \quad \forall v_h \in V_h,$$

where  $V_h$  can be the usual  $P^1$  Lagrange finite elements.

#### Remark

$$(u_h, v_h)_{H^s(\mathbb{R}^d)} = (u_h, v_h)_{H^s(\Omega)} + \frac{C(d, s)}{2s} \int_{\Omega} \int_{\partial \Omega} \frac{u(\mathbf{x})v(\mathbf{x})\mathbf{n}_{\mathbf{y}} \cdot (\mathbf{x} - \mathbf{y})}{|\mathbf{x} - \mathbf{y}|^{d+2s}} \, \mathrm{d}\mathbf{x} \, \mathrm{d}\mathbf{y}$$

# Domain decomposition

# Example of decomposition





10/23

# Example of decomposition





10/23

# Example of decomposition



10/23

## Notations

#### Subdomains

- dof<sub>*h*,*p*</sub>  $\subset$  {1, . . . , *N*}
- $\cdot \ \mathcal{V}_{h,p} := \mathsf{Span}(\varphi_j|_{\widetilde{\Omega}_p} \,|\, j \in \mathsf{dof}_{h,p}) \subset \widetilde{H}^{\mathrm{s}}(\widetilde{\Omega}_p),$
- $\cdot \ \Omega_p := \widetilde{\Omega}_p \setminus \cup_{j \notin \mathsf{dof}_{h,p}} \mathsf{supp}(\varphi_j) \subset \widetilde{\Omega}_p$

#### Decomposition

- Extension by zero:  $\mathbf{R}_p^{\mathsf{T}} \in \mathbb{R}^{N \times N_p}$ ,
- Restriction matrices:  $\mathbf{R}_p$
- Partition of unity: diagonal matrices  $\mathbf{D}_p \in \mathbb{R}^{N_p \times N_p}$  s.t.

$$\sum_{p=1}^{n} \mathbf{R}_{p}^{\mathsf{T}} \mathbf{D}_{p} \mathbf{R}_{p} = \mathbf{I}_{d}.$$

#### Additive Schwarz Preconditioner

$$\mathbf{P}_{\mathrm{ASM}} = \mathbf{R}_0^T (\mathbf{R}_0 \mathbf{A}_h \mathbf{R}_0^T)^{-1} \mathbf{R}_0 + \sum_{p=1}^n \mathbf{R}_p^T (\mathbf{R}_p \mathbf{A}_h \mathbf{R}_p^T)^{-1} \mathbf{R}_p$$

- $Z = R_0^T \in \mathbb{R}^{N \times N_0}$ , an interpolation operator from the *coarse space* to the finite element space
- $\cdot$  The coarse space  $\mathcal{V}_{h,0}$  is spanned by the columns of Z

#### Hypotheses of the Fictitious Space lemma<sup>14</sup>

(H1) 
$$\|\sum_{p=0}^{n} \mathbf{R}_{p}^{T} \mathbf{u}_{h}^{p}\|_{\mathbf{A}_{h}}^{2} \leq c_{R} \sum_{p=0}^{n} \|\mathbf{R}_{p}^{T} \mathbf{u}_{h}^{p}\|_{\mathbf{A}_{h}}^{2} \quad \forall (\mathbf{u}_{h}^{p})_{p=0}^{n} \in \prod_{p=0}^{n} \mathbb{R}^{N_{p}},$$
  
(H2) For  $\mathbf{u}_{h} \in V_{h}$ , how can we define  $(\mathbf{u}_{h}^{p})_{p=0}^{n} \in \prod_{p=0}^{n} \mathbb{R}^{N_{p}}$  s.t.  
 $\mathbf{u}_{h} = \sum_{p=0}^{n} \mathbf{R}_{p}^{T} \mathbf{u}_{h}^{p}$  and

$$c_T \sum_{p=0}^n \|\mathbf{R}_p^T \mathbf{u}_h^p\|_{\mathbf{A}_h}^2 \leq \|\mathbf{u}_h\|_{\mathbf{A}_h}^2,$$

Result

$$\operatorname{cond}_2(\mathsf{P}_{\operatorname{ASM}}\mathsf{A}_h) \leq \frac{c_R}{c_T}.$$

<sup>&</sup>lt;sup>14</sup>Nepomnyaschikh 1992.

### Coarse space: GenEO approach

**Pragmatic approach**: For  $\mathbf{u}_h = \sum_{p=0}^n \mathbf{R}_p^T \mathbf{u}_h^p$  and some  $\mathbf{B}_p$ ,

$$\begin{split} \sum_{p=0}^{n} \|\mathbf{R}_{p}^{\mathsf{T}}\mathbf{u}_{h}^{p}\|_{\mathbf{A}_{h}}^{2} &\leq 2\|\mathbf{u}_{h}\|_{\mathbf{A}_{h}}^{2} + (1+5N_{c})\sum_{p=1}^{n} \|\mathbf{R}_{p}^{\mathsf{T}}\mathbf{u}_{h}^{p}\|_{\mathbf{A}_{h}}^{2} \\ &\sum_{p=1}^{n} \left(\mathbf{B}_{p}\mathbf{R}_{p}\mathbf{u}_{h}, \mathbf{R}_{p}\mathbf{u}_{h}\right) \stackrel{?}{\leq} \|u_{h}\|_{\widetilde{H}^{s}(\Omega)}^{2} = \|\mathbf{u}_{h}\|_{\mathbf{A}_{h}}^{2} \end{split}$$

## Coarse space: GenEO approach

**Pragmatic approach**: For  $\mathbf{u}_h = \sum_{p=0}^n \mathbf{R}_p^T \mathbf{u}_h^p$  and some  $\mathbf{B}_p$ ,

$$\begin{split} \sum_{p=0}^{n} \|\mathbf{R}_{p}^{\mathsf{T}} \mathbf{u}_{h}^{p}\|_{\mathbf{A}_{h}}^{2} \leq 2 \|\mathbf{u}_{h}\|_{\mathbf{A}_{h}}^{2} + (1+5N_{c}) \sum_{p=1}^{n} & \|\mathbf{R}_{p}^{\mathsf{T}} \mathbf{u}_{h}^{p}\|_{\mathbf{A}_{h}}^{2} \\ & \sum_{p=1}^{n} & \left(\mathbf{B}_{p} \mathbf{R}_{p} \mathbf{u}_{h}, \mathbf{R}_{p} \mathbf{u}_{h}\right) \stackrel{?}{\leq} \|u_{h}\|_{\tilde{H}^{s}(\Omega)}^{2} = \|\mathbf{u}_{h}\|_{\mathbf{A}_{h}}^{2} \end{split}$$

## Coarse space: GenEO approach

**Pragmatic approach**: For  $\mathbf{u}_h = \sum_{p=0}^n \mathbf{R}_p^T \mathbf{u}_h^p$  and some  $\mathbf{B}_p$ ,

$$\begin{split} \sum_{p=0}^{n} \|\mathbf{R}_{p}^{\mathsf{T}} \mathbf{u}_{h}^{p}\|_{\mathbf{A}_{h}}^{2} &\leq 2 \|\mathbf{u}_{h}\|_{\mathbf{A}_{h}}^{2} + (1+5N_{c}) \sum_{p=1}^{n} \|\mathbf{R}_{p}^{\mathsf{T}} \mathbf{u}_{h}^{p}\|_{\mathbf{A}_{h}}^{2} \\ &\sum_{p=1}^{n} \left(\mathbf{B}_{p} \mathbf{R}_{p} \mathbf{u}_{h}, \mathbf{R}_{p} \mathbf{u}_{h}\right) \overset{?}{\leq} \|u_{h}\|_{\tilde{H}^{s}(\Omega)}^{2} = \|\mathbf{u}_{h}\|_{\mathbf{A}_{h}}^{2} \end{split}$$

GenEO coarse space: A sufficient condition is, for some  $\tau$ ,

$$(\mathbf{A}_{h}\mathbf{R}_{p}^{\mathsf{T}}\mathbf{u}_{h}^{p},\mathbf{R}_{p}^{\mathsf{T}}\mathbf{u}_{h}^{p}) \leq \tau(\mathbf{B}_{p}\mathbf{R}_{p}\mathbf{u}_{h},\mathbf{R}_{p}\mathbf{u}_{h}).$$
(1)

We introduce the following eigenvalue problem: find  $(\lambda_k^p, \mathbf{v}_k^p)$  s.t.

$$\mathbf{D}_{p}\mathbf{R}_{p}\mathbf{A}_{h}\mathbf{R}_{p}^{\mathsf{T}}\mathbf{D}_{p}\mathbf{v}_{k}^{p}=\lambda_{k}^{p}\mathbf{B}_{p}\mathbf{v}_{k}^{p},$$

to remove the part of  $\mathbf{R}_{p}\mathbf{u}_{h}$  that does not satisfy (1) to define  $\mathbf{u}_{h}^{p}$ .

# Localization inequalities

#### Continuous injection: $B_p$ , mass matrix on $\Omega_p$

$$\sum_{p=1}^{''} \|u_h\|_{\Omega_p}\|_{L^2(\Omega_p)}^2 \lesssim \|u_h\|_{L^2(\Omega)}^2 \lesssim \|u_h\|_{\widetilde{H}^s(\Omega)}^2,$$

Inverse inequality:  $B_p$ , rigidity matrix on  $\Omega_p$ 

$$\sum_{p=1}^{n} h^{1-s} \|\nabla u\|_{\Omega_{p}}\|_{L^{2}(\Omega_{p})}^{2} \lesssim h^{1-s} \|\nabla u_{h}\|_{L^{2}(\Omega)}^{2} \lesssim \|u_{h}\|_{\widetilde{H}^{s}(\Omega)}^{2}.$$

H<sup>s</sup>-localization:

$$\sum_{p=1}^n (u_h|_{\Omega_p}, u_h|_{\Omega_p})_{H^s(\Omega)} \leq k_1 \|u_h\|_{\widetilde{H}^s(\Omega)}^2.$$

# Localization inequalities

#### **Continuous injection**: $B_p$ , mass matrix on $\Omega_p$

$$\sum_{p=1}^{n} \|u_{h}\|_{\Omega_{p}}\|_{L^{2}(\Omega_{p})}^{2} \lesssim \|u_{h}\|_{L^{2}(\Omega)}^{2} \lesssim \|u_{h}\|_{\widetilde{H}^{s}(\Omega)}^{2},$$

Inverse inequality:  $B_p$ , rigidity matrix on  $\Omega_p$ 

$$\sum_{p=1}^{n} h^{1-s} \|\nabla u\|_{\Omega_{p}}\|_{L^{2}(\Omega_{p})}^{2} \lesssim h^{1-s} \|\nabla u_{h}\|_{L^{2}(\Omega)}^{2} \lesssim \|u_{h}\|_{\widetilde{H}^{s}(\Omega)}^{2}.$$

H<sup>s</sup>-localization:

$$\sum_{p=1}^n (u_h|_{\Omega_p}, u_h|_{\Omega_p})_{H^s(\Omega)} \leq k_1 \|u_h\|_{\widetilde{H}^s(\Omega)}^2.$$

 $\rightarrow \operatorname{cond}(\mathsf{P}_{\mathrm{ASM}}\mathsf{A}_h) \leq 5N_c \left(2 + k_1 \tau (1 + 5N_c)\right)$ 

(Preliminary) Numerical experiments

#### Test case

- Fractional Poisson problem in a disk with f = 1.
- $\cdot$  Error between interpolated analytical solution and numerical solution  $\leq 5\%$
- Computations on IDCS mesocentre.
- $\cdot$  Implementation: PyNucleus'  $\mathcal{H}^2\text{-matrices}$  and Htool's  $\mathcal{H}\text{-matrices}.$



#### Test case

- Fractional Poisson problem in a disk with f = 1.
- $\cdot$  Error between interpolated analytical solution and numerical solution  $\leq 5\%$
- Computations on IDCS mesocentre.
- $\cdot$  Implementation: PyNucleus'  $\mathcal{H}^2\text{-matrices}$  and Htool's  $\mathcal{H}\text{-matrices}.$



#### Two experiments

- 1. Local eigenproblems with 64 100  $P^1$  elements and p = 72.
- 2. Strong scaling with 258 171 P<sup>1</sup> elements.

## Local eigenproblems: Rigidity matrix for s = 0.7



Eigenvalues



Second vector for p = 0.



First vector for p = 0.



First vector for p = 4. 17/23

#### Local eigenproblems: $H^s$ localization for s = 0.7



Eigenvalues



Second vector for p = 0.



First vector for p = 0.



First vector for p = 4. <sup>18/23</sup>

#### Local eigenproblems: $H^s$ localization for s = 0.9



Eigenvalues



Second vector for p = 0.



First vector for p = 0.



First vector for p = 4. <sup>19/23</sup>

## Local eigenproblems: Mass matrix for s = 0.7



## Strong scaling with *H*<sup>s</sup>-localization



Strong scaling in 2D for 258 171  $P^1$  Lagrange elements and  $\tau = 10$ .

## Strong scaling



Strong scaling in 2D for 258 171  $P^1$  Lagrange elements and  $\tau = 10$ .

Conclusion

#### What is done:

- We extended GenEO to the Dirichlet integral Fractional Laplacian.
- $\cdot$  We checked numerically the relevance of the coarse space.

What is done:

- We extended GenEO to the Dirichlet integral Fractional Laplacian.
- We checked numerically the relevance of the coarse space.

#### What remains: Performance

- $\cdot$  HCA compression for preconditioner, better handling of the overlap and  $\mathcal{H}\text{-}\text{LU}$  factorization, ...
- Try different local eigensolvers (ARPACK, LOBPCG,...).

What is done:

- We extended GenEO to the Dirichlet integral Fractional Laplacian.
- We checked numerically the relevance of the coarse space.

#### What remains: Performance

- HCA compression for preconditioner, better handling of the overlap and  $\mathcal{H}\text{-}\text{LU}$  factorization, ...
- Try different local eigensolvers (ARPACK, LOBPCG,...).

#### What could be explored: Non-local GenEO for

- Negative order fractional problem (s < 0).
- Interpolation problems (RBF interpolation)
- Non-hermitian problem (acoustic with boundary integral operators)

What is done:

- We extended GenEO to the Dirichlet integral Fractional Laplacian.
- We checked numerically the relevance of the coarse space.

#### What remains: Performance

- HCA compression for preconditioner, better handling of the overlap and  $\mathcal{H}\text{-}\text{LU}$  factorization, ...
- Try different local eigensolvers (ARPACK, LOBPCG,...).

#### What could be explored: Non-local GenEO for

- Negative order fractional problem (s < 0).
- Interpolation problems (RBF interpolation)
- Non-hermitian problem (acoustic with boundary integral operators)

# Thank you for your attention!

References

#### References i

#### Bibliography

- Acosta, Gabriel and Juan Pablo Borthagaray (2017). "A fractional Laplace equation: regularity of solutions and Finite Element approximations". In: *SIAM Journal on Numerical Analysis* 55.2, pp. 472–495.
- Ainsworth, Mark and Christian Glusa (2018). "Towards an Efficient Finite Element Method for the Integral Fractional Laplacian on Polygonal Domains". In: Contemporary Computational Mathematics - A Celebration of the 80th Birthday of Ian Sloan.
  Springer International Publishing, pp. 17–57. DOI: 10.1007/978-3-319-72456-0\_2.

#### References ii

- Bonito, Andrea, Juan Pablo Borthagaray, Ricardo H. Nochetto, Enrique Otárola, and Abner J. Salgado (Mar. 2018). "Numerical methods for fractional diffusion". In: *Computing and Visualization in Science* 19.5-6, pp. 19–46. DOI: 10.1007/s00791-018-0289-y.
- Čiegis, Raimondas, Vadimas Starikovičius, Svetozar Margenov, and Rima Kriauzienė (June 2017). "Parallel solvers for fractional power diffusion problems". In: *Concurrency and Computation: Practice and Experience* 29.24, e4216. DOI: **10.1002/cpe.4216**.
- Duo, Siwei, Hong Wang, and Yanzhi Zhang (2019). "A comparative study on nonlocal diffusion operators related to the fractional Laplacian". In: Discrete & Continuous Dynamical Systems - B 24.1, pp. 231–256. DOI: 10.3934/dcdsb.2018110.

### References iii

- Hebeker, Friedrich K. (1990). "On a parallel Schwarz algorithm for symmetric strongly elliptic integral equations". In: Domain Decomposition Methods for Partial Differential Equations. Ed. by Roland Glowinski, Yuri A. Kuznetsov, Gérard Meurant, Jacques Périaux, and Olaf B. Widlund. SIAM, pp. 382–393.
- Kwaśnicki, Mateusz (Jan. 2017). "Ten equivalent definitions of the fractional laplace operator". In: *Fractional Calculus and Applied Analysis* 20.1. DOI: 10.1515/fca-2017-0002.
- Lischke, Anna, Guofei Pang, Mamikon Gulian, Fangying Song, Christian Glusa, Xiaoning Zheng, Zhiping Mao, Wei Cai, Mark M. Meerschaert, Mark Ainsworth, and George Em Karniadakis (Mar. 2020). "What is the fractional Laplacian? A comparative review with new results". In: Journal of Computational Physics 404, p. 109009. DOI: 10.1016/j.jcp.2019.109009.

#### References iv

- Marchand, Pierre, Xavier Claeys, Pierre Jolivet, Frédéric Nataf, and Pierre-Henri Tournier (Sept. 2020). "Two-level preconditioning for h-version boundary element approximation of hypersingular operator with GenEO". In: Numerische Mathematik 146.3, pp. 597–628. DOI: 10.1007/s00211-020-01149-5.
- Nepomnyaschikh, Sergey V. (1992). "Decomposition and fictitious domains methods for elliptic boundary value problems". In: *Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations*. Philadelphia, PA: Society for Industrial and Applied Mathematics, pp. 62–72.

#### References v

- Sauter, Stefan A. and Christoph Schwab (2011). Boundary element methods. Vol. 39. Springer Series in Computational Mathematics. Translated and expanded from the 2004 German original. Springer-Verlag, Berlin, pp. xviii+561. ISBN: 978-3-540-68092-5. DOI: 10.1007/978-3-540-68093-2.
- Spillane, Nicole, Victorita Dolean, Patrice Hauret, Frédéric Nataf, Clemens Pechstein, and Robert Scheichl (2014). "Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps". In: Numerische Mathematik 126.4, pp. 741–770. ISSN: 0945-3245. DOI: 10.1007/s00211-013-0576-y. URL: http://dx.doi.org/10.1007/s00211-013-0576-y.

 Stephan, Ernst P. and Thanh Tran (2021). Schwarz Methods and Multilevel Preconditioners for Boundary Element Methods.
Springer International Publishing. ISBN: 9783030792831. DOI: 10.1007/978-3-030-79283-1.

# Appendix

#### Context

Algebraic system

$$\mathbf{A}_h \mathbf{u}_h = \mathbf{f}, \quad \text{with } \mathbf{u}_h \in \mathbb{R}^d$$

**A**<sub>h</sub> a dense matrix usually compressed

#### Context

Algebraic system

 $\mathbf{A}_h \mathbf{u}_h = \mathbf{f}, \quad \text{with } \mathbf{u}_h \in \mathbb{R}^d$ 

A<sub>h</sub> a dense matrix usually compressed

Solvers

- · Direct methods:
  - Factorisation can be stored for multi-rhs
  - Expensive for dense matrices (complexity in  $O(N^3)$ )
  - Possibility to use  $\mathcal{H} LU$  decomposition

#### Iterative methods:

- Less intrusive
- Only matrix-vector products (*O*(*N*<sup>2</sup>) or quasi linear complexity with compression)
- But ill-conditioned, especially when the mesh is refined

#### Context

Algebraic system

 $\mathbf{A}_h \mathbf{u}_h = \mathbf{f}, \quad \text{with } \mathbf{u}_h \in \mathbb{R}^d$ 

A<sub>h</sub> a dense matrix usually compressed

Solvers

- · Direct methods:
  - Factorisation can be stored for multi-rhs
  - Expensive for dense matrices (complexity in  $O(N^3)$ )
  - Possibility to use  $\mathcal{H} LU$  decomposition
- Iterative methods:
  - Less intrusive
  - Only matrix-vector products (*O*(*N*<sup>2</sup>) or quasi linear complexity with compression)
  - But ill-conditioned, especially when the mesh is refined
- $\implies$  preconditioning techniques:  $PA_hu_h = Pf$

#### Lemma

For  $(u_p)_{1 \le p \le n} \in \prod_{p=1}^n \widetilde{H}^s(\widetilde{\Omega}_p)$ , we have the following inequality:

$$\left\|\sum_{p=1}^{n} E_{\widetilde{\Omega}_{p}}(u_{p})\right\|_{\widetilde{H}^{s}(\Omega)}^{2} \leq \frac{5}{2} N_{c} \sum_{p=1}^{n} \|u_{p}\|_{\widetilde{H}^{s}(\widetilde{\Omega}_{p})}^{2},$$

where N<sub>c</sub> is the number of colors.

#### Proof:

- 1. Similar result without overlap (minor adaptation from Sauter and Schwab (2011, Lemma 4.1.49 (b))).
- 2. Colouring argument.

## Strong scaling



Strong scaling in 2D for 258 171 *P*<sup>1</sup> Lagrange elements with 2 eigenvectors by subdomain.