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Algebraic problem

Let’s focus on the solution of

Axp=b, n=1,...

where the matrices in the sequence A,
® have order N;

® share the same (symmetric) sparsity
pattern;

¢ glightly differ one from another;
e focus on ILU factorizations.

Goals:
® design a general purpose preconditioning strategy;
® exploit preconditioner from previous algorithmic steps;
e efficient execution on accelerators, in particular GPUs.
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Incomplete LU factorization

Incomplete LU (ILU) factorization forms a robust class of preconditioners, however
they involve two sparse triangular linear systems at each outer Krylov iteration.
Drawbacks:

® |LU factorizations can generate significant fill-in;
® may be prone to instabilities.

Reordering techniques, such as the Reverse Cuthill-McKee (RCM) ordering, are
been used to help alleviate this problem.
Focus:

© Improve the efficiency of triangular solver on GPUs;

® Update LU factorization exploiting previous time steps to avoid computation
from scratch.

"Michele Benzi. “Preconditioning Techniques for Large Linear Systems: A Survey”. In: Journal of
Computational Physics 182 (2 2002).
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Parallel exact triangular solver

Taking advantage of the sparsity, it is possible to group together independent
rows by representing the dependencies as a directed graph®. For example, a
triangular system of size N = 8 can be solved in 2 algorithmic steps.

X
X
X
y Q @ @ @
X X
o y ® ® © ®
X X X
X X X

2Maxim Naumov. “Parallel Solution of Sparse Triangular Linear Systems in the Preconditioned
Iterative Methods on the GPU”. In: 2011.
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Parallel exact triangular solver: RCM reordering

RCM may improve fill-in and stability, but it often erodes parallelism.

X X
X X X
X X
X X
X X
X X

o)
©-0-60-6-& 90

X X
X
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Approximate triangular solver?

Consider a sparse triangular linear system Tx = b, D =diag(T) and Dg a block
diagonal approximation of T.
Jacobi(m):

xt+H) =D+ (I1-D'T)x®), k=0,...,m-1
N 1)
x® =D p.

Block-Jacobi(m):

x6D =D'b+ (1-Dg'T)x®, k=0,...,m-1
x© = Dg'b. @)

SEdmond Chow et al. “Using Jacobi iterations and blocking for solving sparse triangular systems in
incomplete factorization preconditioning”. In: Journal of Parallel and Distributed Computing (2018).
issN: 0743-7315.
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LU updates

Consider a sequence of matrices A,, n = 1,..., with the same sparsity pattern S.
The lterative Thresholding Alternating LU# is an updating strategy.

Given A, ~ LoUo, compute Ap1 = LU
1: fork =0,. —-1do
2: Compute Rk = A, — LUk
3. Compute Xy = triu(L, ' Rk) > Direct LU solver
4:  Apply dropping to Xy
5: Uk+1 = Uk + Xu > U update
6
7
8

Compute X, = tril(Rc U ) > Direct LU solver
Apply dropping to X
Ly = Le + X0 > L update

4Caterina Calgaro, Jean-Paul Chehab, and Yousef Saad. “Incremental incomplete LU factorizations
with applications”. \n: Numerical Linear Algebra with Applications 17 (5 2010).
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LU updates

Sequences {Lg}, {Ux} converge respectively to the exact L, U factors, in no more
then N steps.

However, the correction matrices are computed as the solution of

LkXU = Rk, XU = tl’iU(Xu), (3)
UkXL = Rk, XL = triI(XL).

Inefficient on parallel machines, 2N sparse triangular systems at each iteration.
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Fully iterative LU updates

Applying the Jacobi method

XD = xO 4 (y- D7 L)X s, x© = (D) MHil(Rc © ), ()
where Dy = diag(Ux), and, since diag(Ux) = Iy, we set
XP =X+ (n-U)xgVes, X' =tiu(RcoS). (5)

Dropping: component-wise product with S = (sj), sj = 11if (i,j) € S.

SITALU(m, j) (Scalable ITALU)

Given A, = LoUp, compute Ap1 = LU
1: fork =0,...,m-1do
2:  Compute Rk = (An — Lk Uk)
3:  Compute X, = XE’) using (4) > lterative LU solver
4: l_k+1 =L+ X > L update
5.  Compute Xy = Xl(j) using (5) > lterative LU solver
6: Ukt1 = Uk + Xu > U updatel

Monica Dessole Fully iterative ILU for DVNS 10th June 2024 10/31
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Navier-Stokes equations with variable density

Let Q c R?, the density dependent Navier-Stokes system on (0, T] x Q is

dp +V - (pu) =0, (6)
dt(pu) + V- (pu @ u) — uAu + Vp = pof, (7)
V.-u=0, (8)

where the unknowns are
° u = u(t,x) is the velocity vector field,
* p = p(t,x) is the pressure field,
* p = p(t,x) is the density field.

Monica Dessole Fully iterative ILU for DVNS 10th June 2024 11/31
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Rayleigh-Taylor instability®

A heavy fluid fluid (density pmax, in yellow)
is superposed to a light fluid (density pmin,
in blue) under the action of a gravitational
field.
The numerical difficulty essentially de-
pends on:

* the Reynolds number Re;

® the Atwood number

P| /P At _ Pmax — Pmin
Pmax +,0min

5M. Dessole and F. Marcuzzi. “Fully iterative ILU preconditioning of the unsteady Navier—Stokes
equations for GPGPU". In: Computers & Mathematics with Applications 77.4 (2019), pp. 907-927.
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The numerical scheme

Use Strang time splitting® and solve with a second order hybrid FE-FV scheme”’:
* P! Finite Volume approximation of the transport equation

* P2 — P! Finite Element approximation of NS

di(pu) + V- (pu @ u) — uAu + Vp = pf,
V-u=0.

8Gilbert Strang. “On the Construction and Comparison of Difference Schemes”. In: SIAM Journal
on Numerical Analysis 5 (3 Sept. 1968).
7Caterina Calgaro, Emmanuel Creuse, and Thierry Goudon. “An hybrid finite volume—finite element
method for variable density incompressible flows”. n: Journal of Computational Physics 227 (9 2008).
Monica Dessole Fully iterative ILU for DVNS 10th June 2024 13/31
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NS: algebraic problem

Using a projection method, at each time step the linear problem is:

AU = FFY =12, (9)
Lo®p = Fpt, (10)
MpPni = Fj" (11)

where Lp, M, are the stiffness and mass P'-matrices and

3 G o
2_AtM( )+—L + NL(@", p*). (12)

An+1 =
where
* M, is the mass matrix, depending on the current density fiend p*;
® |, is the stiffness matrix

® NL is the nonlinear term matrix, evaluated on a second order extrapolation of
the velocity field "+ and the current density field p*.

Monica Dessole Fully iterative ILU for DVNS 10th June 2024 14/31
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Single node GPU-offloading

CPU

- Send data to GPU
Init

Strang step 1

\
2 P Compute
FV: update p i fuxes

FE: update
u, p

1 {
| FE: update
| u,p

Update p

Assembly
A, and Fy

Strang step 2

Post Send data to CPU
processing yes

Solve
Lo" = Fy
Solve
MP" = F},
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Experimental framework

The linear systems are solved with GMRES(30).

Abbr. LU update LU solver

ILU(0) No Direct exact solver
SITALU(m, j) Yes Direct exact solver
SITALU(m, j)+Jacobi(k) Yes Jacobi solver
SITALU(m, j)+block-Jacobi(k)  Yes block-Jacobi solver

On what follows j = 1. Initialization is performed with ILU(0)2.
Comparison metrics:

* the number of iterations for convergence (maxit= 3000);
* runtime of the solve phase (preconditioner computation/updating+GMRES).
Hardware: gpu01, NVidia GeForce GTX1060 GPU with 2560 CUDA cores.

8E. Chow and A. Patel. “Fine-Grained Parallel Incomplete LU Factorization”. In: SIAM Journal on
Scientific Computing 37.2 (2015), pp. C169-C193.
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A closer look to block-Jacobi

Fine-grained block approximation:

SEERE— o m w o w
‘3%%”’3
w0 Y w
" S
4N .
-y AN
1 W, w
1000 »ﬁ .\\
(a) Lexicographic ordering. (b) RCM ordering. (c) Diagonal blocks, close up.

Trade-off: better parallelism, less efficiency.
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Interplay between Reynolds and Atwood numbers

Rayleigh-Taylor instability is investigated in different set-
tings, i.e. different values of the Reynolds number Re and
the Atwood number At.

® Low, moderate and high Reynolds values, i.e.

Re = 102, 1000, 20000. oS\
* Moderate, high and very high Atwood values, i.e. % }f
At = 0.5,0.9,0.98. Recall that 2
) 6/6
p _p . 05 z\ $
At — max min . k \ Ve /
Pmax T Pmin a0 L Y.

For simplicity, we indicate also the density ratio
pmax/pmin - 3a 19, 100.

-04 -02 00 02 04
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Finally, the SITALU(1) preconditioner performs as well as ILU(0), meaning that it
achieves its optimal behaviour.

—— No preconditioner
~¥— Diagonal
== ILU(0)

—— SITALU(1)

. —— No preconditioner 107
10 ~¥— Diagonal
=% ILU(0) 100
108 —— SITALU(1)
s
5 10° S 10
2 2
€ E
2 100 2100
§ £
210 10
8 8
10? 102
10! 10t
10° 100
0001 001 100 1000 10000 0,001

0.1 1 10
Reynolds number (Re)

(a) Density ratio 3.

Figure: Condition number in function of the Reynolds number at different density ratio.
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Density ratio 3 (At = 0.5), Re = 20000

T=10 T=15 T=20 T=25 T=30 T=325 T=35 T=375 T=4.0

5 T L O I A e I
SRR LN ié

-05 05-05 05-05 05-05 05-05 05-05 05-05 05-05 05-05 0.5

Figure: Evolution of the interface in time, N = 88981
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Figure: N=88981
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Density ratio 3 (At = 0.5), Re = 20000

Preconditioner k  Avg. iter. number Avg. sol. Time (s)

2 17.0 1.1701
ILU(0) 3 17.0 1.1727

4 17.1 1.1789

2 171 0.3850
SITALU(1) 3 17.2 0.3890

4 17.5 0.3952

2 18.3 0.0770
SITALU(1)+Jacobi(3) 3 18.4 0.0769

4 18.7 0.0776

Table: Average values, the preconditioner is reused for k iterations.
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Density ratio 100 (At = 0.98), Re = 1072
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Figure: Evolution of the interface in time, N = 29341
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Density ratio 100 (At = 0.98), Re = 1072

Preconditioner k  Avg. iter. number Avg. sol. Time (s)

2 216.30 6.1322
ILU(0) 3 216.33 6.1339

4 216.38 6.1344

2 216.30 3.3840
SITALU(1) 3 216.33 3.3849

4 216.38 3.3949

2 239.64 0.6730
SITALU(1)+Jacobi(3) 3 239.65 0.6733

4 239.40 0.6739

Table: Average values, the preconditioner is reused for k iterations.
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Conclusions

¢ A fully iterative ILU preconditioner performs 80% better on a GPU.

® SITALU algorithm turns out to efficient and inexpensive, 2 to 3 times faster
then recomputing the preconditioner from scratch.

® Preconditioner reuse has no global benefit to the execution times, and
sometimes it causes the preconditioner to fail.

Further directions:

* The number of sweeps could be adjusted dynamically: the number of
Jacobi sweeps m could be tuned on the residual norm reduction.

® Generalization to other preconditioning techniques should be investigated.
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