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Algebraic problem
Let’s focus on the solution of

Anxn = bn, n = 1, . . .

where the matrices in the sequence An

• have order N;
• share the same (symmetric) sparsity

pattern;
• slightly differ one from another;
• focus on ILU factorizations.
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Goals:
• design a general purpose preconditioning strategy;
• exploit preconditioner from previous algorithmic steps;
• efficient execution on accelerators, in particular GPUs.
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Incomplete LU factorization

Incomplete LU (ILU) factorization forms a robust class of preconditioners, however
they involve two sparse triangular linear systems at each outer Krylov iteration.
Drawbacks:
• ILU factorizations can generate significant fill-in;
• may be prone to instabilities.

Reordering techniques, such as the Reverse Cuthill-McKee (RCM) ordering, are
been used to help alleviate this problem1.
Focus:

1 Improve the efficiency of triangular solver on GPUs;

2 Update LU factorization exploiting previous time steps to avoid computation
from scratch.

1Michele Benzi. “Preconditioning Techniques for Large Linear Systems: A Survey”. In: Journal of
Computational Physics 182 (2 2002).
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Parallel exact triangular solver

Taking advantage of the sparsity, it is possible to group together independent
rows by representing the dependencies as a directed graph2. For example, a
triangular system of size N = 8 can be solved in 2 algorithmic steps.
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2Maxim Naumov. “Parallel Solution of Sparse Triangular Linear Systems in the Preconditioned
Iterative Methods on the GPU”. In: 2011.
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Parallel exact triangular solver: RCM reordering

RCM may improve fill-in and stability, but it often erodes parallelism.



×

× ×

× ×

× × ×

× ×

× ×

× ×

× ×



1

2

3

4

5

6

7

8

Monica Dessole Fully iterative ILU for DVNS 10th June 2024 6 / 31



Motivation Fully iterative preconditioning strategy Dual fluid flow simulation GPU implementation Numerical experiments Summary and conclusions References

Approximate triangular solver3

Consider a sparse triangular linear system Tx = b, D =diag(T) and DB a block
diagonal approximation of T .
Jacobi(m):x(k+1) = D−1b + (I − D−1T)x(k), k = 0, . . . ,m − 1

x(0) = D−1b.
(1)

Block-Jacobi(m):x(k+1) = D−1
B b + (I − D−1

B T)x(k), k = 0, . . . ,m − 1
x(0) = D−1

B b.
(2)

3Edmond Chow et al. “Using Jacobi iterations and blocking for solving sparse triangular systems in
incomplete factorization preconditioning”. In: Journal of Parallel and Distributed Computing (2018).
issn: 0743-7315.
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LU updates

Consider a sequence of matrices An, n = 1, . . ., with the same sparsity pattern S.
The Iterative Thresholding Alternating LU4 is an updating strategy.

ITALU(m)

Given An ≈ L0U0, compute An+1 ≈ LU
1: for k = 0, ...,m − 1 do
2: Compute Rk = An − Lk Uk

3: Compute XU = triu(L−1
k Rk ) ▷ Direct LU solver

4: Apply dropping to XU

5: Uk+1 = Uk + XU ▷ U update
6: Compute XL = tril(Rk U−1

k+1) ▷ Direct LU solver
7: Apply dropping to XL

8: Lk+1 = Lk + XL ▷ L update

4Caterina Calgaro, Jean-Paul Chehab, and Yousef Saad. “Incremental incomplete LU factorizations
with applications”. In: Numerical Linear Algebra with Applications 17 (5 2010).
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LU updates

Theorem
Sequences {Lk }, {Uk } converge respectively to the exact L ,U factors, in no more
then N steps.

However, the correction matrices are computed as the solution of

Lk XU = Rk , XU = triu(XU),

Uk XL = Rk , XL = tril(XL ).
(3)

Inefficient on parallel machines, 2N sparse triangular systems at each iteration.
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Fully iterative LU updates
Applying the Jacobi method

X (j)
L = X (0)

L + (IN − D−1
k Lk )X

(j−1)
L ⊙ S, X (0)

L = (Dk )
−1tril(Rk ⊙ S), (4)

where Dk = diag(Uk ), and, since diag(Uk ) = IN , we set

X (j)
U = X (0)

U + (IN − Uk )X
(j−1)
U ⊙ S, X (0)

U = triu(Rk ⊙ S). (5)

Dropping: component-wise product with S = (sij), sij = 1 if (i, j) ∈ S.

SITALU(m, j) (Scalable ITALU)
Given An ≈ L0U0, compute An+1 ≈ LU

1: for k = 0, ...,m − 1 do
2: Compute Rk = (An − Lk Uk )

3: Compute XL = X (j)
L using (4) ▷ Iterative LU solver

4: Lk+1 = Lk + XL ▷ L update
5: Compute XU = X (j)

U using (5) ▷ Iterative LU solver
6: Uk+1 = Uk + XU ▷ U update
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Navier-Stokes equations with variable density

Let Ω ⊂ R2, the density dependent Navier-Stokes system on (0,T ] × Ω is

∂tρ+ ∇ · (ρu) = 0, (6)

∂t(ρu) + ∇ · (ρu ⊗ u) − µ∆u + ∇p = ρf, (7)

∇ · u = 0, (8)

where the unknowns are
• u = u(t , x) is the velocity vector field,
• p = p(t , x) is the pressure field,
• ρ = ρ(t , x) is the density field.

Monica Dessole Fully iterative ILU for DVNS 10th June 2024 11 / 31
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Rayleigh-Taylor instability5

A heavy fluid fluid (density ρmax, in yellow)
is superposed to a light fluid (density ρmin,
in blue) under the action of a gravitational
field.
The numerical difficulty essentially de-
pends on:
• the Reynolds number Re;
• the Atwood number

At =
ρmax − ρmin

ρmax + ρmin
.

5M. Dessole and F. Marcuzzi. “Fully iterative ILU preconditioning of the unsteady Navier–Stokes
equations for GPGPU”. In: Computers & Mathematics with Applications 77.4 (2019), pp. 907–927.
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The numerical scheme

Use Strang time splitting6 and solve with a second order hybrid FE-FV scheme7:
• P1 Finite Volume approximation of the transport equation

∂tρ+ ∇ · (ρu) = 0.

• P2 − P1 Finite Element approximation of NS

∂t(ρu) + ∇ · (ρu ⊗ u) − µ∆u + ∇p = ρf,

∇ · u = 0.

6Gilbert Strang. “On the Construction and Comparison of Difference Schemes”. In: SIAM Journal
on Numerical Analysis 5 (3 Sept. 1968).

7Caterina Calgaro, Emmanuel Creusè, and Thierry Goudon. “An hybrid finite volume–finite element
method for variable density incompressible flows”. In: Journal of Computational Physics 227 (9 2008).
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NS: algebraic problem

Using a projection method, at each time step the linear problem is:

An+1Un+1
i = Fn+1

ui
, i = 1, 2, (9)

LpΦn+1 = Fn+1
Φ
, (10)

MpPn+1 = Fn+1
p (11)

where Lp ,Mp are the stiffness and mass P1-matrices and

An+1 =
3

2∆t
Mu(ρ

∗) +
1

Re
Lu + NL(ūn+1, ρ∗). (12)

where
• Mu is the mass matrix, depending on the current density fiend ρ∗;
• Lu is the stiffness matrix
• NL is the nonlinear term matrix, evaluated on a second order extrapolation of

the velocity field ūn+1 and the current density field ρ∗.

Monica Dessole Fully iterative ILU for DVNS 10th June 2024 14 / 31



Motivation Fully iterative preconditioning strategy Dual fluid flow simulation GPU implementation Numerical experiments Summary and conclusions References

Single node GPU-offloading

CPU

Init FV: update ρ

FE: update
u, p

FE: update
u, p

FV: update ρ

stopPost
processing

Strang step 1

Strang step 2

GPU
Send data to GPU

noyes
Send data to CPU

Compute
fluxes

Update ρ

Assembly
An and Fn

ui

Solve
AnUn

i = Fn
ui

Solve
LΦn = Fn

φ

Solve
MPn = Fn

p
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Experimental framework

The linear systems are solved with GMRES(30).

Abbr. LU update LU solver

ILU(0) No Direct exact solver
SITALU(m, j) Yes Direct exact solver
SITALU(m, j)+Jacobi(k) Yes Jacobi solver
SITALU(m, j)+block-Jacobi(k) Yes block-Jacobi solver

On what follows j = 1. Initialization is performed with ILU(0)8.
Comparison metrics:
• the number of iterations for convergence (maxit= 3000);
• runtime of the solve phase (preconditioner computation/updating+GMRES).

Hardware: gpu01, NVidia GeForce GTX1060 GPU with 2560 CUDA cores.

8E. Chow and A. Patel. “Fine-Grained Parallel Incomplete LU Factorization”. In: SIAM Journal on
Scientific Computing 37.2 (2015), pp. C169–C193.
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A closer look to block-Jacobi

Fine-grained block approximation:
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(a) Lexicographic ordering.
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(c) Diagonal blocks, close up.

Trade-off: better parallelism, less efficiency.
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Interplay between Reynolds and Atwood numbers

Rayleigh-Taylor instability is investigated in different set-
tings, i.e. different values of the Reynolds number Re and
the Atwood number At .
• Low, moderate and high Reynolds values, i.e.

Re = 10−2, 1000, 20000.
• Moderate, high and very high Atwood values, i.e.

At = 0.5, 0.9, 0.98. Recall that

At =
ρmax − ρmin

ρmax + ρmin
.

For simplicity, we indicate also the density ratio
ρmax/ρmin = 3, 19, 100.
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Condition number

Finally, the SITALU(1) preconditioner performs as well as ILU(0), meaning that it
achieves its optimal behaviour.
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(a) Density ratio 3.
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(b) Density ratio 19.

Figure: Condition number in function of the Reynolds number at different density ratio.
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Density ratio 3 (At = 0.5), Re = 20000
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Figure: Evolution of the interface in time, N = 88981
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Density ratio 3 (At = 0.5), Re = 20000

(a) Iteration number (b) Execution times

Figure: N=88981
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Density ratio 3 (At = 0.5), Re = 20000

Preconditioner k Avg. iter. number Avg. sol. Time (s)

ILU(0)
2 17.0 1.1701
3 17.0 1.1727
4 17.1 1.1789

SITALU(1)
2 17.1 0.3850
3 17.2 0.3890
4 17.5 0.3952

SITALU(1)+Jacobi(3)
2 18.3 0.0770
3 18.4 0.0769
4 18.7 0.0776

Table: Average values, the preconditioner is reused for k iterations.
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Density ratio 100 (At = 0.98), Re = 10−2
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Figure: Evolution of the interface in time, N = 29341
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Density ratio 100 (At = 0.98), Re = 10−2

(a) Iteration number (b) Execution times

Figure: N = 29341
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Density ratio 100 (At = 0.98), Re = 10−2

Preconditioner k Avg. iter. number Avg. sol. Time (s)

ILU(0)
2 216.30 6.1322
3 216.33 6.1339
4 216.38 6.1344

SITALU(1)
2 216.30 3.3840
3 216.33 3.3849
4 216.38 3.3949

SITALU(1)+Jacobi(3)
2 239.64 0.6730
3 239.65 0.6733
4 239.40 0.6739

Table: Average values, the preconditioner is reused for k iterations.
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Density ratio 19 (At = 0.9), Re = 1000
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Figure: Evolution of the interface in time, N = 88981
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Density ratio 19 (At = 0.9), Re = 1000

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (s)

0

20

40

60

80

100

120

140

GM
RE

S(
30

) i
te
ra
tio

ns

Diagonal
ILU(0)
SITALU(1)
SITALU(5) + Jacobi(3)
SITALU(1) + block-Jacobi(3)

(a) Iteration number

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (s)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ec

+G
M

RE
S(

30
) e

xe
cu

tio
n 

tim
e 

(s
)

Diagonal
SITALU(5) + Jacobi(3)
SITALU(1) + block-Jacobi(3)

(b) Execution times

Figure: N = 88981
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Conclusions

• A fully iterative ILU preconditioner performs 80% better on a GPU.
• SITALU algorithm turns out to efficient and inexpensive, 2 to 3 times faster

then recomputing the preconditioner from scratch.
• Preconditioner reuse has no global benefit to the execution times, and

sometimes it causes the preconditioner to fail.

Further directions:
• The number of sweeps could be adjusted dynamically: the number of

Jacobi sweeps m could be tuned on the residual norm reduction.
• Generalization to other preconditioning techniques should be investigated.
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