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Supervised Learning

Supervised Learning

Given a labeled data set {(xi , yi )}Ni=1 ⊂ Rm × Rn, fit a parametric family
of functions y = f (x, θ) ∈ Rm × Rp → Rn to the data;

Use a neural network for f (x , θ)

Choose a loss function L(f (xi , θ), yi )

find θ ∈ Rp by minimizing L(θ) := 1
N

∑N
i=1 L(f (xi , θ), yi )
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Neural Network

Composition function:

f (x, θ) = f (3)(f (2)(f (1)(x)))

hidden variables at ℓ-th layer:

h(ℓ) = f (ℓ)(h(ℓ−1))

:= g(W (ℓ)h(ℓ−1) + b(ℓ))

g(t): an elementwise nonlinear activation function, e.g. ReLU:

g(t) = max{t, 0}
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Optimization/Training

Gradient descent:
θ ← θ − λ∇L(θ)

λ > 0 - learning rate

Mini-batch training: sample a mini-batch {xi1 , xi2 , · · · , xiN} and train
with

∇L(θ) = 1

N

N∑
j=1

∇L(f (xij , θ), yij )

Accelerations: Momentum, Adagrad, RMSProp, Adams, Batch
normalization (BN), Layer normalization (LN), ......
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Convergence of Gradient Descent

Gradient Descent:
θk+1 ← θk − α∇θL(θ)

Let θ∗ be a local minimizer.

Local convergence if α < 2/∥∇2
θL(θ

∗)∥.
Optimal convergence rate:

r =
κ− 1

κ+ 1
+ ϵ

where κ = κ(∇2
θL(θ∗)) is the condition number.
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Preconditioned Gradient Descent

Consider a change of variable: θ = Pz and L = L(θ) = L(Pz).

Gradient Descent in z :

zk+1 = zk − αPT∇θL (Pzk)

Equivalently
θk+1 = θk − αPPT∇θL (θk) .

Convergence rate dependent on

κ′ = κ(∇2
zL (Pz

∗)) = κ(PT∇2
θL (θ

∗)P).

Preconditioning: choose P such that PT∇2
θL (θ

∗)P has a better
condition number
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Neural Networks Loss

Consider one weight and bias for layer ℓ. Recall

h(ℓ) = g
(
W (ℓ)h(ℓ−1) + b(ℓ)

)
∈ Rn

Let w
(ℓ)T

i ∈ R1×m be the ith row of W (ℓ) and b
(ℓ)
i be the ith entry of b(ℓ).

Let
a
(ℓ)
i = w

(ℓ)T

i h(ℓ−1) + b
(ℓ)
i = ŵT ĥ ∈ R

where

ŵT =
[
b
(ℓ)
i ,w

(ℓ)T

i

]
∈ R1×(m+1), ĥ =

[
1

h(ℓ−1)

]
∈ R(m+1)×1,
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Neural Network Loss Hessian

Theorem 1

Consider a loss function L and write L = L
(
a
(ℓ)
i

)
= L

(
ŵT ĥ

)
. When training

over a mini-batch of N inputs, let {h(ℓ−1)
1 , h

(ℓ−1)
2 , . . . , h

(ℓ−1)
N } be the associated

h(ℓ−1) and let ĥj =

[
1

h
(ℓ−1)
j

]
∈ R(m+1)×1. Let L = L(ŵ) := 1

N

∑N
j=1 L

(
ŵT ĥj

)
.

Then,
∇2

ŵL(ŵ) = ĤTSĤ

where

Ĥ =


1 h

(ℓ−1)T

1
...

...

1 h
(ℓ−1)T

N

 and S =
1

N


L′′

(
ŵT ĥ1

)
. . .

L′′
(
ŵT ĥN

)
 ,
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Batch Normalization Preconditioning (BNP)

Precondition Ĥ = [e, H]:

ŵ = Pz , where

P := UD, U :=

[
1 −µT

A

0 I

]
, D :=

[
1 0
0 diag (σA)

]−1

,

where

µA :=
1

N

N∑
j=1

h
(ℓ−1)
j , and σ2

A :=
1

N

N∑
j=1

(h
(ℓ−1)
j − µA)

2
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Preconditioned Gradient Descent

Theorem 2

The preconditioned Hessian matrix is

∇2
zL = PT (ĤTSĤ)P = ĜTSĜ .

where Ĝ := ĤP, i.e.

Ĝ =

1 gT
1

...
...

1 gT
N

 =


1 h

(ℓ−1)T

1
...

...

1 h
(ℓ−1)T

N

 [
1 −µT

A

0 I

] [
1 0
0 diag (σA)

]−1

, (1)

and gj = (h
(ℓ−1)
j − µA)/σA is h

(ℓ−1)
j normalized to have zero mean and

unit variance.
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Preconditioned Gradient Descent

Ĝ = ĤUD improves conditioning:

ĤU =


1 h

(ℓ−1)T

1 − µT
A

...
...

1 h
(ℓ−1)T

N − µT
A


and

eT (H − eµT
A ) = 0.

Theorem 3

κ(ĤU) ≤ κ(Ĥ)

and (by a theorem of van der Sluis)

κ(Ĝ ) ≤
√
m + 1 min

D0 is diagonal
κ(ĤUD0).
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Balancing the norms of Hessians

G ’s entries has mean 0 and variance 1. By a theorem of Seginer:

E[∥G∥] ≤ C max{
√
m,
√
N}

Scale ∇2
zL(θ

∗) by q = max{
√
m/N, 1}:

(1/q)E[∥Ĝ∥] ≤ C ′√N

so that the norms are independent of m, which varies with layers.

Learning rate: α < 2/∥∇2
zL(θ

∗)∥.
A large ∥∇2

zL(θ
∗)∥ at one layer will require a smaller α;
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BNP Algorithm

Preconditioning implicitly by modifying gradients.

BNP Gradients on W (ℓ), b(ℓ)

Input: A = {h(ℓ−1)
1 , h

(ℓ−1)
2 , . . . , h

(ℓ−1)
N } ⊂ Rm and the parameter

gradients: Gw ← ∂L
∂W (ℓ) ∈ Rn×m, Gb ← ∂L

∂b(ℓ)
∈ R1×n

1. Compute µA, σ
2
A;

2. Compute: µ← ρµ+ (1− ρ)µA, σ
2 ← ρσ2 + (1− ρ)σ2

A;
3. Set σ̃2 = σ2 + ϵ1max{σ2}+ ϵ2 and q2 = max{m/N, 1};
4. Update: Gw ← 1

q (Gw − µGb)/σ̃
2; Gb ← 1

qGb − µTGw ;
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Relation to Batch Normalzation (BN)

BN - Ioffe and Szegedy (2015) :

For a mini-batch of inputs {x1, x2, . . . , xN}, the corresponding

{h(ℓ−1)
1 , h

(ℓ−1)
2 , . . . , h

(ℓ−1)
N } has mean µA and variance σ2

A.

Normalize h(ℓ−1):

h(ℓ) = g
(
W (ℓ)Bβ,γ

(
h(ℓ−1)

)
+ b(ℓ)

)
where Bβ,γ

(
h(ℓ−1)

)
= γ h(ℓ−1)−µA

σA
+ β

Theorem 4

One step of gradient descent training of BN with B0,1 (·) in {W (ℓ), b(ℓ)}
without passing the gradient through µA, σA is equivalent to one step of
BNP training of the vanilla network with parameter Ŵ T , b̂.

Equivalence holds for one training step only.
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Experiments

Dataset: MNIST, CIFAR10

Networks: Fully-Connected Neural Network (three hidden layers of
size 100 each)
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Fully Connected Network/MNIST

Figure: Mini-batch size = 60. Training loss (dashed lines) and test accuracy (solid
lines)
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Fully Connected Network/CIFAR 10

Figure: Mini-batch size = 60. Training loss (dashed lines) and test accuracy (solid
lines)
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Fully Connected Network/CIFAR 10

Figure: Mini-batch size = 6.
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Fully Connected Network and CNN/CIFAR 10

Figure: Mini-batch size = 1.
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Conclusions

Preconditioning framework applicable to a variety of networks.

Outperform BN for small mini-batches.

Provide partial theoretical justifications for BN.
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