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@ Neural Networks Training
© Batch Normalization Preconditioning (BNP)

© Experiments
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Supervised Learning

Supervised Learning

Given a labeled data set {(x;,y;)}¥; C R™ x R", fit a parametric family
of functions y = f(x,0) € R™ x RP — R" to the data;
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Supervised Learning

Supervised Learning

Given a labeled data set {(x;,y;)}¥; C R™ x R", fit a parametric family
of functions y = f(x,0) € R™ x RP — R" to the data;

@ Use a neural network for f(x,6)
@ Choose a loss function L(f(x;, ), yi)
e find # € RP by minimizing L(6) := % Zf\lzl L(f(x;,0),yi)
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Neural Network

@ Composition function:
f(x,0) = FO(FA(FD(x)))

@ hidden variables at /-th layer:
[ (O — f(f)(h(efl))

g(WEORE=1) 4 p0)y
@ g(t): an elementwise nonlinear activation function, e.g. RelLU:

g(t) = max{t,0}
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Optimization/Training

Gradient descent:
00— A\VL(O)
@ )\ > 0 - learning rate
@ Mini-batch training: sample a mini-batch {x;, x;,, - - - , xj, } and train
with
1N
j=1
@ Accelerations: Momentum, Adagrad, RMSProp, Adams, Batch
normalization (BN), Layer normalization (LN), ......
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Convergence of Gradient Descent

Gradient Descent:
Ok+1 < Ok — aVolL(0)

Let 6* be a local minimizer.
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Convergence of Gradient Descent

Gradient Descent:
Oky1 <+ Ok —aVyL(0)
Let 6* be a local minimizer.
e Local convergence if a < 2/||V3L(6*)].
@ Optimal convergence rate:

k—1
r= +e€
k+1

where k = k(V2L(6*)) is the condition number.
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Preconditioned Gradient Descent

Consider a change of variable: § = Pz and L = L(6) = L(Pz).
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Preconditioned Gradient Descent

Consider a change of variable: § = Pz and L = L(6) = L(Pz).

o Gradient Descent in z:

Zk41 = Zk — aPTV9L(sz)
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Preconditioned Gradient Descent

Consider a change of variable: § = Pz and L = L(6) = L(Pz).

@ Gradient Descent in z:
Zk41 = Zk — aPTV9L(sz)

Equivalently
i1 = Ok — PP VL (6y).
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Preconditioned Gradient Descent

Consider a change of variable: § = Pz and L = L(6) = L(Pz).

@ Gradient Descent in z:
Zk41 = Zk — aP vyl (Pzk)
Equivalently

i1 = Ok — PP VL (6y).

@ Convergence rate dependent on

K = k(V2L(Pz*)) = w(PTV3L(6) P).
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Preconditioned Gradient Descent

Consider a change of variable: § = Pz and L = L(6) = L(Pz).

o Gradient Descent in z:
Zk41 = Zk — aP vyl (Pzk)
Equivalently
i1 = Ok — PP VL (6y).
@ Convergence rate dependent on
K = k(V2L(Pz*)) = w(PTV3L(6) P).

e Preconditioning: choose P such that PTV2L (%) P has a better
condition number
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Neural Networks Loss

Consider one weight and bias for layer ¢. Recall
) =g (W(f)h(f—l) + b(@) cR"

Let w!?" € RIX™ be the ith row of W(®) and b{") be the ith entry of b(®).

Let ; R
a) = wO =D 4 O — FThe R

i i

where

aT = [b,(Z),Wi(Z)T} c Rlx(m—i—l)’ h— [h(l ] c R(m—&-l)xl,
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Neural Network Loss Hessian

Theorem 1
()

Zlhgl

Consider a loss function L and write L = L ( a;

over a mini-batch of N /nputs let {h

h=1) and let h; = [ (-1)| ERUTTD Let £ =
Then, R
ViL(w)=H'TS
where
e L (w
_ 1
H=|: : and S = N
1 A

)

-

. When training

} be the associated

c(w) =4 S L(@Th).

I
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Batch Normalization Preconditioning (BNP)

Precondition H = [e, H]:

@ w = Pz, where
_uT -1
P = UD, U::[l “A}, D::[l 0 ] ,
OA)

where
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Preconditioned Gradient Descent

The preconditioned Hessian matrix is

V2L =PT(HTSH)P = G'SG.
where G = ﬁP, i.e.

1 g7 [1 AT

-1
e |- _ : 1 —pil L 0
G = : : = : . |:0 / :| |:0 dlag(O'A):| ) (1)

1ogi] |1 A

and gj = (hJ(.é_l) —pa)/oais hj(.g_l) normalized to have zero mean and
unit variance.
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Preconditioned Gradient Descent

G =HUD improves conditioning:
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Preconditioned Gradient Descent

G =HUD improves conditioning:

1 AEDT T
HU = :
=17

Loy g

and
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Preconditioned Gradient Descent

G =HUD improves conditioning:

. 6—17:
Loy g

and
e’ (H—euj)=0.

Theorem 3
k(HU) < k(H)
and (by a theorem of van der Sluis)

n(é) <vm+1 min /{(IqUDo).
Do Is diagonal
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Balancing the norms of Hessians

G's entries has mean 0 and variance 1. By a theorem of Seginer:

E[||G] < C max{v/m, V'N}
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Balancing the norms of Hessians

G's entries has mean 0 and variance 1. By a theorem of Seginer:
E[|G]] < C max{v/m, VN}
Scale V2L(6*) by g = max{y/m/N,1}:
(1/@)E[IGI) < C'VN

so that the norms are independent of m, which varies with layers.
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Balancing the norms of Hessians

G's entries has mean 0 and variance 1. By a theorem of Seginer:
E[|G]] < C max{v/m, VN}
Scale V2L(6*) by g = max{y/m/N,1}:
(1/@)E[IGI) < C'VN

so that the norms are independent of m, which varies with layers.
o Learning rate: o < 2/||V2L(6%)].
o A large |[V2L(0*)|| at one layer will require a smaller a;
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BNP Algorithm

Preconditioning implicitly by modifying gradients.

BNP Gradients on W p()
Input: A= {h(z_l) h(e_l) h(g_l } € R™ and the parameter

gradients: G, < 8%4) € R”X"’ Gb — aﬁé) € Rxn

1. Compute ,uA,aA,

2. Compute: p < pp+ (1 — p)ua, 02 < po? + (1 — p)oi;
3. Set 52 = 02 + ¢ max{0?} + €2 and g? = max{m/N, 1};
4. Update: G, + %(GW — 1Gp)/52; Gp %Gb — u' Gy
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Relation to Batch Normalzation (BN)

BN - IToffe and Szegedy (2015) :

@ For a mini-batch of inputs {x1, x2, ..., xy}, the corresponding

/—1 /-1 -1
(R RED L p

e Normalize h(¢=1):

WO = g (W(z) Bs., (h(un) n b(z))

} has mean pa and variance o3.

where Bg (h(f—l)) _ 7h(ffl)_MA L5

OA
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Relation to Batch Normalzation (BN)

BN - IToffe and Szegedy (2015) :
@ For a mini-batch of inputs {x1, x2, ..., xy}, the corresponding

{hngl)’ hngl), cel h%il } has mean pa and variance o3.

o Normalize A(¢=1):
WO = g (W(z) Bs., (h(em) n b(lz))

where Bg (h(f—l)) _ ,yh(f 1)_MA L5

Theorem 4

One step of gradient descent training of BN with Bo 1 (-) in {W([) b(z)}
without passing the gradient through jia, oa is equivalent to one step of
BNP training of the vanilla network with parameter WT b.

Equivalence holds for one training step only.
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@ Dataset: MNIST, CIFAR10

@ Networks: Fully-Connected Neural Network (three hidden layers of
size 100 each)
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Fully Connected Network/MNIST

Loo Fully Connected Network: MNIST
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Figure: Mini-batch size = 60. Training loss (dashed lines) and test accuracy (solid
lines)
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Fully Connected Network/CIFAR 10

Fully Connected Network: CIFAR10
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Figure: Mini-batch size = 60. Training loss (dashed lines) and test accuracy (solid
lines)
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Fully Connected Network/CIFAR 10

Qiang Ye

Test Accuracy

. Siully Connected Network Five Run Average Batch Size 6: CIFAR10
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Figure: Mini-batch size = 6.
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Fully Connected Network and CNN/CIFAR 10

Fully Connected Network/CNN Batch Size 1: CIFAR10
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Figure: Mini-batch size = 1.
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Conclusions

@ Preconditioning framework applicable to a variety of networks.
@ Outperform BN for small mini-batches.

@ Provide partial theoretical justifications for BN.
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