Batch Normalization Preconditioning for Neural Network Training

Qiang Ye

(Joint work with Susanna Lange and Kyle Helfrich) University of Kentucky

Precond 24 - Atlanta Works Supported by NSF

2 Batch Normalization Preconditioning (BNP)

Supervised Learning

Given a labeled data set $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^N \subset \mathbf{R}^m \times \mathbf{R}^n$, fit a parametric family of functions $y = f(\mathbf{x}, \theta) \in \mathbf{R}^m \times \mathbf{R}^p \to \mathbf{R}^n$ to the data;

Supervised Learning

Given a labeled data set $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^N \subset \mathbf{R}^m \times \mathbf{R}^n$, fit a parametric family of functions $y = f(\mathbf{x}, \theta) \in \mathbf{R}^m \times \mathbf{R}^p \to \mathbf{R}^n$ to the data;

- Use a neural network for $f(x, \theta)$
- Choose a loss function $L(f(x_i, \theta), y_i)$
- find $\theta \in \mathbf{R}^p$ by minimizing $\mathcal{L}(\theta) := \frac{1}{N} \sum_{i=1}^{N} L(f(x_i, \theta), y_i)$

• Composition function:

$$f(\mathbf{x}, \theta) = f^{(3)}(f^{(2)}(f^{(1)}(\mathbf{x})))$$

• hidden variables at ℓ -th layer:

$$\begin{aligned} h^{(\ell)} &= f^{(\ell)}(h^{(\ell-1)}) \\ &:= g(W^{(\ell)}h^{(\ell-1)} + b^{(\ell)}) \end{aligned}$$

• g(t): an elementwise nonlinear activation function, e.g. ReLU:

$$g(t) = \max\{t, 0\}$$

Gradient descent:

$$\theta \leftarrow \theta - \lambda \nabla \mathcal{L}(\theta)$$

- $\lambda > 0$ learning rate
- Mini-batch training: sample a mini-batch $\{x_{i_1}, x_{i_2}, \cdots, x_{i_N}\}$ and train with

$$abla \mathcal{L}(\theta) = \frac{1}{N} \sum_{j=1}^{N} \nabla L(f(x_{i_j}, \theta), y_{i_j})$$

 Accelerations: Momentum, Adagrad, RMSProp, Adams, Batch normalization (BN), Layer normalization (LN), Gradient Descent:

$$\theta_{k+1} \leftarrow \theta_k - \alpha \nabla_{\theta} L(\theta)$$

Let θ^* be a local minimizer.

Gradient Descent:

$$\theta_{k+1} \leftarrow \theta_k - \alpha \nabla_{\theta} L(\theta)$$

Let θ^* be a local minimizer.

- Local convergence if $\alpha < 2/\|\nabla_{\theta}^2 L(\theta^*)\|$.
- Optimal convergence rate:

$$r = \frac{\kappa - 1}{\kappa + 1} + \epsilon$$

where $\kappa = \kappa (\nabla_{\theta}^2 \mathcal{L}(\theta^*))$ is the condition number.

Consider a change of variable: $\theta = Pz$ and $L = L(\theta) = L(Pz)$.

Consider a change of variable: $\theta = Pz$ and $L = L(\theta) = L(Pz)$.

• Gradient Descent in z:

$$z_{k+1} = z_k - \alpha P^T \nabla_{\theta} L(Pz_k)$$

Consider a change of variable: $\theta = Pz$ and $L = L(\theta) = L(Pz)$.

• Gradient Descent in z:

$$z_{k+1} = z_k - \alpha P^T \nabla_{\theta} L(Pz_k)$$

Equivalently

$$\theta_{k+1} = \theta_k - \alpha P P^T \nabla_{\theta} L(\theta_k).$$

Consider a change of variable: $\theta = Pz$ and $L = L(\theta) = L(Pz)$.

• Gradient Descent in z:

$$z_{k+1} = z_k - \alpha P^T \nabla_{\theta} L(Pz_k)$$

Equivalently

$$\theta_{k+1} = \theta_k - \alpha P P^T \nabla_{\theta} L(\theta_k).$$

• Convergence rate dependent on

$$\kappa' = \kappa(\nabla_z^2 L(Pz^*)) = \kappa(P^T \nabla_\theta^2 L(\theta^*) P).$$

Consider a change of variable: $\theta = Pz$ and $L = L(\theta) = L(Pz)$.

• Gradient Descent in z:

$$z_{k+1} = z_k - \alpha P^T \nabla_{\theta} L(Pz_k)$$

Equivalently

$$\theta_{k+1} = \theta_k - \alpha P P^T \nabla_{\theta} L(\theta_k).$$

• Convergence rate dependent on

$$\kappa' = \kappa(\nabla_z^2 L(Pz^*)) = \kappa(P^T \nabla_\theta^2 L(\theta^*) P).$$

Preconditioning: choose P such that P^T∇²_θL(θ^{*}) P has a better condition number

Consider one weight and bias for layer $\ell.$ Recall

$$h^{(\ell)} = g\left(W^{(\ell)}h^{(\ell-1)} + b^{(\ell)}\right) \in \mathbb{R}^n$$

Let $w_i^{(\ell)^T} \in \mathbb{R}^{1 \times m}$ be the *i*th row of $W^{(\ell)}$ and $b_i^{(\ell)}$ be the *i*th entry of $b^{(\ell)}$. Let $a_i^{(\ell)} = w_i^{(\ell)^T} h^{(\ell-1)} + b_i^{(\ell)} = \widehat{w}^T \widehat{h} \in \mathbb{R}$

where

$$\widehat{w}^{T} = \left[b_{i}^{\left(\ell\right)}, w_{i}^{\left(\ell\right)^{T}}\right] \in \mathbb{R}^{1 \times (m+1)}, \ \widehat{h} = \begin{bmatrix}1\\h^{\left(\ell-1\right)}\end{bmatrix} \in \mathbb{R}^{(m+1) \times 1},$$

Theorem 1

Consider a loss function L and write $L = L\left(a_i^{(\ell)}\right) = L\left(\widehat{w}^T \widehat{h}\right)$. When training over a mini-batch of N inputs, let $\{h_1^{(\ell-1)}, h_2^{(\ell-1)}, \dots, h_N^{(\ell-1)}\}$ be the associated $h^{(\ell-1)}$ and let $\widehat{h}_j = \begin{bmatrix} 1\\h_j^{(\ell-1)} \end{bmatrix} \in \mathbb{R}^{(m+1)\times 1}$. Let $\mathcal{L} = \mathcal{L}(\widehat{w}) := \frac{1}{N} \sum_{j=1}^N L\left(\widehat{w}^T \widehat{h}_j\right)$. Then,

$$abla^2_{\widehat{w}}\mathcal{L}(\widehat{w}) = \widehat{H}^{\mathsf{T}}S\widehat{H}$$

where

$$\widehat{H} = \begin{bmatrix} 1 & h_1^{(\ell-1)^T} \\ \vdots & \vdots \\ 1 & h_N^{(\ell-1)^T} \end{bmatrix} \text{ and } S = \frac{1}{N} \begin{bmatrix} L''\left(\widehat{w}^T \widehat{h}_1\right) & & \\ & \ddots & \\ & & L''\left(\widehat{w}^T \widehat{h}_N\right) \end{bmatrix},$$

Precondition $\widehat{H} = [e, H]$:

• $\widehat{w} = Pz$, where

$$P := UD, \quad U := \begin{bmatrix} 1 & -\mu_A^T \\ 0 & I \end{bmatrix}, \quad D := \begin{bmatrix} 1 & 0 \\ 0 & \text{diag}(\sigma_A) \end{bmatrix}^{-1},$$

where

$$\mu_A := \frac{1}{N} \sum_{j=1}^N h_j^{(\ell-1)}, \text{ and } \sigma_A^2 := \frac{1}{N} \sum_{j=1}^N (h_j^{(\ell-1)} - \mu_A)^2$$

Theorem 2

The preconditioned Hessian matrix is

$$\nabla_z^2 \mathcal{L} = P^T (\widehat{H}^T S \widehat{H}) P = \widehat{G}^T S \widehat{G}.$$

where $\widehat{G} := \widehat{H}P$, i.e.

$$\widehat{G} = \begin{bmatrix} 1 & g_1^T \\ \vdots & \vdots \\ 1 & g_N^T \end{bmatrix} = \begin{bmatrix} 1 & h_1^{(\ell-1)^T} \\ \vdots & \vdots \\ 1 & h_N^{(\ell-1)^T} \end{bmatrix} \begin{bmatrix} 1 & -\mu_A^T \\ 0 & I \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \text{diag}(\sigma_A) \end{bmatrix}^{-1}, \quad (1)$$

$$d \ g_i = (h_i^{(\ell-1)} - \mu_A)/\sigma_A \text{ is } h_i^{(\ell-1)} \text{ normalized to have zero mean and}$$

and $g_j = (h_j^{(c-1)} - \mu_A) / \sigma_A$ is $h_j^{(c-1)}$ normalized to have zero mean and unit variance.

 $\widehat{G} = \widehat{H}UD$ improves conditioning:

 $\widehat{G} = \widehat{H}UD$ improves conditioning:

$$\widehat{H}U = \begin{bmatrix} 1 & h_{1}^{(\ell-1)^{T}} - \mu_{A}^{T} \\ \vdots & \vdots \\ 1 & h_{N}^{(\ell-1)^{T}} - \mu_{A}^{T} \end{bmatrix}$$

and

$$e^T(H-e\mu_A^T)=0.$$

 $\widehat{G} = \widehat{H}UD$ improves conditioning:

$$\widehat{H}U = \begin{bmatrix} 1 & h_1^{(\ell-1)^T} - \mu_A^T \\ \vdots & \vdots \\ 1 & h_N^{(\ell-1)^T} - \mu_A^T \end{bmatrix}$$

and

$$e^{T}(H-e\mu_{A}^{T})=0.$$

Theorem 3

$$\kappa(\widehat{H}U) \leq \kappa(\widehat{H})$$

and (by a theorem of van der Sluis)

$$\kappa(\widehat{G}) \leq \sqrt{m+1} \min_{D_0 \text{ is diagonal}} \kappa(\widehat{H}UD_0).$$

G's entries has mean 0 and variance 1. By a theorem of Seginer:

 $\mathbb{E}[\|G\|] \le C \max\{\sqrt{m}, \sqrt{N}\}\$

G's entries has mean 0 and variance 1. By a theorem of Seginer:

 $\mathbb{E}[\|G\|] \le C \max\{\sqrt{m}, \sqrt{N}\}$ Scale $\nabla_z^2 L(\theta^*)$ by $q = \max\{\sqrt{m/N}, 1\}$: $(1/q)\mathbb{E}[\|\widehat{G}\|] \le C'\sqrt{N}$

so that the norms are independent of m, which varies with layers.

G's entries has mean 0 and variance 1. By a theorem of Seginer:

 $\mathbb{E}[\|G\|] \le C \max\{\sqrt{m}, \sqrt{N}\}$

Scale $abla_z^2 L(heta^*)$ by $q = \max\{\sqrt{m/N}, 1\}$:

 $(1/q)\mathbb{E}[\|\widehat{G}\|] \leq C'\sqrt{N}$

so that the norms are independent of m, which varies with layers.

- Learning rate: $\alpha < 2/\|\nabla_z^2 L(\theta^*)\|$.
- A large $\|\nabla_z^2 L(\theta^*)\|$ at one layer will require a smaller α ;

Preconditioning implicitly by modifying gradients.

BNP Gradients on $W^{(\ell)}, b^{(\ell)}$

Input:
$$A = \{h_1^{(\ell-1)}, h_2^{(\ell-1)}, \dots, h_N^{(\ell-1)}\} \subset \mathbb{R}^m$$
 and the parameter gradients: $G_w \leftarrow \frac{\partial \mathcal{L}}{\partial W^{(\ell)}} \in \mathbb{R}^{n \times m}, G_b \leftarrow \frac{\partial \mathcal{L}}{\partial b^{(\ell)}} \in \mathbb{R}^{1 \times n}$
1. Compute μ_A, σ_A^2 ;
2. Compute: $\mu \leftarrow \rho \mu + (1 - \rho) \mu_A, \sigma^2 \leftarrow \rho \sigma^2 + (1 - \rho) \sigma_A^2$;
3. Set $\tilde{\sigma}^2 = \sigma^2 + \epsilon_1 \max\{\sigma^2\} + \epsilon_2$ and $q^2 = \max\{m/N, 1\}$;
4. Update: $G_w \leftarrow \frac{1}{q}(G_w - \mu G_b)/\tilde{\sigma}^2$; $G_b \leftarrow \frac{1}{q}G_b - \mu^T G_w$;

Relation to Batch Normalzation (BN)

BN - Ioffe and Szegedy (2015) :

For a mini-batch of inputs {x₁, x₂,..., x_N}, the corresponding {h₁^(ℓ-1), h₂^(ℓ-1),..., h_N^(ℓ-1)} has mean μ_A and variance σ_A².
 Normalize h^(ℓ-1):

$$h^{(\ell)} = g\left(W^{(\ell)}\mathcal{B}_{eta,\gamma}\left(h^{(\ell-1)}
ight) + b^{(\ell)}
ight)$$

where
$$\mathcal{B}_{\beta,\gamma}\left(h^{(\ell-1)}\right) = \gamma \frac{h^{(\ell-1)} - \mu_A}{\sigma_A} + \beta$$

Relation to Batch Normalzation (BN)

BN - Ioffe and Szegedy (2015) :

For a mini-batch of inputs {x₁, x₂,..., x_N}, the corresponding {h₁^(ℓ-1), h₂^(ℓ-1),..., h_N^(ℓ-1)} has mean μ_A and variance σ_A².
 Normalize h^(ℓ-1):

$$h^{(\ell)} = g\left(W^{(\ell)}\mathcal{B}_{eta,\gamma}\left(h^{(\ell-1)}
ight) + b^{(\ell)}
ight)$$

where
$$\mathcal{B}_{eta,\gamma}\left(h^{(\ell-1)}
ight)=\gammarac{h^{(\ell-1)}-\mu_A}{\sigma_A}+eta$$

Theorem 4

One step of gradient descent training of BN with $\mathcal{B}_{0,1}(\cdot)$ in $\{W^{(\ell)}, b^{(\ell)}\}$ without passing the gradient through μ_A , σ_A is equivalent to one step of BNP training of the vanilla network with parameter $\widehat{W}^T, \widehat{b}$.

Equivalence holds for one training step only.

Qiang Ye (UKY)

- Dataset: MNIST, CIFAR10
- Networks: Fully-Connected Neural Network (three hidden layers of size 100 each)

Fully Connected Network/MNIST

Figure: Mini-batch size = 60. Training loss (dashed lines) and test accuracy (solid lines)

Fully Connected Network/CIFAR 10

Figure: Mini-batch size = 60. Training loss (dashed lines) and test accuracy (solid lines)

Fully Connected Network/CIFAR 10

Figure: Mini-batch size = 6.

Qiang Ye (UKY)

Fully Connected Network and CNN/CIFAR 10

Figure: Mini-batch size = 1.

- Preconditioning framework applicable to a variety of networks.
- Outperform BN for small mini-batches.
- Provide partial theoretical justifications for BN.

Ref:

• Susanna Lange, Kyle Helfrich, and Qiang Ye, Batch Normalization Preconditioning for Neural Network Training, Journal of Machine Learning Research, 23(72):1-41, 2022.