LFA-tuned matrix-free multigrid for the elastic Helmholtz equations

Racheli Yovel, Eran Treister

Computer Science Department, Ben Gurion University of the Negev, Be'er Sheva, Israel.

Rachel Yovel (BGU)

The acoustic Helmholtz equation in heterogeneous media

$$Hp = \rho \nabla \cdot \rho^{-1} \nabla p + \omega^2 \kappa^2 (1 - \gamma \iota) p = q$$

The acoustic Helmholtz equation in heterogeneous media

$$Hp = \rho \nabla \cdot \rho^{-1} \nabla p + \omega^2 \kappa^2 (1 - \gamma \iota) p = q$$

The elastic Helmholtz equation in isotropic heterogeneous media

$$\mathcal{H}\vec{u} =
abla(\lambda + \mu)
abla \cdot \vec{u} + (
abla \cdot \mu
abla)\vec{u} + \omega^2
ho(1 - \gamma \iota)\vec{u} = \vec{q}$$

Pressure and shear wave velocities: $V_{\rho} = \sqrt{\frac{\lambda + 2\mu}{\rho}}$ and $V_{s} = \sqrt{\frac{\mu}{\rho}}$.

The acoustic Helmholtz equation in heterogeneous media

$$Hp = \rho \nabla \cdot \rho^{-1} \nabla p + \omega^2 \kappa^2 (1 - \gamma \iota) p = q$$

The elastic Helmholtz equation in isotropic heterogeneous media

$$\mathcal{H}\vec{u} = \nabla(\lambda + \mu)\nabla \cdot \vec{u} + (\nabla \cdot \mu \nabla)\vec{u} + \omega^2 \rho(1 - \gamma \iota)\vec{u} = \bar{q}$$

Pressure and shear wave velocities: $V_{\rho} = \sqrt{\frac{\lambda + 2\mu}{\rho}}$ and $V_{s} = \sqrt{\frac{\mu}{\rho}}$.

Boundary Conditions

• Neumann / Dirichlet: cause reflections.

Rachel Yovel (BGU)

The acoustic Helmholtz equation in heterogeneous media

$$Hp = \rho \nabla \cdot \rho^{-1} \nabla p + \omega^2 \kappa^2 (1 - \gamma \iota) p = q$$

The elastic Helmholtz equation in isotropic heterogeneous media

$$\mathcal{H}\vec{u} = \nabla(\lambda + \mu)\nabla \cdot \vec{u} + (\nabla \cdot \mu \nabla)\vec{u} + \omega^2 \rho(1 - \gamma \iota)\vec{u} = \bar{q}$$

Pressure and shear wave velocities: $V_p = \sqrt{\frac{\lambda + 2\mu}{\rho}}$ and $V_s = \sqrt{\frac{\mu}{\rho}}$.

Boundary Conditions

- Neumann / Dirichlet: cause reflections.
- Absorbing alternatives: Sommerfeld, ABC, PML.

Rachel Yovel (BGU)

Difficulties:

• Complex, indefinite and ill-conditioned

Difficulties:

- Complex, indefinite and ill-conditioned
- High frequencies \Rightarrow fine meshes \Rightarrow large matrix

Difficulties:

- Complex, indefinite and ill-conditioned
- High frequencies \Rightarrow fine meshes \Rightarrow large matrix
- Nearly incompressible case: the grad-div dominates when

$$\sigma = \frac{\lambda}{2(\lambda + \mu)} \to \frac{1}{2}$$

Difficulties:

- Complex, indefinite and ill-conditioned
- High frequencies \Rightarrow fine meshes \Rightarrow large matrix
- Nearly incompressible case: the grad-div dominates when

$$\sigma = \frac{\lambda}{2(\lambda + \mu)} \to \frac{1}{2}$$

Numerical dispersion

FD Discretizations for acoustic Helmholtz

- 4-th order [Harari & Turkel 1994], [Singer & Turkel 1998]
- 6-th order [Turkel et. al. 2013]
- Non-compact [Dastur & Liau 2020]
- Lower dispersion compact [Liu 2015], [Chen et. al. 2012]
- Rotated grids [Alghamiry et. al. 2022]
- Wavelength adaptive [Xu & Gao 2018]

Solvers for acoustic Helmholtz

- Domain decomposition [Gander & Zhang 2013], [Hu & Li 2016], [Tausa et. al. 2020], [Daia et. al. 2022], [Claeys, MS2], [Dolean, MS2], [Gong, MS2], [Rees, IP6]
- Shifted Laplacian multigrid [Erlangga et. al. 2006], [Umetani et. al 2009], [Chen et. al. 2012], [Dwarka, MS2], [Chen, MS1]
- FFT [Beylkin 2009], [Osnabrugge 2016], [Wang et. al. 2020]

Rachel Yovel (BGU)

Finite difference discretization and available solvers

FD Discretizations for elastic Helmholtz

- 2nd order staggered (rotated grids) [Virieux 1986]
- Compact nodal [Sketl & Pratt 1998], [Gosselin-Cliche & Giroux 2014]
- 4th order staggered [Levander 1988]
- 4th order staggered with mass spreading [Li et. al. 2016]

[Gap]

Multigrid adaptations for elastic Helmholtz

- Shifted Laplacian "as is" [Airaksinen et. al. 2009]
- Shifted Laplacian using line-smoothers. [Rizzuti & Mulder 2016]

Rachel Yovel (BGU)

Multigrid: iterative methods for elliptic PDEs [Brandt 1977]

- Smoothers (i.e. w-Jacobi, GS) reduce oscillatory error modes
- Coarse grid correction (CGC) reduce the smooth modes

Multigrid: iterative methods for elliptic PDEs [Brandt 1977]

- Smoothers (i.e. w-Jacobi, GS) reduce oscillatory error modes
- Coarse grid correction (CGC) reduce the smooth modes
- Isn't CGC enough? Why smoothers?

Multigrid: iterative methods for elliptic PDEs [Brandt 1977]

- Smoothers (i.e. w-Jacobi, GS) reduce oscillatory error modes
- Coarse grid correction (CGC) reduce the smooth modes
- Isn't CGC enough? Why smoothers?

Left image from: "Why Multigrid Methods Are So Efficient" [Yavneh, 2006]

Rachel Yovel (BGU)

Multigrid: iterative methods for elliptic PDEs [Brandt 1977]

"Why Multigrid Methods Are So Efficient" [Yavneh, 2006]

Rachel Yovel (BGU)

Two ways to build the coarse operator:

Two ways to build the coarse operator:

• Galerkin coarsening: $A_H = RA_hP$.

Two ways to build the coarse operator:

- Galerkin coarsening: $A_H = RA_hP$.
- Re-discretization: using the same stencil on coarse grid.

Two ways to build the coarse operator:

- Galerkin coarsening: $A_H = RA_hP$.
- Re-discretization: using the same stencil on coarse grid.

Being matrix-free is not (only) about implementation, but about improving complexity [Pazner, IP2].

Local Fourier analysis

LFA is a predictive tool for analysis of multigrid cycles [Brandt 1977].

Local Fourier analysis

LFA is a predictive tool for analysis of multigrid cycles [Brandt 1977].

• Two grid operator:

$$TG = S(I - PA_H^{-1}RA_h)S$$

Local Fourier analysis

LFA is a predictive tool for analysis of multigrid cycles [Brandt 1977].

• Two grid operator:

$$TG = S(I - PA_H^{-1}RA_h)S$$

• Smoothing factor:

$$\mu_{\textit{loc}} = \max_{\mathsf{high } \theta} (\rho(\tilde{S}(\theta)))$$

LFA is a predictive tool for analysis of multigrid cycles [Brandt 1977].

• Two grid operator:

$$TG = S(I - PA_H^{-1}RA_h)S$$

• Smoothing factor:

$$\mu_{\textit{loc}} = \max_{\mathsf{high } \theta} (\rho(\tilde{S}(\theta)))$$

• Two-grid factor:

$$\rho_{\textit{loc}} = \max_{\textit{low } \theta} (\rho(\widetilde{\textit{TG}}(\theta))$$

Rachel Yovel (BGU)

LFA is a predictive tool for analysis of multigrid cycles [Brandt 1977].

• Two grid operator:

$$TG = S(I - PA_H^{-1}RA_h)S$$

• Smoothing factor:

$$\mu_{loc} = \max_{\mathsf{high } \theta} (\rho(\tilde{S}(\theta)))$$

• Two-grid factor:

$$\rho_{loc} = \max_{\mathsf{low } \theta} (\rho(\widetilde{\mathsf{TG}}(\theta))$$

Rachel Yovel (BGU)

LFA for multiplicative overlapping smoothers

- The amplification factor $\approx \frac{|\text{error after}|}{|\text{error before}|}$
- We need "middle". "before" and "after" are not enough!

[Sivaloganathan 1991], [Maclachlan & Oosterlee 2011], [Rodrigo et. al. 2016], [Treister & Y. 2024]

Standard smoothers: unstable for indefinite problems

Standard smoothers: unstable for indefinite problems Coarse grid correction: might amplify error [Elman et. al. 2001]

Standard smoothers: unstable for indefinite problems Coarse grid correction: might amplify error [Elman et. al. 2001]

Shifted Laplacian [Erlangga et. al. 2006]

Use an attenuated matrix $H_s = H + i\alpha\omega^2 M$ as a preconditioner.

The attenuated system $H_s \mathbf{x} = \mathbf{r}$ is solvable by multigrid.

Standard smoothers: unstable for indefinite problems Coarse grid correction: might amplify error [Elman et. al. 2001]

Shifted Laplacian [Erlangga et. al. 2006]

Use an attenuated matrix $H_s = H + i\alpha\omega^2 M$ as a preconditioner.

The attenuated system $H_s \mathbf{x} = \mathbf{r}$ is solvable by multigrid.

Problem: shifted Laplacian is not efficient for elastic Helmholtz.

Problem: shifted Laplacian is not efficient for elastic Helmholtz.

Our adaptations: a new variable $p = -(\lambda + \mu)\nabla \cdot \vec{u}$.

• MAC staggered grid finite differences discretization: [McKee et. al. 2008]

• MAC staggered grid finite differences discretization: [McKee et. al. 2008]

• Cell-wise Vanka smoother: invert a 5×5 matrix at every cell. [Vanka 1986]

Multigrid for elastic Helmholtz: results

• $\mu = \rho = 1$, shift $\alpha = 0.2$. Second-order discretization.

- Scaling: largest λ corresponds to Poisson's ratio $\sigma = 0.47$
- Grid size 512×256, 10 grid points per wavelength
- GMRES(5) + 3-level W-cycle as a preconditioner
- Galerkin coarsening

Rachel Yovel (BGU)

Multigrid for elastic Helmholtz: results

Shifted Laplacian: acoustic (shear) vs. elastic								
Grid size	400×128		800 >	$\times 256$	1600×512			
ω	2.4π	3.5π	4.7π	7.1π	9.4π	14.2π		
Acoustic	25	40	45	86	75	196		
Elastic	27	37	47	78	79	148		

- Linear heterogeneous media
- Acoustic: Jacobi W(2,2) cycles
- Elastic: Vanka W(1,1) cycles
- Added shift of 0.2 for both
- GMRES(5) + 3-level W-cycle as a preconditioner
- Galerkin coarsening

Rachel Yovel (BGU)

Matrix-free geometric MG

The standard 5 point stencil

$$-\mu \Delta_{h} - \omega^{2} M = \frac{\mu}{h^{2}} \begin{bmatrix} -1 & -1 \\ -1 & 4 - \frac{h^{2}}{\mu} \rho \omega^{2} (1 - i\gamma) & -1 \\ -1 & -1 \end{bmatrix}$$

is not efficient enough for re-discretization.

Matrix-free geometric MG

The standard 5 point stencil

$$-\mu \Delta_{h} - \omega^{2} M = \frac{\mu}{h^{2}} \begin{bmatrix} -1 & -1 \\ -1 & 4 - \frac{h^{2}}{\mu} \rho \omega^{2} (1 - i\gamma) & -1 \\ -1 \end{bmatrix}$$

is not efficient enough for re-discretization. Acoustic: [Singer & Turkel 1998], [Umetani et. al. 2009]

$$\frac{1}{h^2} \begin{bmatrix} -1/6 & -2/3 & -1/6 \\ -2/3 & 10/3 & -2/3 \\ -1/6 & -2/3 & -1/6 \end{bmatrix} - \begin{bmatrix} & -1/12 \\ -1/12 & -2/3 & -1/12 \\ & -1/12 \end{bmatrix} \kappa^2 \omega^2 (1-\gamma \iota)$$

We adapt it to the elastic mixed formulation.

Rachel Yovel (BGU)

 β -spread mass matrix:

$$\mathcal{M}^eta =
ho \omega^2 (1-\gamma \imath) \left(eta \left[1
ight] + (1-eta) \cdot rac{1}{4} egin{bmatrix} 1 & 1 \ 1 & 1 \end{bmatrix}
ight).$$

 β -spread mass matrix:

$$M^{eta} =
ho \omega^2 (1 - \gamma \iota) \left(eta \left[1
ight] + (1 - eta) \cdot rac{1}{4} \left[egin{array}{cc} 1 & 1 \ 1 & 1 \end{array}
ight]
ight)$$

 β -spread first derivative:

$$\left(\partial_{\mathbf{x}_1}
ight)_{h/2}^eta = rac{1}{h} \left(eta \left[-1 \quad * \quad 1
ight] + (1-eta) \cdot rac{1}{4} \left[egin{matrix} -1 & 1 \ -2 & * & 2 \ -1 & 1 \end{array}
ight]
ight),$$

LFA-tuned matrix-free MG for elastic Helmholtz

.

 β -spread mass matrix:

$$M^{eta} =
ho \omega^2 (1 - \gamma \iota) \left(eta \left[1
ight] + (1 - eta) \cdot rac{1}{4} \left[egin{array}{cc} 1 & 1 \ 1 & 1 \end{array}
ight]
ight)$$

 β -spread first derivative:

$$\left(\partial_{x_1}\right)_{h/2}^{\beta} = \frac{1}{h} \left(\beta \begin{bmatrix} -1 & * & 1 \end{bmatrix} + (1-\beta) \cdot \frac{1}{4} \begin{bmatrix} -1 & & 1 \\ -2 & * & 2 \\ -1 & & 1 \end{bmatrix} \right),$$

Divergence and gradient:

$$(\nabla \cdot)_{h}^{\beta} = \begin{pmatrix} (\partial_{x_{1}})_{h/2}^{\beta} & (\partial_{x_{2}})_{h/2}^{\beta} \end{pmatrix}, \quad \nabla_{h}^{\beta} = \begin{pmatrix} (\partial_{x_{1}})_{h/2}^{\beta} \\ (\partial_{x_{2}})_{h/2}^{\beta} \end{pmatrix}$$

Rachel Yovel (BGU)

LFA-tuned matrix-free MG for elastic Helmholtz

.

Singer & Turkel's acoustic stencil ($\beta = 2/3$):

$$\nabla_h^T \nabla_h^\beta + M^\beta = (\nabla \cdot)_h^\beta (\nabla \cdot)_h^T + M^\beta = -\Delta_h^\beta + M^\beta.$$

Singer & Turkel's acoustic stencil ($\beta = 2/3$):

$$\nabla_h^T \nabla_h^\beta + M^\beta = (\nabla \cdot)_h^\beta (\nabla \cdot)_h^T + M^\beta = -\Delta_h^\beta + M^\beta.$$

Discretization for the elastic equation in mixed formulation:

$$\begin{pmatrix} \vec{\nabla}_{h}^{T} A_{e}(\mu) \vec{\nabla}_{h}^{\beta} - M^{\beta} A_{f}(\rho) & (\nabla \cdot)_{h}^{T} \\ (\nabla \cdot)_{h}^{\beta} & \text{diag} \left(\frac{1}{\lambda + \mu} \right) \end{pmatrix} \begin{pmatrix} \vec{\mathbf{u}} \\ \mathbf{p} \end{pmatrix} = \begin{pmatrix} \vec{\mathbf{q}}_{s} \\ \mathbf{0} \end{pmatrix}$$

where A_e is edge averaging, A_f is face averaging.

Rachel Yovel (BGU)

Singer & Turkel's acoustic stencil ($\beta = 2/3$):

$$\nabla_h^T \nabla_h^\beta + M^\beta = (\nabla \cdot)_h^\beta (\nabla \cdot)_h^T + M^\beta = -\Delta_h^\beta + M^\beta.$$

Discretization for the elastic equation in mixed formulation:

$$\begin{pmatrix} \vec{\nabla}_{h}^{T} A_{e}(\mu) \vec{\nabla}_{h}^{\beta} - M^{\beta} A_{f}(\rho) & (\nabla \cdot)_{h}^{T} \\ (\nabla \cdot)_{h}^{\beta} & \text{diag} \left(\frac{1}{\lambda + \mu} \right) \end{pmatrix} \begin{pmatrix} \vec{\mathbf{u}} \\ \mathbf{p} \end{pmatrix} = \begin{pmatrix} \vec{\mathbf{q}}_{s} \\ \mathbf{0} \end{pmatrix}$$

where A_e is edge averaging, A_f is face averaging.

Rachel Yovel (BGU)

Matrix-free geometric MG: results

Tuning the stencil (with $G_s = 10$ and $\sigma = 0.499$):

Damping w = 0.7 near optimal, $\beta = 2/3$ optimal

Minimal shift 0.03 for the spread discretization, 0.11 for standard

Rachel Yovel (BGU)

Matrix-free geometric MG: results

Numerical dispersion:

Multigrid convergence on the shifted problem:

LFA two-grid factor and convergence factor in practice									
discretization	$\left \begin{array}{c}\omega = \\\rho_{loc}\end{array}\right $	$\frac{\pi}{5h}, \alpha = c_f$	$= 0.15 \\ \mu_{loc}^2$	$\begin{vmatrix} \omega = \cdot \\ \rho_{loc} \end{vmatrix}$	$\frac{\pi}{4h}, \alpha \in C_f$	$= 0.2 \\ \mu_{loc}^2$	$\begin{array}{l} \omega = \\ \rho_{loc} \end{array}$	$\frac{\pi}{3.3h}, \alpha$ c_f	$\mu = 0.3$ μ_{loc}^2
$\begin{array}{c} \beta = 1 \\ \beta = 2/3 \end{array}$	$\begin{vmatrix} 0.73 \\ 0.37 \end{vmatrix}$	$\begin{array}{c} 0.6 \\ 0.24 \end{array}$	$\begin{array}{c} 0.35 \\ 0.31 \end{array}$	$\begin{vmatrix} 0.81 \\ 0.4 \end{vmatrix}$	$\begin{array}{c} 0.74 \\ 0.27 \end{array}$	$\begin{array}{c} 0.38\\ 0.34 \end{array}$	$\begin{array}{c} 0.75 \\ 0.47 \end{array}$	$\begin{array}{c} 0.7 \\ 0.35 \end{array}$	$\begin{array}{c} 0.44 \\ 0.39 \end{array}$

• The convergence factor is defined by

$$c_f^{(k)} = \left(\frac{\|r_k\|}{\|r_0\|}\right)^{1/k}$$

• μ^2_{loc} serves as a best-case lower bound.

Rachel Yovel (BGU)

Matrix-free geometric MG: results

Results for Marmousi geophysical model:

Iteration count for Marmousi-2 elastic media							
	$\beta =$	$= 1, G_s =$	= 10	$\beta = 2/3, G_s = 10(8)$			
	2-level	3-level	4-level	2-level	3-level	4-level	
Grid size	$\alpha = 0.1$	$\alpha = 0.4$	$\alpha = 0.5$	$\alpha = 0.1$	$\alpha=0.3(0.4)$	$\alpha=0.4(0.5)$	
544×112	31	107	147	28(32)	67(106)	100(194)	
1088×224	48	172	238	39(51)	$102 \ (174)$	157 (338)	
2176×448	70	243	374	53(63)	137 (242)	238(572)	

- α is the added attenuation
- G_s grid points per shear wavelength

Rachel Yovel (BGU)

Conclusion

- Mixed formulation enables elastic shifted Laplacian MG.
- Our shifted Laplacian MG scales w.r.t. Poisson's ratio.
- Our spread discretization enables a matrix-free method.
- Less shift is needed and less grid points per wavelength.

Future: Better 3D, Block-preconditioning, better acoustic solvers

Thanks

Funding:

- The U.S. Department of Energy (travel grant)
- Israel Science foundation (grant No. 1589/19)
- Ariane de Rothschild woman doctoral program
- Kreitman High-tech scholarship, BGU

References:

- LFA-tuned matrix-free multigrid method for the elastic Helmholtz equation, SISC, [Y. & Treister, 2024]
- A hybrid shifted Laplacian multigrid and domain decomposition preconditioner for the elastic Helmholtz equations, JCP, [Triester & Y., 2024]

yovelr@bgu.ac.il

Rachel Yovel (BGU)