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OVERVIEW

• Introduction to symbols and Toeplitz matrices

• Electromagnetic scattering problems

• Multigrid with finite elements

• Multigrid with the finite integration technique

• Outlook and perspective
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THE SYMBOL

Take some -periodic function  (the symbol) and construct the  Toeplitz matrix

In practice, we will often work with (real-valued) trigonometric polynomials and thus with banded matrices.
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ONE LEVEL UP

Take the symbol

and define the 2-level  Toeplitz matrix as

g( ) =θ g(θ , θ ) =1 2 e

∈Z×Zk

∑ ĝk
ik θ +ik θ1 1 2 2

×n =n (n , n ) ×1 2 (n , n )1 2
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MATRIX-VALUED SYMBOLS

Consider the matrix-valued symbol symbol  defined by

and define the d-level  block-Toeplitz matrix as

h : [−π, π] →d Cs×s

h( ) =θ e

∈Z×Zk

∑ ĥk
i ⋅k θ

×n n

T (h) =n J ⊗
∈Z×Zk

∑ n
k ĥk
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A SIMPLE EXAMPLE

Then the  matrix  is given by

• Corresponds to the 2-D Laplace
operator with homogeneuous
boundary conditions on a 
grid.

• Symbol is equivalent to the 5-point
stencil:

• The symbol allows analysis of the
spectrum.
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SPECTRAL DISTRIBUTION OF MATRIX SEQUENCES

Definition

Let  be a trigonometric polynomial. A matrix sequence  is said to be spectrally distributed according to 

if, for all ,

In that case, we write .

f {A }n n f

G ∈ C (C)c

G(λ (A )) =
n→∞
lim

n

1

j=1

∑
n

j n G(f(θ))dθ.
2π

1 ∫
−π

π

{A } ∼n n λ f
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SPECTRAL DISTRIBUTION EXPLAINED

Assume that  and let

Then:

• LHS: the proportion of eigenvalues of  in 

• RHS: the proportion of the domain  where the values of  lie in .

• A sampling of the generating function  gives an approximation of the eigenvalues of  as .

G(λ (A )) =
n→∞
lim

n

1

j=1

∑
n

j n G(f(θ))dθ.
2π

1 ∫
−π

π

λ , f(θ) ∈j R

G(x) = {1
0

x ∈ [a, b],
otherwise.

An [a, b]

[−π, π] f [a, b]

f An n → ∞
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SPECTRAL DISTRIBUTION OF TOEPLITZ MATRICES

Theorem (Szegő's First Limit Theorem)1

If  is a univariate real-valued trigonometric polynomial, then .f {T (f)} ∼n n λ f

1Grenander and Szegő, Toeplitz Forms and Their Applications, (1958).
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EIGENVALUE DISTRIBUTION OF MULTILEVEL BLOCK-TOEPLITZ SEQUENCES

Definition

Let  be a multivariate matrix-valued trigonometric polynomial. Then a matrix

sequence  is said to be spectrally distributed according to  if, for all ,

In that case, we write .

Theorem2

If  is Hermitian-valued, then  .

h( ) :θ [−π, π] →d Cs×s

{A }n n h G ∈ C (C)c

G(λ (A )) =
→∞n
lim

s ⋅ n ⋯ n1 d

1

j=1

∑
s⋅n ⋯n1 d

j n G(λ (h( )))d .
(2π)d

1 ∫
[−π,π]d s

1

j=1

∑
s

j θ θ

{A } ∼n n λ f

h {T (h)} ∼n n λ h

2Tilli, “A note on the spectral distribution of toeplitz matrices”, (1998).
11



ELECTROMAGNETIC SCATTERING PROBLEMS
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MAXWELL'S EQUATIONS

We consider the scattering of electromagnetic waves within a bounded cavity  of linear isotropic material

with perfectly conducting walls. The Maxwell equations lead to the following system of equations for the electric

field  and the magnetic field .

By eliminating the magnetic field from Maxwell's equations and employing an implicit time-stepping scheme, we are
left with a (space-continuous) problem:

Ω ∈ R3

E = E(x, t) H = H(x, t)

ϵ E + σE − curl H
dt

d

μ H + curl E
dt

d

E × n

= j

= 0

= 0

in Ω × [0, T ]

in Ω × [0, T ]

on ∂Ω

Δt curl curl E + ϵ + σΔt E
4
1 2 (

μ

1
n) (

2
1 ) n

E × nn

= r.h.s

= 0

in Ω,

on ∂Ω.

13



FINITE ELEMENT FORMULATION

The problem can be cast into a weak form by defining the Hilbert space

resulting in the following variational problem:

Find  such that ,

To discretise the variational formulation in space, we use Nédélec elements (of the first kind, of order 1) on a regular
hexahedral grid. They

• are -conforming,

• ensure tangential continuity across element boundaries and

• are called "edge elements".

H (curl, Ω) :=0 η ∈ L (Ω); curlη ∈ L (Ω); η × n = 0 on ∂Ω ,{ 2 2 }

E ∈ H (curl, Ω)0 ∀ξ ∈ H (curl, Ω)0

αcurlE, curlξ +( )L (Ω)2 βE, ξ =( )L (Ω)2 f(ξ).

H(curl, Ω)
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DISCRETISATION WITH NÉDÉLEC ELEMENTS
Degrees of freedom: line integrals along the edges  of the grid .

For an edge extending from  to , the corresponding basis function is given by

e ξ ↦ ξ(r) ⋅∫
e

dr

(x , y , z )0 0 0 (x , y , z +0 0 0 h)

ξ(x, y, z) = if
h

1 0
0

(1 − ∣x − x ∣)(1 − ∣y − y ∣)
h
1

0 h
1

0

x − h ≤0

y − h ≤0

z ≤0

x

y

z

≤ x + h,0

≤ y + h,0

≤ z + h,0
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STRUCTURED STIFFNESS MATRIX

• The stiffness matrix of the finite element formulation can almost be represented by a multilevel block-Toeplitz
matrix.

• A small-rank correction is needed to account for the boundary condition.

• The symbol which generates this matrix has two terms corresponding to the two terms in the bi-linear form of
the variational formulation.

f( ) +θ h g( )2 θ

=
3
α

9 − (1 + 2 cos(θ ))(1 + 2 cos(θ ))2 3

−2 1 − e 1 − e 1 + cos(θ )( iθ1 ) ( −iθ2 ) ( 2
1

3 )
−2 1 − e 1 − e 1 + cos(θ )( iθ1 ) ( −iθ3 ) ( 2

1
2 )

−2 1 − e 1 − e 1 + cos(θ )( −iθ1 ) ( iθ2 ) ( 2
1

3 )
9 − (1 + 2 cos(θ ))(1 + 2 cos(θ ))1 3

−2 1 − e 1 − e 1 + cos(θ )( iθ2 ) ( −iθ3 ) ( 2
1

1 )

−2 1 − e 1 − e 1 + cos(θ )( −iθ1 ) ( iθ3 ) ( 2
1

2 )
−2 1 − e 1 − e 1 + cos(θ )( −iθ2 ) ( iθ3 ) ( 2

1
1 )

9 − (1 + 2 cos(θ ))(1 + 2 cos(θ ))1 2

+
9

4βh2 1 + cos θ 1 + cos θ( 2
1

2) ( 2
1

3)
1 + cos θ 1 + cos θ( 2

1
1) ( 2

1
3)

1 + cos θ 1 + cos θ( 2
1

1) ( 2
1

2)
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SPECTRAL DISTRIBUTION

The stiffness matrix  can be written as

where

•  is the part generated by the main part of the generating symbol,

•  as , and

•  is a small-rank matrix as  and results from the boundary condition.

From the theory of locally Toeplitz matrices, it follows that . This characterisation is not enough when

analysing the multigrid methods.

An

An = T (f) + h T (g) + Rn
2

n n

= F + h G + Rn
2

n n

T (f)n

∣∣h T (g)∣∣ →2
n 2 0 n → ∞

Rn n → ∞

A ∼n λ f
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EIGENVALUES OF THE MAIN SYMBOL

We can explicitly compute the eigenvalues of the symbol

, which again are functions of .

• Invariant under permutation of .

• Even in all .

• The eigenvector corresponding to  is

θ₃: 0.00 π

f( )θ θ

λ ( )0 θ

λ ( )+ θ

λ ( )− θ

≡ 0

= b( ) +θ d( )θ

= b( ) −θ d( )θ

θi

θi

λ0

1 − e−iθ1

1 − e−iθ2

1 − e−iθ3
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SAMPLING OF THE SYMBOL (N = 10800)
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SAMPLING OF THE SYMBOL
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HIPTMAIR METHOD

The two-grid method iteratively approximates the solution to  as follows:

1. 

2. 

3. 

4. 

5. Solve 

6. 

7. 

Multigrid method: recursively applying the algorithm at step 5.

• The simple smoothers (Gauss-Seidel, Richardson), work poorly for our problem.

• Hiptmair developed a problem-specific smoother3 to remedy convergence issues.

A x =n n bn

←x~n V (A , b , x )n,pre n n n
(j) pre-smoothing

r ←n b −n Anx~n residual

r ←k P rn,k
H

n restrict residual to coarse grid

A =k P A Pn,k
H

n n,k restrict operator to coarse grid

A y =k k rk exact solve

←x̂n +xn
~ P yn,k k prolongate correction to fine grid

x ←n
(j+1)

V (A , b , )n,post n n x̂n
post-smoothing

3Hiptmair, "Multigrid method for Maxwell's equations", (1998).
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ITERATION MATRIX FOR THE HIPTMAIR SMOOTHER

1. Stationary iteration on 

2. 

3. 

4. 

5. Stationary iteration on 

6. return 

Gauss-Seidel is commonly used. Since we have good spectral information about  (and ), we can also use the

modified Richardson method.

The Hiptmair smoother is again a stationary method. The Richardson method allows for easier symbolic analysis of
the iteration matrix :

 is generated by the eigenvector  corresponding to .

A x =n n bn on original space

ρ ←n b −n A xn n residual

←ρ~n T ρn
H transfer to problematic subspace

y ←n 0

Δ y =n n ρ~ on problematic subspace

x +n Tnρ~ add correction term

A Δ

V

V = I − (ω T D T G +1 Δ
−1 H ω D A)2 A

−1

T [1 − e , 1 −−iθ1 e , 1 −−iθ2 e ]−iθ3 T λ0
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ITERATION MATRIX FOR THE TWO-GRID METHOD

The iteration matrix for the two-grid method is given by

With the usual (geometric) prolongation operator , the symbol-based structure is preserved on the coarse grid:

Because of the large null space of , the term  is important in the inverse :

This is challenging for the existing approaches to symbol-based analysis.

V I − P (P A P ) P V .n ( n,k n,k
H

n n,k
−1

n,k
H ) n

Pn,k

P A P =n,k
H

n n,k F +k h G +2
k R .k

F G (P A P )n,k
H

n n,k
−1

(F + h G) =2 −1 F −† F GT (T GT ) T +† H −1 H T (T GT ) T +
h2

1 H −1 H O(h )2
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FINITE INTEGRATION TECHNIQUE

24



FIT

The finite integration technique4 (FIT) uses

• the integral forms of Maxwell's equations and

• topological properties of the discretisation grid and its dual

to solve directly for integral quantities like:

• voltages along edges: 

• electric current through faces: 

In our setting, this leads to the (time-continuous) equation

which can be discretised with an implicit time-stepping scheme. The resulting system matrix again has the form

=ê E(r, t) ⋅∫
e

dr

=ĵ̂ J(r, t) ⋅∬
A

dA

C M C +T
μ ê M +κ dt

d
ê +M =ϵ dt2

d2

ê − ,
dt

d
ĵ̂

A =n
′ T (f ) +n

′ h T (g ) +2
n

′ R .n
′

4Weiland, "A Discretization Method for the Solution of Maxwell's Equations for Six-Component Fields", (1977).
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SPECTRUM OF THE FIT OPERATOR

The eigenvalue functions are simpler than the finite
element approach, but share characteristics.

θ₃: 0.00 π

λ ( )0 θ

λ ( ) = λ ( )1 θ 2 θ

≡ 0

= 6 − 2 cos θ − 2 cos θ − 2 cos θ1 2 3
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OUTLOOK

We have a applied a symbol-based approach to analyse the spectrum of the system matrices and to provide a linear
algebraic description of existing multigrid methods.

The goal is

• to consider different (non-geometric) prolongation and restriction operators and

• use a symbol-based approach to provide conditions for convergence of the resulting method.

The large null space of the dominant part of the system matrix prevents the direct application of existing symbol-

based techniques5.

5Bolten, Donatelli, Ferrari, Furci, "A symbol-based analysis for multigrid methods for block-circulant and block-Toeplitz systems", (2022).
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