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Navier–Stokes Control Problems
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PDE-Constrained Optimization Problems

A general PDE-Constrained Optimization Problem can be formulated as

min
v ,u

1

2
‖v − vd‖2

L2(Q) +
β

2
‖u‖2

L2(Q)

subject to
Dv = u + BCs

where D is a differential operator [Hinze, Pinnau, Ulbrich, and Ulbrich,
2010].
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Navier–Stokes Control Problem

Given Ω ⊂ Rd , d = 2, 3, ν > 0, and β > 0, we consider the following
stationary Navier–Stokes Control Problem

min
~v ,~u
F(~v , ~u ) = min

~v ,~u

1

2
‖~v − ~vd‖2

L2(Ω) +
β

2
‖~u ‖2

L2(Ω)

subject to  −ν∇
2~v + ~v · ∇~v +∇p = ~u + ~f in Ω,

−∇ · ~v = 0 in Ω,
~v(x) = ~g(x) on ∂Ω.
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Optimize-then-Discretize Strategy
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KKT-conditions

In order to obtain the Optimality Conditions, we find the stationary points
of the Lagrangian (using Fréchet derivative)

L(~v , p, ~u, ~ζ, µ)=F(~v , ~u ) +

∫
Ω

(
−ν∇2~v + ~v · ∇~v +∇p − ~u − ~f

)
· ~ζ + µ∇ · ~v dx .

This leads to the gradient equation β~u − ~ζ = 0, and

−ν∇2~v + ~v · ∇~v +∇p = 1
β
~ζ + ~f in Ω,

−∇ · ~v = 0 in Ω,
~v(x) = ~g(x) on ∂Ω,

 state

equation

−ν∇2~ζ − ~v · ∇~ζ + (∇~v )>~ζ +∇µ = ~vd − ~v in Ω,

−∇ · ~ζ = 0 in Ω,
~ζ(x) = 0 on ∂Ω.

 adjoint

equation
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Gauss–Newton Iteration

Given ~v (k), p(k), ~ζ (k), µ(k) approximation of ~v , p, ~ζ, µ, we consider the
following Gauss–Newton iterate:

~v (k+1) = ~v (k) + ~δv
(k)
, p(k+1) = p(k) + δp(k),

~ζ (k+1) = ~ζ (k) + ~δζ
(k)
, µ(k+1) = µ(k) + δµ(k),

with

ν(∇ ~δv
(k)
,∇~w)+ (~v (k) · ∇ ~δv

(k)
, ~w)+ ( ~δv

(k)
· ∇~v (k), ~w)

−(δp(k),∇ · ~w)− 1
β ( ~δζ

(k)
, ~w) = ~R

(k)
1 ,

−(q,∇ · ~δv
(k)

) = r
(k)
1 ,

( ~δv
(k)
, ~w) + ν(∇ ~δζ

(k)
,∇~w)− (~v (k) · ∇ ~δζ

(k)
, ~w)

+((∇~v (k) )> ~δζ
(k)
, ~w)− (δµ(k),∇ · ~w) = ~R

(k)
2 ,

−(q,∇ · ~δζ
(k)

) = r
(k)
2 .
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Numerical Discretization

In the following, we employ inf-sup stable finite element pairs, with:

M (resp., M) is the mass matrix on the velocity (resp., pressure)
space; we have that M,M � 0;

K (resp., K ) is a FE discretization of −∇2 on the velocity (resp.,
pressure) space; we have that K � 0, K � 0;

N(k) is a FE discretization of ~v (k) · ∇; we have that N(k) is
skew-symmetric if ∇ · ~v (k) = 0;

H(k) is the matrix arising from second-order informations on the
convection term ~v (k) · ∇;

B is the (negative) divergence matrix.
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Discretized System

Upon discretizing the previous system of PDEs, one obtains

[
Φ(k) Ψ>

Ψ −Θ

]
︸ ︷︷ ︸

A(k)


δv (k)

δζ(k)

δµ(k)

δp(k)

 =


R(k)

2

R(k)
1

r (k)
1

r (k)
2

 ,
where

Φ(k) =

[
M D

(k)
adj

D(k) − 1
βM

]
, Ψ =

[
B 0
0 B

]
, Θ =

[
0 0
0 0

]
.

Here, we set

D(k) = νK + N(k) + H(k) D
(k)
adj = νK−N(k) + (H(k))>.
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Preconditioning Approach
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Preconditioning for Saddle Point Systems

Given the invertible system

A
[
y1

y2

]
=

[
b1

b2

]
, A =

[
Φ Ψ1

Ψ2 −Θ

]
,

if we precondition it with an invertible preconditioner of the form:

P =

[
Φ 0

Ψ2 −S

]
,

where S = Θ + Ψ2Φ−1Φ1, the eigenvalues of the preconditioned matrix
will be [Ipsen, 2001], [Murphy, Golub, and Wathen, 1999]

λ(P−1A) = {1} .

In practice, we replace Φ and S with cheap approximation Φ̃ and S̃ .
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Augmented Lagrangian Preconditioner

Given γ > 0 and suitable W, we consider the following augmented
Lagrangian preconditioner:

Pγ =

[
Φ(k) + γΨ>W−1Ψ Ψ>

0 −Sγ

]
,

where Sγ = Ψ(Φ + γΨ>W−1Ψ)−1Ψ>.
We employ as matrix W the following matrix:

W =

[
0 W
W 0

]
,

with W being the pressure mass matrix M or its diagonal.
Rather than solving for the (1, 1)-block and the Schur complement, we
employ suitable cheap approximations of them.

Santolo Leveque (SNS) Preconditioning for NS Control June 11, 2024 13 / 28



Approximating (1, 1)-block

As an approximate inverse of the (1, 1)-block

Φ(k) + γΨ>W−1Ψ =

[
M D

(k)
adj + γB>W−1B

D(k) + γB>W−1B − 1
βM

]
,

we employ a fixed number of GMRES iterations with preconditioner

P(1,1) =

[
M 0

D(k) + γB>W−1B −S̃

]
.

Here, S̃ is the approximation of the inner Schur complement obtained with
the “matching strategy” [Pearson and Wathen, 2012], given by

S̃ := (D(k) + γB>W−1B + Λ)M−1(D
(k)
adj + γB>W−1B + Λ),

where Λ = 1√
β
M.
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Approximating Schur Complement

By employing the Sherman–Morrison–Woodbury formula, one can write
that

S−1
γ =

[
Ψ(Φ(k))−1Ψ>

]−1
+ γW−1.

In order to have a robust preconditioner with respect to β, we consider the
following approximation of S−1

γ :

S̃−1
γ =

[
K−1 γW−1

γW−1 − 1
βK
−1

]
.

Santolo Leveque (SNS) Preconditioning for NS Control June 11, 2024 15 / 28



Approximating Schur Complement

By employing the Sherman–Morrison–Woodbury formula, one can write
that

S−1
γ =

[
Ψ(Φ(k))−1Ψ>

]−1
+ γW−1.

In order to have a robust preconditioner with respect to β, we consider the
following approximation of S−1

γ :

S̃−1
γ =

[
K−1 γW−1

γW−1 − 1
βK
−1

]
.

Santolo Leveque (SNS) Preconditioning for NS Control June 11, 2024 15 / 28



Summarizing AL Preconditioner

Krylov solver: FGMRES

Solve for A(k)
γ with preconditioner P̃γ

Applying S̃−1
γ

Approximate mass matrix inverse
on the pressure space

Approximate stiffness matrix inverse
on the pressure space

Krylov solver: FGMRES

Applying P̃−1
(1,1)

Chebyshev semi-iteration for mass
matrix on the velocity space

Applying S̃−1

1 F-Cycle of AL multigrid
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Numerical Results
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Test 1 (Exact Solution)

We solve the stationary Navier–Stokes control problem in Ω = [−1, 1]2

with the following exact solution:

~v = ~vd = [xy3,
1

4
(x4 − y4)]>, ~ζ = [0, 0]>,

for different values of ν and β. For a given β, we set γ = 10β−0.5.
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Test 1 (Exact Solution)

Table: Degrees of freedom (DoF) and average GMRES iterations of the
augmented Lagrangian preconditioner with γ = 10β−0.5, for ν = 1

100 , 1
500 , and

1
1000 , and a range of l , β.

ν = 1
100

ν = 1
500

ν = 1
1000

β β β

l DoF 10−3 10−4 10−5 10−3 10−4 10−5 10−3 10−4 10−5

1 484 5 5 5 5 5 5 5 5 5

2 1796 4 4 4 3 4 4 3 4 4

3 6916 4 5 4 5 4 5 4 4 4

4 27,140 4 5 5 7 6 5 7 6 5

5 107,524 5 5 5 7 7 7 10 9 7

6 428,036 5 5 5 8 9 10 21 10 7
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Test 1 (Exact Solution)

Table: Number of Gauss–Newton iterations required for stationary Navier–Stokes
control problem. In each cell are the Gauss–Newton iterations for the given l , ν,
and β = 10−j , j = 3, 4, 5.

l ν = 1
100 ν = 1

500 ν = 1
1000

1 2 2 2 2 2 2 2 2 2

2 3 2 2 2 2 2 2 2 2

3 3 2 2 3 2 3 3 2 3

4 3 3 2 3 2 3 3 2 2

5 3 3 2 3 3 2 3 3 3

6 3 3 2 3 3 3 3 3 2
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Test 2

We solve the stationary Navier–Stokes control problem in Ω = [−1, 1]2

with
~f = [0, 0]>, ~vd = [0, 0]>,

for different values of ν and β. For a given β, we set γ = 10β−0.5.
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Test 2

Table: Degrees of freedom (DoF) and average GMRES iterations of the
augmented Lagrangian preconditioner with γ = 10β−0.5, for ν = 1

100 , 1
500 , and

1
1000 , and a range of l , β.

ν = 1
100

ν = 1
500

ν = 1
1000

β β β

l DoF 10−3 10−4 10−5 10−3 10−4 10−5 10−3 10−4 10−5

1 484 6 13 9 9 5 7 9 5 7

2 1796 4 4 4 3 4 3 4 4 4

3 6916 5 6 5 5 5 4 5 5 4

4 27,140 5 6 6 7 6 5 7 6 6

5 107,524 7 7 5 7 9 8 10 8 8

6 428,036 9 6 7 13 7 12 14 6 10
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Test 2

Table: Number of Gauss–Newton iterations required for stationary Navier–Stokes
control problem. In each cell are the Gauss–Newton iterations for the given l , ν,
and β = 10−j , j = 3, 4, 5.

l ν = 1
100 ν = 1

500 ν = 1
1000

1 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

3 2 2 2 2 2 2 2 2 2

4 2 2 2 2 2 2 2 2 2

5 3 2 2 2 2 2 2 2 2

6 2 2 2 3 2 2 3 2 2
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Conclusions
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Conclusions

Can efficiently solve Navier–Stokes control problems with inexact
Newton;

preconditioner based on potent augmented Lagrangian approach;

ongoing work & challenges:

solve more complex PDEs;
solve boundary control problems;
consider different cost functionals;
add algebraic constraints on state/control variables (IPMs).
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Thank you
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