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Motivation and Background
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A difficult problem to tackle

Consider a one-dimensional piece-wise continuous function with unknown
discontinuity as below.

Figure: 10 jumps piecewise continuous function
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Unit step function fb(x) and its continuous piecewise linear approximation
pb(x):

fb(x) =

{
0, a < x < b

1, b < x < c
and pb(x) =


0 a < x ≤ b− ϵ
x−b+ϵ

2ϵ b− ϵ < x ≤ b+ ϵ

0 b+ ϵ < x ≤ c

∥fb − pb∥L∞(I ) =
1

2
; ∥fb − pb∥Lr (I ) =

ϵ1/r

21−1/r (1+ r)1/r

How to compute pb(x) when b is unknown?
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Least square in Machine Learning

(a) One hidden layer neural network (b) σ(x − b)

Let real-valued function u be the target we want to approximate.

un =
n

∑
i=1

ciσ(wi · x+ bi ) + c0, Jn = min
un

1

2
∥u − un∥2 (1)
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Gauss Newton Method with ReLU Bases

Gauss Newton(GN) algorithm is a ‘quasi-Newton method’for least
squares only

Jacobian matrix is used to approximate Hessian.

Suppose u is a nonlinear, twice continuously differentiable function.

∇J =
∫

Ω
∇ (u − un)

T (u − un) (2)

∇2J ≈
∫

Ω
∇ (u − un)

T ∇ (u − un) (3)

Denote J = ∇ (u − un), r = u − un, then the update is

u
(k+1)
n = u

(k)
n + γ(k+1)

(∫
Ω
JT J

)−1 ∫
Ω

(
JT r (k)

)
(4)
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Structure-Guided Gauss-Newton method

SgGN key ideas:

1 Use specific basis functions for GN minimization: ReLU
▶ Guaranteed positive definiteness of approximated hessian

2 σ(x − b)− σ (x − (b+ ϵ)) captures the jump at b.
▶ No more mesh refinements
▶ No overshooting

3 Consider bi in σ(x − bi ) as the moving mesh

Figure: Two neurons
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Our result: SgGN method

30 neurons and 1000 training data.

1 Mean square error (MSE) is 8.76E-4 after 8 iterations.

2 bi is called breaking point

(a) Initial breaking points {bi} (b) Moved breaking points

Tong Ding (Purdue University) A Structure-Guided Gauss-Newton Method for Shallow ReLU Neural NetworkPrecond24 8 / 24



Algorithm & Mathematical
Framework
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Problem Setup

Denote σi = σ(wi · x+ bi ), then the basis functions are:

Mn(Ω) =

{
n

∑
i=1

ciσi (x) + c0 : x ∈ Ω, ci ∈ R, bi ∈ R+
0 ,wi ∈ Sd−1

}
The the loss function we want to minimize is:

J (un) =
∫

Ω
(u(x)− un(x))

2 (5)

1 Linear parameters: c

∇cJ (un) = 0 (6)

2 Nonlinear parameters: ri =
(
wi , bi

)
∇rJ (un) = 0 (7)
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Linear Parameters

Equation (6) is reduced to solve a linear equation:

Ac = F; with Aij =
∫

Ω
σ(wi · x+ bi )σ(wj · x+ bj ) (8)

with Fi =
∫

Ω f (x)σ(wi · x+ bi )
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Nonlinear Parameters: Gauss Newton

Use GN to solve Equation (7).

∇r (∇rJp(un))
T ≈ Ĥ = (D(c)⊗ Id+1)H(r) (D(c)⊗ Id+1) (9)

H(r) =
∫

Ω

[
HHT

]
⊗
[
yyT

]
(10)

It is easy to extend our analysis to the discrete least square problems.
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Summary: A block Gauss Seidel

A (r(k))
Ĥ
(
c(k+1)

)(c(k+1)

p(k)

)
=

(
F(r(k))

−∇r(k)J
(
c(k+1)

)) (11)

with
r(k+1) = r(k) + γ(k+1)p(k) (12)

1 A and Ĥ are symmetric positive definite under mild assumptions.
2 A and Ĥ are highly ill-conditioned

▶ cond(A(0)) ≥ O(n4) in 1D
▶ More matrix analysis tomorrow 10:15-10:40 Room 1116

3 The matrix inversions are done by truncated svd consequently.
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Numerical Results
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1D test continued

(a) SgGN(Ours) (b) BFGS

(c) KFRA (d) Adam
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J30 =
1

1000

1000

∑
i=1

(f (xi )− un(xi ))
2

Method SgGN BFGS KFRA Adam

Iteration 825 825 825 10,000

J30 6.56E-9 2.65E-3 1.61E-3 8.14E-3
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2D jump function: 4 neurons

(a) Target function (b) {ri = (wi , bi )} initialization
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(a) SgGN(Ours) (b) KFRA (c) BFGS

(d) SgGN (e) KFRA (f) BFGS
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4 neurons with 2002 training data.

Method SgGN BFGS KFRA Adam

Iteration 142 142 142 10,000

J4 3.16E-3 8.92E-2 9.40E-2 9.23E-2
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Different Initialization for Line Approximation

(a) Horizontal initialization (HI) (b) Vertical initialization (VI)
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(a) BFGS (HI) (b) KFRA (HI) (c) Adam (HI)

(d) BFGS (VI) (e) KFRA (VI) (f) Adam (VI)
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Method SgGN BFGS KFRA Adam

Iteration 207 207 207 10,000

J5 (HI) 6.68E-27 7.50E-22 6.12E-2 1.17E-5

Iteration 105 105 105 10,000

J5 (VI) 4.34E-26 2.71E-4 5.56E-2 2.15E-4

(a) Loss curve for HI (b) Loss curve for VI
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Summary

1 Adam: Richardson method

2 BFGS: Rank 2 update from the identity matrix
3 SgGN: Block Gauss Seidel

▶ Combine geometric intuition and second order information
▶ Least square structures and neural network structures
▶ More computational cost per iteration: O(n2)

https://arxiv.org/abs/2404.05064
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Pseudocode for SgGN

Algorithm A structure-guided Gauss-Newton (SgGN) method

Require: network parameters r = (r1, . . . , rn), data set {(xi , ui )}Ni=1
Ensure: network parameters c, r
1: Initialize r(0) by uniform points on the domain Ω
2: for k = 0, 1, . . . do
3: Linear parameter c
4: Form A(r(k)), f(r(k))
5: c(k+1) ← A−1(r(k))f(r(k))
6: Nonlinear parameter r
7: Form G(c(k+1), r(k)),H(r(k))

8: s(k) ← −H−1(r(k))G(c(k+1), r(k))

9: p(k) ← (D−1(c(k+1))⊗ Id+1)s
(k)

10: γk+1 ← argminγ∈R+
0
Jµ(un(·; c(k+1), r(k) + αp(k)))

11: r(k+1) ← r(k) + γk+1p
(k)

12: if a desired loss or a specified number of iterations is reached then
13: return c(k+1), r(k+1)

14: end if
15: end for
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