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Model reduction (Benner and Breiten 2013; Damm 2008; Shank et al. 2016).
m Eigenvalue problems (Ringh et al. 2018).

m Computational neuroscience (Kiirschner et al. 2019).

Includes as particular cases the famed (standard) Sylvester, Lyapunov and Stein
equations.
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Difficulties

Solution strategies critically depend on the number of terms r, the overall structure of the
equation and properties of the coefficients.

r=1:
Bi1XAT = E

Trivial.
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Difficulties

Solution strategies critically depend on the number of terms r, the overall structure of the
equation and properties of the coefficients.

r=2:
BiXAT + BoxAT = E
Much more challenging:
m Direct solution techniques (Bartels and Stewart 1972; Gardiner et al. 1992).

m Block recursive splitting (Jonsson and Kagstrom 2002a; Jonsson and Kagstrom
2002b).

m Alternating Direction Implicit (ADI) (Wachspress 1988).

m Data-sparse methods (e.g. low-rank) (Massei et al. 2018; Palitta and Simoncini 2018;
Grasedyck 2004; Kressner and Tobler 2010).

m Matrix oriented (truncated) CG/GMRES/... (Hochbruck and Starke 1995).

See e.g. Simoncini 2016; Benner and Saak 2013 for an overview.
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Difficulties

Solution strategies critically depend on the number of terms r, the overall structure of the
equation and properties of the coefficients.

r>3:

T
S BiXAl =E (1)
k=1

m Low-rank methods (Benner and Breiten 2013; Kressner and Sirkovié¢ 2015; Jarlebring
et al. 2018).

m ADI (Benner and Saak 2013).

m Matrix oriented (truncated) CG/GMRES/... (Jbilou et al. 1999; Bouhamidi and
Jbilou 2008).

Notes:
m No general direct solution method for » > 3 with complexity O(n3 + m3).

m Projection type techniques require solving a small size version of (1).
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Kronecker form

Define the linear operator M: R™X" — R™X"™ and its Kronecker representation
M € RMnXmn ag

™ s
M(X)=> BpXA{, M=> Ay ® By
k=1 k=1

Exploit the equivalence
MX)=Y <= Mx=y

with x = vec(X), y = vec(Y).

— At the heart of matrix oriented versions of CG, GMRES,...
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™ s
M(X)=> BpXA{, M=> Ay ® By
k=1 k=1

Exploit the equivalence
MX)=Y <= Mx=y

with x = vec(X), y = vec(Y).
— At the heart of matrix oriented versions of CG, GMRES,...

Goal: Use the Kronecker form of the equation to build low Kronecker rank approximations
of the operator or its inverse, without restrictive assumptions on the coefficients.

# Very general solution strategies.

o Limited to small or medium size equations (m,n < 10%).
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Kronecker product approximation

m Some early attempts for » = 2 employing SSOR preconditioning (Hochbruck and
Starke 1995; Bouhamidi and Jbilou 2008).
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min | R(M) — vec(Y) vec(Z)T || ¢
where R: Rmxnm _y gn?xm? jg 5 rearrangement operator.

Observation: M has Kronecker rank r <= R(M) has (matrix) rank r.

Algorithm:
1. Compute the “SVD representation” of M via the SVD of R(M)

R(M) = Zakukvg — M = Zo’k(Uk ®Vk).
k=1 k=1

2. Retain the leading ¢ < 2 terms and use it as preconditioner

q
P = ZU’“(U" ® Vk).
k=1
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Theoretical results

m For ¢ = 1, P is block-banded, nonnegative and positive definite if M is (Van Loan
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Theoretical results

m For ¢ = 1, P is block-banded, nonnegative and positive definite if M is (Van Loan
and Pitsianis 1993, Theorems 5.1, 5.3 and 5.8).

m For ¢ > 2, all factor matrices of P are banded and symmetric if those of M are.

Theorem

If M, P € R"X™ are symmetric positive definite

B
n Ai(M, P

=1

— Effective preconditioner if R(M) features a fast singular value decay.
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Kronecker approximate inverse

Find factor matrices C € R"*™ and D € R™X™ such that C @ D~ (3}_; Ar ® Bk)il.
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Kronecker approximate inverse

Find factor matrices C € R"*™ and D € R™*™ such that C® D~ (3_,_; Ak ® Bk)il.

Consider the minimization problem

.
gg”l - > AyC® BiD|p.

k=1
Use the reshaping that transforms
M
My ... Min ) Moy
M = ) to M=
nl nn Mun

— Alternately solve a sequence of least squares problems for reshaped quantities

in||I — BD d min|f - AC
min || lF and min|ll - AC|F

B=U®In)B, U = [vec(A1C), ..., vec(A:C)], B =[B1;Bs;...;
A=(V®In)A, V = [vec(B1D),...,vec(BrD)], A=[A1;A9;..
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Algorithm (via normal equations)

Input: Initial guess C' € R™"*" tolerance € > 0 and number of iterations N € N
Output: C and D such that C® D~ (3°,_; Ax ® Bk)71

1: Set r=o00,5=0 > Initialization

IR AN N 4

©

10:
11:
12:

13:
14:
15:
16:

: while /7 >€¢ and j < N do

> Optimizing for D

Compute B = (AgAl, COTYp for k,i=1,...,r > O(rn3 + r?n?2)
Compute 0 = <A£,C)F fork=1,...,r > O(rn?)
Form BTL? =2 hi=1 B BL B > O(rm3 + r2m?2)
Form BTT = 22:1}5}93,{ > O(rm?)
Solve BTBD = BTT > O(m?)
> Optimizing for C

Compute ay; = <BgBl, DDTYp for k,l=1,...,r > O(rm3 4 r2m?2)
Compute v, = (BF ,D)p for k=1,...,r > O(rm?)
Form .AT./~4 = k=1 ap AT A > O(rn3 + r2n2)
Form AT] = Zzzl:ykAg > O(rn?)
Solve AT AC = ATT > O(n?)
Update Bi; and §; following lines 3 and 4, respectively > Residual
Compute r = nm — 2301 VeOk + X5 =1 ki Bkl > O(r?)
Update j =5 +1

end while

Algorithm: ALS for Kronecker rank 1 approximate inverse
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Notes

s Complexity for dense matrices: O(N7(n3 +m3) + Nr2(n? + m?2)).

m Generalizable to Kronecker rank g approximate inverses:
3:1 Cs ® Ds ~ (Z;:l Ak & Bk)_
m Applying the preconditioner only requires matrix-matrix multiplications:

q
P(X)=>_ D,xcl.
s=1

m The residual directly controls the clustering of the eigenvalues of the preconditioned
operator (Grote and Huckle 1997, Theorem 3.2). For M, P € R"*"

ZU* (MP)]? < ||I — MPJ|%.
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Sparse Kronecker approximate inverse

Define sets of sparse matrices So C R™"*™ and Sp C R™*™ with prescribed sparsity

(based e.g. on powers of 3 ;. _; Ay and >} _; By, or some variation) (Huckle 1999).

Solve alternately

Ao II = BD||r, and I — AC|F.

min
CeSe
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Sparse Kronecker approximate inverse

Define sets of sparse matrices So C R™"*™ and Sp C R™*™ with prescribed sparsity
based e.g. on powers of > .7 _, Ag and >, _, By or some variation) (Huckle 1999).
g k=1 k=1

Solve alternately _ .
i I—-BD|F, d in ||[I —AC| F.
Zoin | lF, an Juin I - AC|r
If X is sparse, P(X) retains some sparsity. Let S3s denote the bandwidth of a matrix M.
Lemma

The Bi-CGSTAB method applied to M(X) =Y and preconditioned with P with starting
matric Xo = 0 produces iterates X; (for a full iteration j > 1) with bandwidth

Bx; < (25 —1)(Bm + Bp) +Bp + Be

where Bapq = maxg{Ba, + Bp,} and fp = maxs{Bc, + Bp,}
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RC circuit simulation

Lyapunov-plus-positive equation (Benner and Breiten 2013):

AX + XAT + NXNT =

E’
with m = n = 930.
100% T T T T T T T T T
—— GMRES
+— Lyapunov part
—— NKP(1)
102 5% —-—NKP(2)
{ —— KINV(2)
% KINV(4)
T
S 10%F |
= \
= 6L |
< 10
2
&
1
1
-8
10 \ﬁ
10720 . . . . . . . .
10 20 30 40 50

60 70
Iteration number

80 90 100

Figure: Convergence history for solving (2) using the (right-preconditioned) GMRES method.

The non-preconditioned method converged after 630 iterations.
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RC circuit simulation

Timings:

Preconditioner | Setup GMRES
None — 26.0 (630)
Lyapunov —/6.0 12.2 (8)
NKP(1) 0.06/0.02  15.0 (203)
NKP(2) 0.06/5.9  12.2 (8)
KINV(2) 1.4 5.8 (97)
KINV(4) 2.4 5.2 (58)

Table: Timing (in seconds). When writing x/y, « represents the time for computing the SVD
representation of the operator and y is the time for computing matrix factorizations (e.g. QZ or
LU). The total number of iterations is shown in parenthesis.
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Convection-diffusion equation

Consider the PDE (Palitta and Simoncini 2016)
—eAu+w-Vu=f onQ=(0,1)>2.

Set suitable boundary conditions, f = 0 and

-

Relative residual

y(1 - (2z +1)?) )
202z +1)(1—-9y%) )"

Finite difference discretization on the grid {z;}? ; x {y;}7_; with n = 1000

j=1

TX + XTT 4 (®1B)X VU + X (BTUy) = F

—=— GMRES

—#— Palitta and Simoncini, 2016

10! —<—NKP(1)
— & NKP(2)
— 4+ KINV(2)
102 KINV(4)
!
102 f‘
B
10™
it
10° ‘%
1004
10'7 L L L L
0 50 100 150 200

Iteration number

(a) e=1/10

250

®3)

——GMRES
- Palitta and Simoncini, 2016
——NKP(1)
= NKP(2)
—+—KINV(2)

KINV(4)

20 40 60 80 100

Iteration number

(b) e=1/30

120 140 160 180

13/18



Convection-diffusion equation

Timings:

Preconditioner Setup e=1/10 e=1/20 e=1/30
None - 103.0 (2007) _ 105.1 (2007) _ 73.25 (170)
Palitta and Simoncini | —/10.3 10.8 (6) 14.2 (8) 24.4 (9)
NKP(1) 0.04/0.01 94.9 (180)  28.9 (104)  13.8 (76)
NKP(2) 0.04/8.95 13.4 (7) 20.7 (12) 51.1 (20)
KINV/(2) 1.04 9.38 (57) 4.41 (35) 2.95 (27)
KINV(4) 1.86 2.04 (17) 1.40 (12) 1.17 (10)

Table: Timing (in seconds). When writing z/y, = represents the time for computing the SVD
representation of the operator and y is the time for computing matrix factorizations (e.g. QZ or
LU). The total number of iterations is shown in parenthesis, where * indicates that the method
did not converge within the maximum number of iterations.
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