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Introduction

We consider solving generalized multiterm Sylvester equations

r∑
k=1

BkXAT
k = E

where Ak ∈ Rn×n, Bk ∈ Rm×m for all k = 1, . . . , r and X,E ∈ Rm×n.

Now appear in an increasing number of applications:

Finite difference (Palitta and Simoncini 2016; Hao and Simoncini 2021) and finite
element (Ernst et al. 2009; Ullmann 2010; Mantzaflaris et al. 2017; Scholz et al. 2018)
discretizations of (stochastic) PDEs [cf. Catherine Powell’s talk at SIAM LA24]

Model reduction (Benner and Breiten 2013; Damm 2008; Shank et al. 2016).

Eigenvalue problems (Ringh et al. 2018).

Computational neuroscience (Kürschner et al. 2019).

...

Includes as particular cases the famed (standard) Sylvester, Lyapunov and Stein
equations.
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Difficulties

Solution strategies critically depend on the number of terms r, the overall structure of the
equation and properties of the coefficients.

r = 1:
B1XAT

1 = E

Trivial.
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Difficulties

Solution strategies critically depend on the number of terms r, the overall structure of the
equation and properties of the coefficients.

r = 2:
B1XAT

1 +B2XAT
2 = E

Much more challenging:

Direct solution techniques (Bartels and Stewart 1972; Gardiner et al. 1992).

Block recursive splitting (Jonsson and K̊agström 2002a; Jonsson and K̊agström
2002b).

Alternating Direction Implicit (ADI) (Wachspress 1988).

Data-sparse methods (e.g. low-rank) (Massei et al. 2018; Palitta and Simoncini 2018;
Grasedyck 2004; Kressner and Tobler 2010).

Matrix oriented (truncated) CG/GMRES/... (Hochbruck and Starke 1995).

See e.g. Simoncini 2016; Benner and Saak 2013 for an overview.
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Difficulties

Solution strategies critically depend on the number of terms r, the overall structure of the
equation and properties of the coefficients.

r ≥ 3:
r∑

k=1

BkXAT
k = E (1)

Low-rank methods (Benner and Breiten 2013; Kressner and Sirković 2015; Jarlebring
et al. 2018).

ADI (Benner and Saak 2013).

Matrix oriented (truncated) CG/GMRES/... (Jbilou et al. 1999; Bouhamidi and
Jbilou 2008).

Notes:

No general direct solution method for r ≥ 3 with complexity O(n3 +m3).

Projection type techniques require solving a small size version of (1).
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Kronecker form

Define the linear operator M : Rm×n → Rm×n and its Kronecker representation
M ∈ Rmn×mn as

M(X) =
r∑

k=1

BkXAT
k , M =

r∑
k=1

Ak ⊗Bk.

Exploit the equivalence
M(X) = Y ⇐⇒ Mx = y

with x = vec(X), y = vec(Y ).

→ At the heart of matrix oriented versions of CG, GMRES,...

Goal: Use the Kronecker form of the equation to build low Kronecker rank approximations
of the operator or its inverse, without restrictive assumptions on the coefficients.

Very general solution strategies.
Limited to small or medium size equations (m,n < 104).
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Kronecker product approximation

Some early attempts for r = 2 employing SSOR preconditioning (Hochbruck and
Starke 1995; Bouhamidi and Jbilou 2008).

Nearest Kronecker product (Van Loan and Pitsianis 1993): Find the best factor
matrices Y ∈ Rn×n and Z ∈ Rm×m that minimize

ϕM (Y, Z) = ∥M − Y ⊗ Z∥F .

Equivalent to the (matrix) low-rank approximation problem

min ∥R(M)− vec(Y ) vec(Z)T ∥F

where R : Rnm×nm → Rn2×m2
is a rearrangement operator.

Observation: M has Kronecker rank r ⇐⇒ R(M) has (matrix) rank r.

Algorithm:

1. Compute the “SVD representation” of M via the SVD of R(M)

R(M) =

r∑
k=1

σkukv
T
k ⇐⇒ M =

r∑
k=1

σk(Uk ⊗ Vk).

2. Retain the leading q ≤ 2 terms and use it as preconditioner

P =

q∑
k=1

σk(Uk ⊗ Vk).
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Theoretical results

For q = 1, P is block-banded, nonnegative and positive definite if M is (Van Loan
and Pitsianis 1993, Theorems 5.1, 5.3 and 5.8).

For q ≥ 2, all factor matrices of P are banded and symmetric if those of M are.

Theorem

If M,P ∈ Rn×n are symmetric positive definite√√√√ 1

n

n∑
i=1

(
1−

1

λi(M,P )

)2

≤ κ(M)

√√√√ r∑
k=q+1

(
σk

σ1

)2

.

→ Effective preconditioner if R(M) features a fast singular value decay.
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Kronecker approximate inverse

Find factor matrices C ∈ Rn×n and D ∈ Rm×m such that C ⊗D ≈
(∑r

k=1 Ak ⊗Bk

)−1
.

Consider the minimization problem

min
C,D

∥I −
r∑

k=1

AkC ⊗BkD∥F .

Use the reshaping that transforms

M =

M11 . . . M1n

...
. . .

...
Mn1 . . . Mnn

 to M̃ =


M11

M21

...
Mnn



→ Alternately solve a sequence of least squares problems for reshaped quantities

min
D

∥Ĩ − BD∥F and min
C

∥Î −AC∥F

B = (U ⊗ Im)B, U = [vec(A1C), . . . , vec(ArC)], B = [B1;B2; . . . ;Br],

A = (V ⊗ In)A, V = [vec(B1D), . . . , vec(BrD)], A = [A1;A2; . . . ;Ar].
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∥Î −AC∥F

B = (U ⊗ Im)B, U = [vec(A1C), . . . , vec(ArC)], B = [B1;B2; . . . ;Br],

A = (V ⊗ In)A, V = [vec(B1D), . . . , vec(BrD)], A = [A1;A2; . . . ;Ar].

7 / 18



Kronecker approximate inverse

Find factor matrices C ∈ Rn×n and D ∈ Rm×m such that C ⊗D ≈
(∑r

k=1 Ak ⊗Bk

)−1
.

Consider the minimization problem

min
C,D

∥I −
r∑

k=1

AkC ⊗BkD∥F .

Use the reshaping that transforms

M =

M11 . . . M1n

...
. . .

...
Mn1 . . . Mnn

 to M̃ =


M11

M21

...
Mnn



→ Alternately solve a sequence of least squares problems for reshaped quantities

min
D
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Algorithm (via normal equations)
Input: Initial guess C ∈ Rn×n, tolerance ϵ > 0 and number of iterations N ∈ N
Output: C and D such that C ⊗D ≈

(∑r
k=1 Ak ⊗Bk

)−1

1: Set r = ∞, j = 0 ▷ Initialization
2: while

√
r > ϵ and j ≤ N do

▷ Optimizing for D
3: Compute βkl = ⟨AT

k Al, CCT ⟩F for k, l = 1, . . . , r ▷ O(rn3 + r2n2)

4: Compute δk = ⟨AT
k , C⟩F for k = 1, . . . , r ▷ O(rn2)

5: Form BTB =
∑r

k,l=1 βklB
T
k Bl ▷ O(rm3 + r2m2)

6: Form BT Ĩ =
∑r

k=1 δkB
T
k ▷ O(rm2)

7: Solve BTBD = BT Ĩ ▷ O(m3)
▷ Optimizing for C

8: Compute αkl = ⟨BT
k Bl, DDT ⟩F for k, l = 1, . . . , r ▷ O(rm3 + r2m2)

9: Compute γk = ⟨BT
k , D⟩F for k = 1, . . . , r ▷ O(rm2)

10: Form ATA =
∑r

k,l=1 αklA
T
k Al ▷ O(rn3 + r2n2)

11: Form AT Ĩ =
∑r

k=1 γkA
T
k ▷ O(rn2)

12: Solve ATAC = AT Ĩ ▷ O(n3)

13: Update βkl and δk following lines 3 and 4, respectively ▷ Residual
14: Compute r = nm− 2

∑r
k=1 γkδk +

∑r
k,l=1 αklβkl ▷ O(r2)

15: Update j = j + 1
16: end while

Algorithm: ALS for Kronecker rank 1 approximate inverse
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∑r

k=1 γkA
T
k ▷ O(rn2)

12: Solve ATAC = AT Ĩ ▷ O(n3)
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Notes

Complexity for dense matrices: O(Nr(n3 +m3) +Nr2(n2 +m2)).

Generalizable to Kronecker rank q approximate inverses:∑q
s=1 Cs ⊗Ds ≈

(∑r
k=1 Ak ⊗Bk

)−1
.

Applying the preconditioner only requires matrix-matrix multiplications:

P(X) =

q∑
s=1

DsXCT
s .

The residual directly controls the clustering of the eigenvalues of the preconditioned
operator (Grote and Huckle 1997, Theorem 3.2). For M,P ∈ Rn×n

n∑
i=1

|1− λi(MP )|2 ≤ ∥I −MP∥2F .
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Sparse Kronecker approximate inverse

Define sets of sparse matrices SC ⊂ Rn×n and SD ⊂ Rm×m with prescribed sparsity
(based e.g. on powers of

∑r
k=1 Ak and

∑r
k=1 Bk or some variation) (Huckle 1999).

Solve alternately
min

D∈SD

∥Ĩ − BD∥F , and min
C∈SC

∥Î −AC∥F .

If X is sparse, P(X) retains some sparsity. Let βM denote the bandwidth of a matrix M .

Lemma

The Bi-CGSTAB method applied to M(X) = Y and preconditioned with P with starting
matrix X0 = 0 produces iterates Xj (for a full iteration j ≥ 1) with bandwidth

βXj
≤ (2j − 1)(βM + βP ) + βP + βE

where βM = maxk{βAk
+ βBk

} and βP = maxs{βCs + βDs}.
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RC circuit simulation
Lyapunov-plus-positive equation (Benner and Breiten 2013):

AX +XAT +NXNT = E, (2)

with m = n = 930.
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Figure: Convergence history for solving (2) using the (right-preconditioned) GMRES method.
The non-preconditioned method converged after 630 iterations.
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RC circuit simulation

Timings:

Preconditioner Setup GMRES
None − 26.0 (630)
Lyapunov −/6.0 12.2 (8)
NKP(1) 0.06/0.02 15.0 (203)
NKP(2) 0.06/5.9 12.2 (8)
KINV(2) 1.4 5.8 (97)
KINV(4) 2.4 5.2 (58)

Table: Timing (in seconds). When writing x/y, x represents the time for computing the SVD
representation of the operator and y is the time for computing matrix factorizations (e.g. QZ or
LU). The total number of iterations is shown in parenthesis.
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Convection-diffusion equation
Consider the PDE (Palitta and Simoncini 2016)

−ϵ∆u+w · ∇u = f on Ω = (0, 1)2.

Set suitable boundary conditions, f = 0 and

w =

(
y(1− (2x+ 1)2)

−2(2x+ 1)(1− y2)

)
.

Finite difference discretization on the grid {xi}ni=1 × {yj}nj=1 with n = 1000

TX +XTT + (Φ1B)XΨ1 +Φ2X(BTΨ2) = F (3)
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(a) ϵ = 1/10
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(b) ϵ = 1/30

Figure: Convergence history for solving (3) using the (right-preconditioned) GMRES method
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Convection-diffusion equation

Timings:

Preconditioner Setup ϵ = 1/10 ϵ = 1/20 ϵ = 1/30
None − 103.9 (200∗) 105.1 (200∗) 73.25 (170)
Palitta and Simoncini −/10.3 10.8 (6) 14.2 (8) 24.4 (9)
NKP(1) 0.04/0.01 94.9 (180) 28.9 (104) 13.8 (76)
NKP(2) 0.04/8.95 13.4 (7) 20.7 (12) 51.1 (20)
KINV(2) 1.04 9.38 (57) 4.41 (35) 2.95 (27)
KINV(4) 1.86 2.04 (17) 1.40 (12) 1.17 (10)

Table: Timing (in seconds). When writing x/y, x represents the time for computing the SVD
representation of the operator and y is the time for computing matrix factorizations (e.g. QZ or
LU). The total number of iterations is shown in parenthesis, where ∗ indicates that the method
did not converge within the maximum number of iterations.
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Conclusions

Algebraic parameter-free preconditioners for multiterm Sylvester equations.

Based on low Kronecker rank approximations of either the operator or its inverse.

May complement low-rank solvers for large scale applications.

Future work:

Better theoretical insights on the nearest Kronecker product preconditioner for q ≥ 2.

When to expect a fast singular value decay of R(M−1)?

If interested, please check out [Y. Voet, Preconditioning techniques for generalized
Sylvester matrix equations] on ArXiv.

Travel support provided by the organizers is kindly acknowledged.

Thank you!
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