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BACKGROUND

Motivation

= Solving linear systems of the form:
Ax = b.

» For large and sparse problems, we usually apply iterative solvers as well as
preconditioners.

= An optimal choice of solver and preconditioner calls for a solid background and knowledge
of the hardware.
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BACKGROUND

Solvers and preconditioners in PETScl"-2]

I

Capability

[

Algorithm

Preconditioners

Jacobi

point block Jacobi
block Jacobi
additive Schwarz

Incomplete factorizations ILU dt

Matrix-free infrastructure

Multigrid infrastructure
geometric (DMDA for structured grid)
geometric/algebraic

structured geometric

classical algebraic (BoomerAMG /hypre)

classical algebraic (ML/Trilinos)

unstructured geometric and smoothed aggregation

Physics-based splitting

relaxation and Schur-complement
least squares commutator

Approximate inverses

approximate inverses

Substructuring

balancing Neumann-Neumann
BDDC

Krylov methods

Richardson, Chebyshev, conjugate gradients, GM-
RES, Bi-CG-stab, transpose-free QMR, conju-
gate residuals, conjugate gradient squared, bi-
conjugate gradient , MINRES, flexible GMRES,
LSQR, SYMMLQ, LGMRES, GCR, conjugate
gradient on the normal equations

[1] S. Balay, et al. “PETSc Web Page (2022).” https: //petsc.org/.

[2] Elizabeth Jessup, Pate Motter, Boyana Norris, and Kanika Sood. "Performance-based numerical solver selection in the Lighthouse framework." SIAM Journal on Scientific
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DATA PREPARATION
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DATA PREPARATION

Subset of solvers and preconditioners

Table 1: Available preconditioners and Krylov iterative solvers

Capability Algorithm

Preconditioners Block Jacobi + ILU(0), QMD reordering
Block Jacobi + ILU(1), QMD reordering
Block Jacobi + LU
ASM(1)
ASM(2)
Hypre/BoomerAMG
Hypre Euclid
Parasails approximate inverse from Hypre
Block Jacobi + GMRES

Krylov iterative solvers CG
GMRES(30)
BiCGStab
LSQR
Flexible GMRES (inner GMRES)
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DATA PREPARATION

Data sample

= Matrices are collected from the SuiteSparse Matrix
Collection!ll. Only square matrices with a size 1,000 <
m < 10,000 and nnz < 200,000 are selected. The
dataset contained 614 matrices.

= RHS is randomly generated. Each linear solve is run in
parallel using 64 MPI processes on the KNL partition on

Armne &

Thetal2l. ’ N -

SSa

» Each sample contains: matrix id, solver id,
preconditioner id, running time (or error code), absolute

residual, relative residual.

[11 T. A. Davis and Y. Hu. “The university of florida sparse matrix collection.” ACM Transactions on Mathematical Software (TOMS), 38(1):1, 2011.
[2] “Theta at argonne.” https://www.alcf.anl.gov/theta
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DATA PREPARATION
Data label

= Multi-label classification: the label of each matrix is a binary vector y, € {0,1}33.
= Scoring function of running time and residuals:
w w
score(t,r) = log(1 + Tl) log(1 + TZ)

where w; and w, are user-defined weights.

= Label: we mark the top 10% scores with a 1, and the others with a O.
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DATA PREPARATION
Why GNNs?

= Objective: extract/summarize matrix features into an embedding vector for classification.

= Traditional machine learning methods can only process matrix-level features.
e.g., condition number, number of nonzeros, rank estimation, etc.

= GNNSs can process node, edge, and graph features simultaneously w.r.t. graph structure.
— the matrix pattern and entry values are processed simultaneously.
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DATA PREPARATION
Matrix-to-graph object

= Data object: torch_geometric.data.Data from PyTorch Geometric (PyG!).
— X (node features): shape [num_nodes, num_node_features].
— edge_index: COO matrix for graph connectivity, shape [2, num_edges]
— other attributes: edge features, y (label), batch id, connected component id, etc.

= Transform functions: s 's © = °© " wes” Ue

e.g., RemovelsolatedNode() connected

component 1

v

permute |-*=*22 »
— connected

component 2

-3 isolated nodes

[1] Fey, Matthias, and Jan Eric Lenssen. "Fast graph representation learning with PyTorch Geometric." arXiv preprint arXiv:1903.02428 (2019).
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DATA PREPARATION
Matrix-to-graph object

-1 2 0
A=12 0 3
0 3 1

= Generate a graph based on the adjacency of A.
edge_index = [i, j].transpose() where i, j are row and column index of the entry in A.
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DATA PREPARATION
Matrix-to-graph object

-1 2 0
A=12 0 3
0 3 1

= Add a self-loop to each node (isolated nodes are removed).
Built-in transform function AddSelfLoops() or AddRemainingSelfLoops()
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DATA PREPARATION
Matrix-to-graph object

-1
2
0

= Set edge features as the entry values of A.

A=

0

2
0
3

0
3
1
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DATA PREPARATION
Matrix-to-graph object

-1 2 0
A=12 0 3
0 3 1

= Attach node features to each node.
Attach graph features to the graph object.
0

— Flow-graphl'-3l

1 1

[1] Coates, C. "Flow-graph solutions of linear algebraic equations." IRE Transactions on circuit theory 6.2 (1959): 170-187.
[2] Grementieri, Luca, and Paolo Galeone. "Towards neural sparse linear solvers." arXiv preprint arXiv:2203.06944 (2022).

[3] Hausner, Paul, et al. "Neural incomplete factorization: learning preconditioners for the conjugate gradient method." arXiv preprint arXiv:2305.16368 (2023).
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DATA PREPARATION

Node feature selection

= Diagonal dominance: assume that a; denotes the ratio between the magnitudes of
diagonal and off-diagonal elements for row i, then:

;
|Ajil Z
o Al >0
o = 1 2=l J’iil i X = —1t
l ’ ' a; +1
+ 00, Z |AU| =0
\ JES!

The diagonal dominance of node i is given by x;.
= Diagonal decay: ratio between |4;;| and m§X|Aij|-
J#+l

= Local degree profilell:
= [deg(i), min(DN(i)), max(DN(i)), mean(DN (i), std(DN (i))].

[1]1 C. Cai and Y. Wang. “A simple yet effective baseline for non-attributed graph classification.” arXiv preprint arXiv:1811.03508, 2018.
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DATA PREPARATION

Graph feature selection

= Estimated condition number, number of nonzeros, etc.

= More features can be found in AnaMod!"], Lighthousel?l.

= Some graph features can be converted to node features.
e.g., left/right bandwidth.

[1] V. Eijkhout and E. Fuentes. “A standard and software for numerical metadata.” ACM Transactions on Mathematical Software, 35(4):1-20, February 2009.
[2] Norris, Boyana, et al. "Lighthouse: A user-centered web service for linear algebra software." arXiv preprint arXiv:1408.1363 (2014).

iyf’ U.S. DEPARTMENT OF  Argonn
{7 ENERGY *%%:

M Argonne &



GNN ARCHITECTURE
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GNN ARCHITECTURE

Overview

[ A >
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Graph Convolutional Layers Embedding _>
Graph Embedding

Gra.bh Representation
I (w/ Node Features) and Pooling
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MLP

Embedding

Matrix
Matrix/Graph Features
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GNN ARCHITECTURE

Convolutional layers
= Graph attention network!'l (GAT)

= GNN with SAmple and aggreGaEt[? (GraphSAGE)

= Graph convolutional network[3! (GCN)

= Graph isomorphism network with edge features!l (GINE).

[1] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. “Graph attention networks.” arXiv preprint arXiv:1710.10903, 2017.
[2] Will Hamilton, Zhitao Ying, and Jure Leskovec. “Inductive representation learning on large graphs.” In |. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S.
Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

[3] Thomas N. Kipf and Max Welling. “Semi-supervised classification with graph convolutional networks.” arXiv preprint arXiv:1609.02907, 2016.

[4] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec. “Strategies for pre-training graph neural networks.” arXiv preprint
arXiv:1905.12265, 2019.
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GNN ARCHITECTURE

Two-level pooling

» Node embeddings are aggregated within their connected components.
e.g., torch_scatter with respect to connected component id

= Graph embedding is generated from these connected components embeddings.
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NUMERICAL TESTS
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NUMERICAL TESTS

Configuration and evaluation metrics
= ML tests are conducted on an NVIDIA RTX 3090 GPU and an Intel i7-11700KF CPU.

= Evaluation metrics can be found in TorchMetrics:
— Label Ranking Average Precisionl'l (LRAP)
— Normalized Discounted Cumulative Gain[24 (NDCG)

[1] Grigorios Tsoumakas, loannis Katakis, and loannis Vlahavas. “Mining multi-label data.” Data Mining and Knowledge Discovery Handbook, pages 667-685, 2009.
[2] Kalervo Jarvelin and Jaana Kekalainen. “Cumulated gain-based evaluation of IR techniques.” ACM Transactions on Information Systems (TOIS), 20(4):422—-446, 2002.

[3] Yining Wang, Liwei Wang, Yuanzhi Li, Di He, Wei Chen, and Tie-Yan Liu. “A theoretical analysis of NDCG ranking measures.” In Proceedings of the 26th annual conference on

learning theory (COLT 2013), volume 8, page 6, 2013.
[4] Frank McSherry and Marc Najork. “Computing information retrieval performance measures efficiently in the presence of tied scores.” In European conference on information

retrieval, pages 414—421. Springer, 2008.
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NUMERICAL TESTS

Comparison with traditional ML

Table 2: Classification scores of considered methods on test dataset.

Method LRAP NDCG

RF 0.7778 £ 0.0262 0.5618 + 0.0299
MLP (1 layer) 0.7231 £0.0378 0.5181 % 0.0366
MLP (2 layers) 0.7570 £ 0.0530 0.5424 4+ 0.0475
k-nearest neighbors  0.6465 + 0.0405 0.4902 4+ 0.0307
Ridge Classifier 0.3245 £ 0.0706  0.2473 4+ 0.0239
GINE 0.7480 £ 0.0357 0.8126 + 0.0285
GAT 0.7770 £ 0.0267 0.8246 + 0.0325
GraphSAGE 0.7492 £ 0.0068 0.8043 + 0.0388
GCN 0.7664 £+ 0.0338 0.8222 4+ 0.0216
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= GNN approaches are comparable to or outperform traditional ML approaches.



NUMERICAL TESTS

Overhead and speedup

Table 3: Building, processing and solving time of selected matrices.

Matrix size nnz ty tp predicted £,  worst ¢

1138 bus 1138 4054  0.2084 0.0035 0.5195 5.7607
msc01440 1440 44998  2.6324 0.0035 0.5183 8.3124

cage9 3534 41594 2.4863 0.0035 0.2116 4.2138
cavityl3 2356 72034 4.4684 0.0039 0.6144 >600
circuit_1 4875 105339 2.0890 0.0035 0.4243 >600

= The overhead of building a graph can be improved by implementing in parallel and
processing on a GPU.
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CONCLUSION

isx;’ U.S. DEPARTMENT OF _ Argonne National Laboratory is a
7 U.S. Department of Energy laboratory 27
(Z)ENERGY U5/ in by rgonne

NATIONAL LABORATORY




CONCLUSION

Extensible to other software by following a similar routine.

Translate a matrix related problem into a graph learning problem.

Some useful features.

Future work: modify GNN models to address over-smoothing.
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Thank you!

Link to this paper: https://openreview.net/forum?id=tMIBpP 113Bt
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