
This material was based upon work funded by the U.S. Department of Energy, Office of Science, under contract DE-AC02-
06CH11357. This work was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. 
Department of Energy Office of Science and the National Nuclear Security Administration, and by the U.S. Department of 
Energy, Office of Science, Office of Advanced Scientific Computing Research under Award Number DE-SC0016140. 

GNNS FOR SELECTION 
OF PRECONDITIONERS 
AND KRYLOV SOLVERS

erhtjhtyhy

ZIYUAN TANG
Department of Computer Science and Engineering
University of Minnesota

HONG ZHANG
Mathematics and Computer Science Division
Argonne National Laboratory

JIE CHEN
MIT-IBM Watson AI Lab
IBM Research

Preconditioning 2024
International Conference On Preconditioning Techniques 
For Scientific and Industrial Applications



2

• Joint work with Hong Zhang and Jie Chen.

• Accepted by New Frontiers in Graph Learning Workshop @ NeurIPS 2022.



TABLE OF CONTENTS
ØBackground

ØData Preparation

ØGNN Architecture

ØNumerical Tests

ØConclusion

3



BACKGROUND

4



BACKGROUND

§ Solving linear systems of the form:
𝐴𝑥 = 𝑏.

§ For large and sparse problems, we usually apply iterative solvers as well as
preconditioners.

§ An optimal choice of solver and preconditioner calls for a solid background and knowledge 
of the hardware.

Motivation

5



BACKGROUND
Solvers and preconditioners in PETSc[1,2]

6

[2] Elizabeth Jessup, Pate Motter, Boyana Norris, and Kanika Sood. "Performance-based numerical solver selection in the Lighthouse framework." SIAM Journal on Scientific 
Computing 38.5 (2016): S750-S771. 

[1] S. Balay, et al. “PETSc Web Page (2022).” https://petsc.org/.



DATA PREPARATION

7



DATA PREPARATION
Subset of solvers and preconditioners

8



§ Matrices are collected from the SuiteSparse Matrix 
Collection[1]. Only square matrices with a size 1,000 ≤
𝑚 ≤ 10,000 and 𝑛𝑛𝑧 ≤ 200,000 are selected. The 
dataset contained 614 matrices.

§ RHS is randomly generated. Each linear solve is run in
parallel using 64 MPI processes on the KNL partition on
Theta[2].

§ Each sample contains: matrix id, solver id,
preconditioner id, running time (or error code), absolute
residual, relative residual.

DATA PREPARATION
Data sample

9

[1] T. A. Davis and Y. Hu. “The university of florida sparse matrix collection.” ACM Transactions on Mathematical Software (TOMS), 38(1):1, 2011.
[2] “Theta at argonne.” https://www.alcf.anl.gov/theta



DATA PREPARATION

§ Multi-label classification: the label of each matrix is a binary vector 𝑦! ∈ {0,1}"".

§ Scoring function of running time and residuals:
score 𝑡, 𝑟 = log(1 +

𝑤#
𝑡
) log(1 +

𝑤$
𝑟
)

where 𝑤# and 𝑤$ are user-defined weights.

§ Label: we mark the top 10% scores with a 1, and the others with a 0.

Data label

10



DATA PREPARATION

§ Objective: extract/summarize matrix features into an embedding vector for classification.

§ Traditional machine learning methods can only process matrix-level features.
e.g., condition number, number of nonzeros, rank estimation, etc.

§ GNNs can process node, edge, and graph features simultaneously w.r.t. graph structure.
→ the matrix pattern and entry values are processed simultaneously.

Why GNNs?

11



DATA PREPARATION
Matrix-to-graph object

12

§ Data object: torch_geometric.data.Data from PyTorch Geometric (PyG[1]).
– x (node features): shape [num_nodes, num_node_features].
– edge_index: COO matrix for graph connectivity, shape [2, num_edges]
– other attributes: edge features, y (label), batch id, connected component id, etc.

§ Transform functions:
e.g., RemoveIsolatedNode()

[1] Fey, Matthias, and Jan Eric Lenssen. "Fast graph representation learning with PyTorch Geometric." arXiv preprint arXiv:1903.02428 (2019).

connected
component 1

connected
component 2

isolated nodes

permute



DATA PREPARATION

A =
−1 2 0
2 0 3
0 3 1

§ Generate a graph based on the adjacency of A.
edge_index = [i, j].transpose() where i, j are row and column index of the entry in A.

Matrix-to-graph object

13



DATA PREPARATION

A =
−1 2 0
2 0 3
0 3 1

§ Add a self-loop to each node (isolated nodes are removed).
Built-in transform function AddSelfLoops() or AddRemainingSelfLoops()

Matrix-to-graph object

14



DATA PREPARATION

A =
−1 2 0
2 0 3
0 3 1

§ Set edge features as the entry values of A.

Matrix-to-graph object

15

-1

0

1

2 3



[1] Coates, C. "Flow-graph solutions of linear algebraic equations." IRE Transactions on circuit theory 6.2 (1959): 170-187.
[2] Grementieri, Luca, and Paolo Galeone. "Towards neural sparse linear solvers." arXiv preprint arXiv:2203.06944 (2022).
[3] Häusner, Paul, et al. "Neural incomplete factorization: learning preconditioners for the conjugate gradient method." arXiv preprint arXiv:2305.16368 (2023).

DATA PREPARATION

A =
−1 2 0
2 0 3
0 3 1

§ Attach node features to each node.
Attach graph features to the graph object.

Matrix-to-graph object

16

-1

0

1

2 3

𝑥!

𝑥"

𝑥#

→ Flow-graph[1-3]



DATA PREPARATION

§ Diagonal dominance: assume that 𝛼% denotes the ratio between the magnitudes of 
diagonal and off-diagonal elements for row 𝑖, then:

𝛼% =

𝐴%%
∑&'% 𝐴%&

, @
&'%

𝐴%& > 0

+∞, @
&'%

𝐴%& = 0
, 𝑥% =

𝛼%
𝛼% + 1

.

The diagonal dominance of node 𝑖 is given by 𝑥%.
§ Diagonal decay: ratio between 𝐴%% and max

&'%
𝐴%& .

§ Local degree profile[1]:
𝑥% = deg 𝑖 ,min 𝐷𝑁 𝑖 ,max 𝐷𝑁 𝑖 ,mean 𝐷𝑁 𝑖 , std 𝐷𝑁 𝑖 .

Node feature selection

17

[1] C. Cai and Y. Wang. “A simple yet effective baseline for non-attributed graph classification.” arXiv preprint arXiv:1811.03508, 2018.



DATA PREPARATION

§ Estimated condition number, number of nonzeros, etc.

§ More features can be found in AnaMod[1], Lighthouse[2].

§ Some graph features can be converted to node features.
e.g., left/right bandwidth.

Graph feature selection

18

[1] V. Eijkhout and E. Fuentes. “A standard and software for numerical metadata.” ACM Transactions on Mathematical Software, 35(4):1–20, February 2009.
[2] Norris, Boyana, et al. "Lighthouse: A user-centered web service for linear algebra software." arXiv preprint arXiv:1408.1363 (2014).



GNN ARCHITECTURE

19



GNN ARCHITECTURE
Overview

20



GNN ARCHITECTURE
Convolutional layers

21

§ Graph attention network[1] (GAT)

§ GNN with SAmple and aggreGaEt[2] (GraphSAGE)

§ Graph convolutional network[3] (GCN)

§ Graph isomorphism network with edge features[4] (GINE).

[1] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. “Graph attention networks.” arXiv preprint arXiv:1710.10903, 2017.
[2] Will Hamilton, Zhitao Ying, and Jure Leskovec. “Inductive representation learning on large graphs.” In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. 
Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017. 
[3] Thomas N. Kipf and Max Welling. “Semi-supervised classification with graph convolutional networks.” arXiv preprint arXiv:1609.02907, 2016.
[4] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec. “Strategies for pre-training graph neural networks.” arXiv preprint 
arXiv:1905.12265, 2019. 



GNN ARCHITECTURE
Two-level pooling

22

§ Node embeddings are aggregated within their connected components.
e.g., torch_scatter with respect to connected component id

§ Graph embedding is generated from these connected components embeddings.



NUMERICAL TESTS

23



NUMERICAL TESTS
Configuration and evaluation metrics

24

§ ML tests are conducted on an NVIDIA RTX 3090 GPU and an Intel i7-11700KF CPU.

§ Evaluation metrics can be found in TorchMetrics:
– Label Ranking Average Precision[1] (LRAP)
– Normalized Discounted Cumulative Gain[2-4] (NDCG)

[1] Grigorios Tsoumakas, Ioannis Katakis, and Ioannis Vlahavas. “Mining multi-label data.” Data Mining and Knowledge Discovery Handbook, pages 667–685, 2009. 
[2] Kalervo Järvelin and Jaana Kekäläinen. “Cumulated gain-based evaluation of IR techniques.” ACM Transactions on Information Systems (TOIS), 20(4):422–446, 2002.
[3] Yining Wang, Liwei Wang, Yuanzhi Li, Di He, Wei Chen, and Tie-Yan Liu. “A theoretical analysis of NDCG ranking measures.” In Proceedings of the 26th annual conference on 
learning theory (COLT 2013), volume 8, page 6, 2013. 
[4] Frank McSherry and Marc Najork. “Computing information retrieval performance measures efficiently in the presence of tied scores.” In European conference on information 
retrieval, pages 414–421. Springer, 2008. 



NUMERICAL TESTS
Comparison with traditional ML

25

§ GNN approaches are comparable to or outperform traditional ML approaches.



NUMERICAL TESTS
Overhead and speedup

26

§ The overhead of building a graph can be improved by implementing in parallel and
processing on a GPU.



CONCLUSION

27



CONCLUSION

§ Extensible to other software by following a similar routine.

§ Translate a matrix related problem into a graph learning problem.

§ Some useful features.

§ Future work: modify GNN models to address over-smoothing.

28



Thank you!

Link to this paper: https://openreview.net/forum?id=tMlBpP1I3Bt

https://openreview.net/forum?id=tMlBpP1I3Bt

