
Preconditioned IDR solution methods in
scientific and industrial applications

Alexander Fedoseyev,
Ultra Quantum Inc, Huntsville, Alabama, USA

The work sponsored in part by NASA program
Precond24, Atlanta, Georgia, USA, June 10, 2024

2

1. Intro: Need for linear solver in scientific and industrial applications
2. CNSPACK linear solver history
3. Current Status and Goals
4. Parallelization approach for multi-core processor architecture
5.
6.

OpenMP implementation – algorithm and results
Conclusions

Outline

3

Applications of CNSPACK solver:

3D Semiconductor transport

Complex Cooling Systems

Hypersonic Flows

Semiconductor device/circuits simulations

Goal – Robust Parallel Linear Solver for Scientific and Industrial Applications

Turbulent Flows

High Altitude Flows

4

3D Internal Flows in Cylinder-Piston-Valve System

1D-2D-3D models for radiator

3D Radiator simulation:
•Inlet tube with hot coolant at temperature Tin;
•Temperature distribution in the air flow ;
•Averaged velocity field (by arrows) in the air flow;
•Stream tracers in the air flow, colored by flow velocity magnitude;

Coupled semiconductor device-circuit simulations

3D simulations performed using Femina-3D multiphysics solver with
CNSPACK

Radiation effects (ion strike) in NMOSFET

N+ Drain

N+ Source

P- well

D Contact

G Contact S Contact

Bottom Contact
(optional)

P-type Retrograde
doping

P+ Channel Doping
P-well Contact

ION STRIKE

P- well

STI
Trench

 incoming particle

NMOS

Metal 1 Metal 2

Isosurface of ion energy depositionElectron density

Circuit Simulated
by SPICE

3D NMOS Model
solved by NanoTCAD

Vout

1
9

S G

D

N1 Ion
Strike

0 P-subs

VddVdd

Vss

Vss

Vin

2

P1 P2

N2

Vdd

Vss

3

P3

N3

Vdd

Vss

4

P4

N4

inv2 inv3 inv4

inv5

5

inv6

6

inv7

7

inv8

8

10

load_inv

low input

Vdd

Industrial Applications with CNSPACK Linear Solver

5

FEMINA/3D flow solver with CNSPACK (hypersonic flows)

Geometry Density

Industrial Applications with CNSPACK Linear Solver for Hypersonic Flows

Bi-conic 22/55° flow Ma=15.6: Temperature

FEMINA/3D flow solver with CNSPACK (hypersonic flows)

70° blunt cone flow Ma=20.2: ρ density

GHE/ DSMC flight temperature at 160km comparison with Papp(2004)

2D-cylinder hypersonic flow Ma=25, Kn=0.05, Re=850

TemperatureMach number

Density
Mesh 50,000 nodes

6

FEMINA/3D flow solver with CNSPACK (turbulent flows)

Velocity U
Velocity Vx (x-axis) vs height (y-axis)

Scientific Applications with CNSPACK Linear Solver: Turbulent Flows

3D lid-driven cavity flow Re=10,000

CNSPACK convergence requirement 1E-16
Turbulent 2D backward-facing step flow at Re=132,000

Turbulent flow in channel Re=14,914

3D backward-facing step flow at Re=55,000 experiment

Velocity |V|

Mesh 800,000 nodes refined near walls

Mesh 20,000 nodes

Mesh 30,000 nodes
Mesh 50,000 nodes

7

• CNSPACK started as a linear solver for CFD in 1990s.
• Heavy numerical experiments have been performed to select

the most efficient solver (IDR, CGS, GMRES, etc) and
preconditioners with minimal memory requirements.

• IDR and ILU(m) have been an optimal choice at that time.
• No ILU(0) convergence for Finite Element analysis of incompressible

flow (P2-P1 approximation for velocity-pressure) : ILU(m>0) is a must.
• No pivoting for ILU construction to make it fast.
• Kershaw modification was used to deal with zero diagonals (due to equation, div V =0).
• Typical convergence for CFD: 20 to 200 iterations for N=2,500,000, eps=1E-9.
• More application in different areas: CFD and semiconductor modeling are

the most challenging cases.
Recent attempts to make CNSPACK a parallel solver were partly successful.

History

•

8

•
Linear Preconditioned IDR Solver for
Semiconductor Device Simulator:

 Radiation Effects in Space Environment, and

 Computational Fluid Dynamics:

 Hypersonic and turbulent flows

Current Focus

•

9

time (s)

CHIP CROSS SECTION (cm2)
(Sensitivity to Radiation)

Mixed-Mode or Circuit
Model

Signal “Upset”
3D Device
Simulation

Goal: Fast Analysis and Prediction of Radiation Effects in Nanoscale Electronics
(Space, Extreme Environments)

damaged chip

damaged devices

Automated

Analysis
&

Design
Tools

damaged logic
board

Rad-hard devices & circuits  minimum damage!

Radiation-Response
Mechanisms & Models

Space / Nuclear
Radiation

11

Imported Layout
(GDSII, CIF, DXF, GIF)

Automatic Generation of 3D Model

3D Mesh

Simulation

IC Layout  3D Model  3D Mesh  Simulation

12

IC Layout : 3D Model with Metallization

Imported IC Layout
(GDSII)

Automatically Generated 3D Model

13

 incoming particle

NMOS

Metal 1 Metal 2

MRED/Geant4 simulated ion beam,
focused on the tungsten via

MRED/Geant4 Radiation Tracks in 3D Model

Vanderbilt MRED
(Monte Carlo Radiative Energy Deposition)

14

TCAD Solver

Electric Potential Equation

Carrier Continuity Equations

 where current densities are:

     AD NNnpq

 RGqJ
t
nq n 


 

 RGqJ
t
pq p 


 

















 nnnn

c
nnn mDTD

q
EqnnqDJ ln

2
3




















 pppp

v
ppp mDTD

q
EqppqDJ ln

2
3




15

Our 3D Model of NMOSFET, for Mixed-Mode Simulations:

3D Model Setup

N+ Drain

N+ Source

P- well

D Contact

G Contact S Contact

Bottom Contact
(optional)

P-type Retrograde
doping

P+ Channel Doping
P-well Contact

ION STRIKE

P- well

STI
Trench

16

Coupled Mixed-Mode TCAD 3D Simulations with MRED/Geant4 Nuclear
Reactions in Nanoscale Electronics

Circuit Simulated
by SPICE

3D NMOS Model
solved by NanoTCAD

Vout

1
9

S G

D

N1 Ion
Strike

0 P-subs

VddVdd

Vss

Vss

Vin

2

P1 P2

N2

Vdd

Vss

3

P3

N3

Vdd

Vss

4

P4

N4

inv2 inv3 inv4

inv5

5

inv6

6

inv7

7

inv8

8

10

load_inv

low input

Vdd

3D TCAD with Geant4 ion
tracks

17

DSET Pulse Propagation

Circuit Simulated
by SPICE

3D NMOS Model
solved by TCAD

Vout

1
9

S G

D

N1 Ion
Strike

0 P-subs

VddVdd

Vss

Vss

Vin

2

P1 P2

N2

Vdd

Vss

3

P3

N3

Vdd

Vss

4

P4

N4

inv2 inv3 inv4

inv5

5

inv6

6

inv7

7

inv8

8

10

load_inv

low input

Vdd

Mixed-Mode Results (LET = 8)

18

Radiation Effects in Semiconductor Devices -Mesh Adaptation to Ion Tracks from Geant4

Total 20847 cells

Example of using FilterThreshold to remove track segments with low deposited energy

Example of fine mesh generation on 4 segments and a coarser mesh on 3 segments

• works also with
additional adaptation

(e.g., doping)

19

Momentum transport equation for the incompressible fluid :

GHE continuity equation for the incompressible fluid is:

τ* (GHE timescale), τ = l2 /L2 Re = K Re, K = l2 /L2

ASSUMPTIONS:
- τ is constant.
- neglect the nonlinear terms of the third order in the
 fluctuations, and terms of the order τ /Re and smaller
- assume the slow flow variation => neglect second derivatives in time

ADVANTAGES :
 Finite Element Method with equal order approximation for velocity and pressure
Allows to solve using efficient iterative methods (CG-like)
CHALLENGES:
The model to be carefully tested, results to be compared with published results and experimental data
obtained for different flow problems

Generalized Hydrodynamic Equations (GHE) [Fedoseyev 2012]

Physics Based Model for Fluid Flow

20

Generalized Boltzmann Equation (GBE) [Alexeev 1994; 2004]
The GHE model is based on results from kinetic theory by Alexeev(1994) *

The Boltzmann equation (BE) describes the evolution of the one-particle velocity distribution function f in time and space and is the
basis of the kinetic theory of gases.

Here J is a collision integral, and D/Dt is a material derivative. It takes into account the changes in the f on a scale of the mean time
between collisions and on hydrodynamic time scale. As shown by Alexeev a generalization of BE accounting for a third scale (related to
the finite dimension of the particles) results in an additional term :

where τ is a mean time between collisions. The new term is proportional to the Knudsen number, Kn, and, therefore, in the hydrodynamic
limit, to viscosity.

The Generalized Hydrodynamic Equations (GHE) for gases are obtained by a standard procedure from the generalized BE (GBE) and
contain new terms, related to an additional term in GBE, that represents spatial and temporal Kolmogorov fluctuations.

References:
* Alexeev, The generalized Boltzmann equation, generalized hydrodynamic equations and their applications.
Phil. Trans. Roy. Soc. London, A. 349 (1994), 417-443
** Alexeev, Generalized Boltzmann Kinetics, Elsevier, 2004.

Kinetic Physics Based Model

21

FEMINA/3D flow solver with CNSPACK (hypersonic flows)

Geometry Density

CFD Industrial Applications with CNSPACK Linear Solver - Hypersonic Flows

Bi-conic 22/55° flow Ma=15.6: Temperature

FEMINA/3D flow solver with CNSPACK (hypersonic flows)

70° blunt cone flow Ma=20.2: ρ

GHE/ DSMC flight temperature at 160km comparison with Papp(2004)

2D-cylinder hypersonic flow Ma=25, Kn=0.05, Re=850

TemperatureMach number

Density
Mesh 50,000 nodes

22

FEMINA/3D flow solver with CNSPACK (turbulent flows)

Velocity U
Velocity Vx (x-axis) vs height (y-axis)

CFD Scientific Applications with CNSPACK Linear Solver: Turbulent Flows

3D lid-driven cavity flow Re=10,000

CNSPACK convergence requirement 1E-16
Turbulent 2D backward-facing step flow at Re=132,000

Turbulent flow in channel Re=14,914

3D backward-facing step flow at Re=55,000 experiment

Velocity |V|

Mesh 800,000 nodes refined near walls

Mesh 20,000 nodes

Mesh 30,000 nodes
Mesh 50,000 nodes

23

Ax = b

- A is nonsymmetric, not positively definite
-Unstructured and large
-Sparse
- Banded
- Number of nonzero elements in each row ~ 100 (varies)
- Gibbs-Pool-Stockmayer (GPS) method is used to reduce the matrix bandwidth.
-Sparse storage scheme is implemented for rows and columns with fast access.
- Storing A as real*4 to save memory, arithmetic is done in double precision

Matrix properties and tricks to speed up computations

24

P. Wesseling, P. Sonneveld (1980). Numerical experiments with a multiple grid and a preconditionned Lanczos type methods. Lecture Notes in

Mathematics, 771, Berlin: Springer, 1980, 543-562. (algorithms are provided from the original paper)

IDR & ILU algorithms (P.Wesseling & P.Sonneveld (1980)

IDR ILU

(Krylov/Lanczos type method)

Incomplete LU: Elements of L and U are calculated only where the matrix has non-
zero elements.

(m=1)

Number of vectors p is user input.
Usually one vector p is used, and the
memory for the method is 8*[dim p]

24

P. Wesseling, P. Sonneveld (1980). Numerical experiments with a multiple grid and a preconditionned Lanczos type methods. Lecture Notes in

Mathematics, 771, Berlin: Springer, 1980, 543-562.

ILU algorithm (for m>1)

ILU(m), m is user chosen

Incomplete LU (m>1): Elements of LU are calculated also near the matrix hs non-zero
elements:

X -original martix nonzero elements
2 – (m=2) ILU decomposition, the elements at these positions are also computed in ILU
3 - (m=3) ILU decomposition, these elements are also computed in ILU
4 - (m=4) ILU decomposition, these elements are also computed in ILU
…

Typically used m:
m = 1 or 2 for CFD problems.
m = 3 or 4 for semiconductor problems.
m = 4 to 6 for eigenvalue problems.
Sometime m is made as adaptive: if the solution is not converged within a limit of the
number of iterations, then m is increased by 1, and the solution repeated, etc.

x234 432x234
2xxx234 432x234
32xxx234 432x234
 …
 …
 …
xx234 …
2xx234 ...
32xx234 ...
432xx234 ...

If m=N (order of matrix), then it is a complete LU decomposition

25

P. Wesseling, P. Sonneveld (1980). Numerical experiments with a multiple grid and a preconditionned Lanczos type methods. Lecture Notes in Mathematics, 771,
Berlin: Springer, 1980, 543-562.

D. S. Kershaw (1978). The incomplete Cholesky-conjugate gradient method for the iterative solution of systems of linear equations. J. Comput. Phys., 2, 43-65.

IDR & ILU algorithms implementation in CNSPACK

IDR ILU • A simple incomplete decomposition of the firstorder, ID = 1,
can result in the divergence of the iterations. That may be a

reason, why this approach is not widely used yet.

We implemented the fast arbitrary order ILU preconditioning
ID = m for unstructured matricies. Users typically choose 1 to
3. Sometimes ID is adjusted adaptively, if not converged.
For eigenvalue solutions ID is up to 4 or 6.

•To avoid a diagonal pivot degeneration we use the Kershaw
diagonal modification:
If the value of diagonal element was small, i.e.
|aii| < α = sqrt(2−t σμ), the diagonal was replaced by α.
Here σ and μ are the maximum magnitudes of row
and column elements, and 2−t is a machine precision
(t bits in mantissa), details in Kershaw (1978).

•Compare the IDR and GMRES methods:
both methods converge well, if a good

preconditioner is used.

•The IDR method needs comparably less memory to
store only eight work vectors.

• Both solvers remain accessible in CNSPACK, with time
found out that users prefer the IDR solver.

•Number of p vectors is arbitrary, users prefer just one
vector. Inceasing the number of vector decrease the
number of iterations, but the time increases
proportionaly.

26

Typical performance of CNSPACK for CFD

N=1.4M

Performance of CNSPACK (Dell T5500Intel(R) Xeon(R) CPU X5650 @2.67GHz)
Matrix N =2.5M, Termination criterion: residual R < Eps = 1E-8 * R0

Matrix assembly 22s
ILU decomp 18s
Solve (250 iter) 100s

Need to reduce one iteration cost:
- search for faster backward substitution algorithms / parallelization algorithms.

Performance versus matrix order N:
- CPU is almost linear vs N
- Memory is linear vs N

27

(a) Performance of CNSPACK linear solver for electronic device simulator in
modeling 3D devices using unstructured meshes. Memory (in secs) is shown by
solid curve with diamonds (in MB) for IBM Thinkpad T42 laptop, INTEL
PENTIUM M 740 1.73GHZ .
 CPU time is shown by solid curve with circles (per Newton iteration,
[Fedoseyev (2009)]). One can see that the dependence on mesh nodes is almost
linear for both memory and CPU time, and close to optimal theoretical
estimate for CPU time, T=O(N5/4) (dashed dark blue curve);

Each node has at least 4 variables: e,h, Ψ,T

Typical performance of CNSPACK for CFD and semiconductor modeling

(b) Comparison of CNSPACK software (pink color curve with circles labeled
CNSPACK/3D) to other linear solvers for CFD unstructured matrices shows
one to two order faster performance of CNSPACK on an Intel P6 200MHz
CPU, [Fedoseyev (2001)]

28

3D model ID-VGS subthreshold results (at VDS = 0.05V) for NMOSFET compared
with Georgia Tech measured data and IBM 8HP Process Manual data

Typical semiconductor device and simulation requirements

3D model results for NMOSFET (Id-Vg at Vd = 1.2V) compared with IBM 8HP
Process Manual data, for two different substrate-to-source biases (Vbs)

 salicide (contacts)

Drain

Polysilicon
Gate

Source

P-sub
contact

STI

n+ n+

P-substrate

n+ n+

P-halo P-halo
Retrograde

channel
doping

Schematic cross-
section of 0.12-
μm NMOS device

0.12-um 8HP NMOS, Vds = 0.05 V, T = 300K

1.0E-15

1.0E-14

1.0E-13

1.0E-12

1.0E-11

1.0E-10

1.0E-09

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

-0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5

Vgs (V)

Id
 (A

)

GT-data-0.12um

IBM-data 0.12um

NanoTCAD 3D model

8HP NFET: W=10, L=0.12 um, Vds = 1.2 V, T=300K

0.0.E+00

1.0.E-03

2.0.E-03

3.0.E-03

4.0.E-03

5.0.E-03

6.0.E-03

7.0.E-03

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Vg (V)

Id
 (A

)

IBM data, Vbs = 0

IBM data, Vbs = -1.2 V

NanoTCAD, Vbs = 0

NanoTCAD, Vbs = -1.2 V

29

(1) Algebraic Domain Decomposition with
preconditioning:

-Cai and Sarkis (1997) proposed a Restricted Additive
Schwarz (RAS) preconditioner.
-Other similar approaches and proof of convergence:
Frommer (2001), Nabben and Szyld (2001), and Benzi et
al (2001)
-Preliminary numerical experiments have shown
convergence of the method, even for a very small
overlapping

-Implementation attempt: RAS with MPI on parallel
computer cluster.

* Slow MPI communications. Long solution times.
Development discontinued

Parallel solution methods – algebraic domain decomposition

Typical convergence history of preconditioned IDR solver in
CNSPACK.

Convergence history of Additive Schwartz preconditioner for 8
processors. Test case 3DMOSFET1. eps=1e-7, iq=20, ns=8.

30

(2) Multicore processor is a shared memory system :
simplifies parallelization  in convenient OpenMP
environment, and fast communication.

-All the original algorithm has been retained, solution
in a single domain
- Implementation of preconditioning and IDR/CGS
methods have been done using modified scheme to fit
into OpenMP parallelization

- Development started in collaboration with the Dr.
Bessonov and successfully completed within two
months.

Parallel solution methods and implementation for multi-cores

CFDRC 3D model of the 0.12-μm nMOSFET

3D MOSFET problem – details of mesh and electrostatic potential
distribution. Overall this 3D bin-tree mesh contains 30K poly-cells
resulting in 120K linear equations to be solved in parallel.

31

•CNSPACK algorithm requires both the speed of arithmetic calculations and the throughput of memory
accesses.

•Because of the computation-memory disbalance of modern processors, the latter property becomes even
more important (i.e. the algorithm is memory-bound rather than computational-bound).

•The above determines the choice of a computer system used for the implementation (more CPU channels
to memory).

•On the other hand, there are no more memory-size limitations, so the algorithms can be re-arranged
correspondingly in favor of the computational speed.

Implementation issues for multi-cores

32

(i)Analysis of alternative storage schemes.

•Application of row-wise storage scheme for preconditioning was analyzed as a preparation step to the
implementation of the block-pipelined method.

•Next, the special storage scheme was implemented which stores elements by rows both in lower and
upper parts of the original matrix A.
•This scheme is very convenient for parallelization of the multiplication routine (CNSMUL) because it
makes splitting of the matrix and vectors in the matrix-by-vector expression Y = A X very natural: lines of
both matrix parts, L and U, are used to update a single elements in vector Y (while in the standard storage
scheme, a sparse group of elements in Y is updated through the processing of a column in U).
•As a result, parallelization of CNSMUL for any number of threads becomes possible without any additional
care.

Analysis of alternative storage schemes for parallelization

33

The mentioned row-wise storage scheme was incorporated into the parallel algorithm in a twisted form,
which is consistent with the twisted storage scheme of the main matrix.

Twisted factorization for ILU

•Schematic representation of the main principle of twisted factorization is illustrated. This algorithm is just a
way to perform Gauss elimination of unknowns from both sides of a banded matrix. As a result, factors of the
matrix decomposition may look as presented on this picture.

34

The question is how the central part of the splitting should be organized in order to be able to resolve the
factored system.

Analysis has shown that the only way to split the original matrix is to ensure that portrait of each factor is a
transpose of its counterpart. These factors will be traditionally named as L and U, despite they are no more
“Lower” and “Upper”.

It is convenient to represent the decomposition as K = (L + D) D-1 (D + U + R). Here R is the “reverse
diagonal” that separates two part of each factor.

The role of this reverse diagonal is seen on the right part of the figure above, where a preconditioning
matrix K is represented as a product of factors. We can distinguish three areas on the matrix portrait: the
central part (a square area with adjacent areas on the left and on the right), the first part located above it,
and the last part located below it.

Twisted factorization for ILU (2)

35

Elimination of non-zero elements in the first and in the last parts is straightforward (as in the standard
Gauss process) because these parts are formed by simple multiplication of corresponding (first or last)
parts of factors L and U.

Elimination of non-zero elements in the central part is much more complicated, because it is formed by
multiplication of complex central parts of L and U and contributions of two dot products (left row in L by
upper column in U. and right row in L by lower column in U) are used in calculation of any elements in this
part. Because of this, the central part of the matrix being decomposed can be called as overlap.

Twisted factorization for ILU (3)

Elimination procedure for the central part: it is necessary
to process simultaneously four rows of the matrix (thick
red lines), using elements of both the main diagonal and
the reverse diagonal for joint update of rows being
processed.

36

Parallelization of twisted factorization algorithm:

Twisted factorization for ILU (4)

•Parallelization of the matrix-by-vector multiplication (left) is straightforward due to the row-wise storage
scheme applied to both parts, L and U: multiplication of each subset of the matrix by the vector is
performed independently within corresponding thread.
•Parallelization of the preconditioning routine (right) is, in turn, limited by 2 threads. The central part of
the matrix (within overlap) can’t be parallelized and must be processed sequentially, while the first and
the last parts (beyond overlap) are independent and can be executed in parallel both in the forward
(elimination) and backward (back-substitution) sweeps.
•Size of the central part is approximately equal to half-bandwidth in that place. It means that only about
5% of the current matrix is processed sequentially.

37

(ii) Implementation of advanced block-pipelined parallelization method for preconditioning.
•New advanced block-pipelined parallelization method of ILU-preconditioning was developed and
implemented. The idea of this method is to split a matrix half-band into pairs of adjacent trapezoidal blocks
that have no mutual data dependences and can therefore be processed in parallel.
•As a result, parallelization of the preconditioning routine for 4 threads was implemented. For this method,
new blocked storage scheme was designed.

Advanced block-pipelined parallelization

Illustration of implementation of pipelined parallelization of the lower part L of a matrix during the
elimination process (forward sweep). Backsubstitution process (backward sweep) is implemented
similarly.

38

Test matrix 1

(MOSFET 1 & 2) -produced by the discretization of a 3D Finite element grid with irregular structure.
Main characteristics of this matrix are:
•number of equations – 77571;
•number of non-zero element positions in each part (L or U) – 636626;
•average number of non-zero elements in a row (column) – 18.2;
•maximal half-width – 4658.

Thus, this matrix is very sparse, with non-uniform sparsity pattern and variable bandwidth.

Additionally, the matrix is ill-conditioned that leads to irregular convergence behaviour: number of iterations
varies from 600 to 900 (to 10-25) and depends on many random factors (such as order of arithmetic operations
etc.).

Parallel performance of new algorithms

39

Test matrix 2

CFD matrix - produced by the discretization of a regular 3D grid with the following characteristics:
•number of equations – 302500;
•number of non-zero elements in each part – 13385919;
•average number of non-zero elements in a row (column) – 44;
•maximal half-width – 2608;
•25% of diagonal are zeros.
This matrix is much dense and much more regular, with almost uniform distribution of elements throughout
its band. The latter property will be very important for efficient block-pipelined parallelization (considered in
the next section).
Additionally, this matrix is better conditioned, that allows using single-precision (32 bit) values for storing
both the original matrix A and the preconditioning matrix K.

As a result, the convergence behaviour of this matrix is more regular: it takes 150 to 170 iterations to
converge (to 10-15), with less dependence on secondary factors.

Parallel performance of new algorithms

40

Parallelization performance results of the new algorithm (CNSPACKZ) are presented in the table, in
comparison with the previous parallel code (CNSPACKX).
These results represent performance of the target computer system Intel Core i7-920 (2.66 GHz, 3 memory
channels DDR3-1333).
Only the iterative part of the algorithm was measured (algorithm iterates until the residual reduces by 1025
times for the first matrix (MOSFET) and by 1015 times for the second one (Generalized Navier-Stokes).

Parallel performance of new algorithms- MOSFET

41

Results for two matrices look similar.
•In both cases, additional performance gain of 17% was achieved with the new block-pipelined method
(CNSPACKZ).
•However, with the first matrix (MOSFET) the new method additionally benefits from removal of non-zero
elements (they comprise about 5% of the preconditioning matrix).
• Lower performance results for the first matrix follow from its properties – low density and irregular
structure, resulting in bad load balance between blocks “0” and “1” in pipelined parallelization.

Parallel performance of new algorithms- CFD

42

The last table presents results for the second matrix (CFD) using single precision (32-bit) values for storing
both the matrix A and the preconditioning matrix K.
•Single precision storage can reduce total size of arrays and, consequently, memory access traffic thus
increasing performance of a memory-bound algorithm.
•However, using mixed precision arithmetic incurs additional overhead of data conversion.
•As a result, effect of saving memory traffic becomes visible only in parallel runs (curiously, single-precision
results for one thread absolutely coincide with double-precision results in our case).

Parallel performance of new algorithms- CFD (32bit)

43

The universal fast linear solver was developed for scientific and industrial applications.
Performance of CNSPACK solver is quite satisfactory, with minimal storage and CPU time for
a large variety of problems.

TCAD using CNSPACK is the only industrial parallel solver for semiconductor applications.

Performance of the parallel algorithm was evaluated on the target computer system (Intel Core i7-920)
using two test unstructured matricies for MOSFET and CFD problems.

On a dual-processor shared memory system with individual memory controllers in each processor, the
new method will gain much more owing to the doubled memory throughput limitation – expected
acceleration is 3.5 or more.

Conclusions

Contact information:
Alex Fedoseyev,
Email: af@ultraquantum.com

44

[1] A. Fedoseyev, O. Bessonov. Iterative solution of large linear systems for unstructured meshes with preconditioning by high order
incomplete decomposition. Computational Fluid Dynamics Journal, V.10, No.3, 2001, 299-303. http://www.ipmnet.ru/~bess/bess-cfdj.pdf
[2] G. Accary, O. Bessonov, D. Fougere, S. Meradji, D. Morvan. Optimized parallel approach for 3D modelling of forest fire behaviour.
Lecture Notes in Computer Science, 4671, 2007, pp.96-102. http://www.ipmnet.ru/~bess/bess-pact2007.pdf
[3] G. Accary, O. Bessonov, D. Fougere, K. Gavrilov, S. Meradji, D. Morvan. Efficient parallelization of the preconditioned Conjugate
gradient method. Lecture Notes in Computer Science, 5698, 2009, pp.60-72. http://www.ipmnet.ru/~bess/bess-pact2009.pdf
[4] A. I. Fedoseyev, M. Turowski, L. Alles, and R. A. Weller, Accurate Numerical Models for Simulation of Radiation Events in Nano-Scale
Semiconductor Devices, Math. and Computers in Simulation, 2007, doi:10.1016/j.matcom.2007.09.013.
[5] P. Wesseling, P. Sonneveld (1980). Numerical experiments with a multiple grid and a preconditionned Lanczos type methods. Lecture
Notes in Mathematics, 771, Berlin: Springer, 1980, 543-562.
[6] D. S. Kershaw (1978). The incomplete Cholesky-conjugate gradient method for the iterative solution of systems of linear equations. J.
Comput. Phys., 2, 43-65.
[7] N.E. Gibbs, W.G. Pool, Jr. and P.K. Stockmeyer. An algorithm for reducing the bandwidth and profile of a sparse matrix, SIAM J. Numer.
Anal., 13 (1976) 236-250.
[8] O. A. Bessonov and A. I. Fedoseyev, Parallelization of the preconditioned IDR solver for modern multicore
computer systems, AIP Conf. Proc. 1487, 314 (2012); doi: 10.1063/1.4758973
[9] A. Fedoseyev and O. Bessonov (2001) Iterative Solution Of Large Linear Systems For Unstructured Meshes With Preconditioning By
High Order Incomplete Decomposition, Japan Society of CFD/ CFD Journal 10(1), 299-303, 2001.
[10] O. A. Bessonov and A. I. Fedoseyev (2011), Efficiency analysis and parallelization of the CNSPACK implementation of a preconditioned
CGS solver for modern multicore computer systems, Preconditioning 2011, May 16-18, 2011, Bordeaux, France.
[11] Fedoseyev A., Alexeev B.V., Generalized hydrodynamic equations for viscous flows-simulation versus experimental data,in
AMiTaNS-12, American Institute of Physics AIP CP 1487, 2012, pp.241-247, Ed. M.Todorov..
[12] Fedoseyev A., Griaznov V., Ouazzani J., Simulation of rarefied hypersonic gas flow and comparison with experimental data II,
Proc. AMITANS-2022 Conf., AIP CP 2953, 2023, Ed. M.Todorov.

References

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44

