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Goal — Robust Parallel Linear Solver for Scientific and Industrial Applications

Applications of CNSPACK solver:

3D Semiconductor transport

Semiconductor device/circuits simulations

Complex Cooling Systems

Turbulent Flows
Hypersonic Flows

High Altitude Flows



Industrial Applications with CNSPACK Linear Solver

3D Internal Flows in Cylinder-Piston-Valve System Radiation effects (ion strike) in NMOSFET

incoming particle
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3D simulations performed using Femina-3D multiphysics solver with
CNSPACK
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Industrial Applications with CNSPACK Linear Solver for Hypersonic Flows

FEMINA/3D flow solver with CNSPACK (hypersonic flows)
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Figure 2. Generic Missile Geometry
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Scientific Applications with CNSPACK Linear Solver: Turbulent Flows

FEMINA/3D flow solver with CNSPACK (turbulent flows)
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History

CNSPACK started as a linear solver for CFD in 1990s.

Heavy numerical experiments have been performed to select

the most efficient solver (IDR, CGS, GMRES, etc) and

preconditioners with minimal memory requirements.

IDR and ILU(m) have been an optimal choice at that time.

No ILU(O) convergence for Finite Element analysis of incompressible
flow (P2-P1 approximation for velocity-pressure) : ILU(m>0) is a must.
No pivoting for ILU construction to make it fast.

Kershaw modification was used to deal with zero diagonals (due to equation, div V =0).
Typical convergence for CFD: 20 to 200 iterations for N=2,500,000, eps=1E-9.
More application in different areas: CFD and semiconductor modeling are
the most challenging cases.

Recent attempts to make CNSPACK a parallel solver were partly successful.



Current Focus

Linear Preconditioned IDR Solver for
e Semiconductor Device Simulator:

Radiation Effects in Space Environment, and

e Computational Fluid Dynamics:

Hypersonic and turbulent flows



Goal: Fast Analysis and Prediction of Radiation Effects in Nanoscale Electronics
(Space, Extreme Environments)
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IC Layoutl 3D Modelll
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IC Layout: 3D Model with Metallization CroulC =
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MRED/Geant4 Radiation Tracks in 3D Model

incoming particle Vanderbilt &

University
Vanderbilt MRED
(Monte Carlo Radiative Energy Deposition)
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TCAD Solver

Full 3-D Semiconductor Device Simulator, based on

Drift-Diffusion (DD) or Hydrodynamic (HD) Semiconductor Models:

Electric Potential Equation

V (- erp):q(p -n+Np - N:q)
Carrier Continuity Equations

A _
qa—”- V-7, =q(G -

q‘z_t+V -Jp =q(G - R)

where current densities are:
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3D Model Setup

Our 3D Model of NMOSFET, for Mixed-Mode Simulations:
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Coupled Mixed-Mode TCAD 3D Simulations with MRED/Geant4 Nuclear
Reactions in Nanoscale Electronics
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DSET Pulse Propagation
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Physics Based Model for Fluid Flow
Generalized Hydrodynamic Equations (GHE) [Fedoseyev 2012]

Momentum transport equation for the incompressible fluid :
oAV

1+~—2 * o 2 |
S H(VV)V-Re 'VEV4Vp—F = {22(Vp) + V2 0V) + V(V - V) |

GHE continuity equation for the incompressible fluid is:

A _
V- V=717 {25(‘7 - V) + V- (VV)V+V2p—V-F}

T* (GHE timescale), T =2 /L?Re = K Re, K = |2 /L2

ASSUMPTIONS:

- Tis constant.
- neglect the nonlinear terms of the third order in the
fluctuations, and terms of the order 1 /Re and smaller
- assume the slow flow variation => neglect second derivatives in time

ADVANTAGES :

0 Finite Element Method with equal order approximation for velocity and pressure
UAllows to solve using efficient iterative methods (CG-like)

CHALLENGES:

UThe model to be carefully tested, results to be compared with published results and experimental data
obtained for different flow problems

19



Kinetic Physics Based Model

Generalized Boltzmann Equation (GBE) [Alexeev 1994; 2004]
The GHE model is based on results from kinetic theory by Alexeev(1994) *

The Boltzmann equation (BE) describes the evolution of the one-particle velocity distribution function fin time and space and is the
basis of the kinetic theory of gases.

Df _

Dt

Here J is a collision integral, and D/Dt is a material derivative. It takes into account the changes in the f on a scale of the mean time
between collisions and on hydrodynamic time scale. As shown by Alexeev a generalization of BE accounting for a third scale (related to
the finite dimension of the particles) results in an additional term :

Df _ Df TDf} e
Bt L&) 4

Dt

where Tis a mean time between collisions. The new term is proportional to the Knudsen number, Kn, and, therefore, in the hydrodynamic
limit, to viscosity.

The Generalized Hydrodynamic Equations (GHE) for gases are obtained by a standard procedure from the generalized BE (GBE) and
contain new terms, related to an additional term in GBE, that represents spatial and temporal Kolmogorov fluctuations.

References:

* Alexeev, The generalized Boltzmann equation, generalized hydrodynamic equations and their applications.
Phil. Trans. Roy. Soc. London, A. 349 (1994), 417-443

** Alexeev, Generalized Boltzmann Kinetics, Elsevier, 2004.
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CFD Industrial Applications with CNSPACK Linear Solver - Hypersonic Flows

FEMINA/3D flow solver with CNSPACK (hypersonic flows)
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Figure 2. Generic Missile Geometry
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CFD Scientific Applications with CNSPACK Linear Solver: Turbulent Flows

FEMINA/3D flow solver with CNSPACK (turbulent flows)
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Matrix properties and tricks to speed up computations

Ax=b

- A is nonsymmetric, not positively definite

-Unstructured and large

-Sparse

- Banded

- Number of nonzero elements in each row ~ 100 (varies)

- Gibbs-Pool-Stockmayer (GPS) method is used to reduce the matrix bandwidth.
-Sparse storage scheme is implemented for rows and columns with fast access.
- Storing A as real*4 to save memory, arithmetic is done in double precision

23



IDR & ILU algorithms (P.Wesseling & P.Sonneveld (1980)

Algorithm 4.1 (IDR method) IDR LU Algorithm 5.2
1 .

n:=w =03 fn:=Axn-b, dgn:=dyn:=0; / \ ------------
(Krylov/Lanczos type method)

bega Sn:=fn-1+mnn1dgn—1;tn:=A5n; E— 1
. . ~ . r I'=
if n=1 V n is even then an'"{tn’sn)/{tn’tn) begin arr.nsqrt(a_rr ),
else a_:=a_ .; . . r r-1, r
monr for 3>r Alr,j)eP do a_.:=a_. fa_ ;
d . - rj rj rr
X _Sw dy -0 8 3
n’ n-1‘n-1 nn . ; r r-1, r
i imw dr Xt for i>r a(i,r)eP do &, :=a. /a_;
pwo 198, et 1 ir rr
X =X +dx gf o= +df s Esz(lﬁJ)EP Al>r Ajer a(i,r)eP alr,j)eP do
. - r r-1 r
if n is even then a..:=a.,. =-a, E,r.
13 ij ir r)

begin dg :=dg ydy i=dy
n n-1 n n-1 . vy
end incomplete LU decomposition;

end else

begin dg :=df ; 1=dx .

begin dg :=df ;dy, =dx) Incomplete LU: Elements of L and U are calculated only where the matrix has non-
end; zero elements.

w, :=—(p,f_)/(p,de ) Number of vectors p is user input.
1 Usually one vector p is used, and the
end of IDR method; memory for the method is 8*[dim p]

P. Wesseling, P. Sonneveld (1980). Numerical experiments with a multiple grid and a preconditionned Lanczos type methods. Lecture Notes in

Mathematics, 771, Berlin: Springer, 1980, 543-562. (algorithms are provided from the original paper)
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ILU algorithm (for m>1)

ILU(m), m is user chosen

x234 432x234
2xxx234 432x234
32xxx234 432x234

xx234
2xx234
32xx234
432xx234

If m=N (order of matrix), then it is a complete LU decomposition

Incomplete LU (m>1): Elements of LU are calculated also near the matrix hs non-zero
elements:

X -original martix nonzero elements

2 - (m=2) ILU decomposition, the elements at these positions are also computed in ILU
3 - (m=3) ILU decomposition, these elements are also computed in ILU

4 - (m=4) ILU decomposition, these elements are also computed in ILU

Typically used m:

m = 1 or 2 for CFD problems.

m = 3 or 4 for semiconductor problems.

m = 4 to 6 for eigenvalue problems.

Sometime m is made as adaptive: if the solution is not converged within a limit of the
number of iterations, then m is increased by 1, and the solution repeated, etc.

P. Wesseling, P. Sonneveld (1980). Numerical experiments with a multiple grid and a preconditionned Lanczos type methods. Lecture Notes in

Mathematics, 771, Berlin: Springer, 1980, 543-562.



IDR & ILU algorithms implementation in CNSPACK

o IDR ILU * A simple incomplete decomposition of the firstorder, ID =1,
*Compare the IDR and GMRES methods: N\ can result in the divergence of the iterations. That may be a
both methods converge well, if a good

preconditioner is used reason, why this approach is not widely used yet.

We implemented the fast arbitrary order ILU preconditioning
ID = m for unstructured matricies. Users typically choose 1 to
3. Sometimes ID is adjusted adaptively, if not converged.

For eigenvalue solutions ID is up to 4 or 6.

*The IDR method needs comparably less memory to
store only eight work vectors.

» Both solvers remain accessible in CNSPACK, with time

found out that users prefer the IDR solver. *To avoid a diagonal pivot degeneration we use the Kershaw

diagonal modification:
If the value of diagonal element was small, i.e.

. . . |l<a= -t [ .
*‘Number of p vectors is arbitrary, users prefer just one |, < a = sqri(2"op), the diagonal was replaced by

vector. Inceasing the number of vector decrease the Here ¢ and p are the maximum magnitudes of row

proportionaly. (t bits in mantissa), details in Kershaw (1978).

P. Wesseling, P. Sonneveld (1980). Numerical experiments with a multiple grid and a preconditionned Lanczos type methods. Lecture Notes in Mathematics, 771,
Berlin: Springer, 1980, 543-562.

D. S. Kershaw (1978). The incomplete Cholesky-conjugate gradient method for the iterative solution of systems of linear equations. J. Comput. Phys., 2, 43-65.



Typical performance of CNSPACK for CFD

10
Performance versus matrix order N: L ' ' ' " Residual*10”

- CPU is almost linear vs N N=1.4M
- Memory is linear vs N

1x108 4

Performance of CNSPACK (Dell T5500Intel(R) Xeon(R) CPU X5650 @2.67GHz)

Matrix N =2.5M, Termination criterion: residual R < Eps = 1E-8 * R, 1x10°
Matrix assembly 22s @

ILU decomp 18s

Solve (250 iter) 100s

10000

L]
ol

Need to reduce one iteration cost: 100 b
- search for faster backward substitution algorithms / parallelization algorithms.
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Typical performance of CNSPACK for CFD and semiconductor modeling
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(a) Performance of CNSPACK linear solver for electronic device simulator in
modeling 3D devices using unstructured meshes. Memory (in secs) is shown by
solid curve with diamonds (in MB) for IBM Thinkpad T42 laptop, INTEL
PENTIUM M 740 1.73GHZ .
CPU time is shown by solid curve with circles (per Newton iteration,
[Fedoseyev (2009)]). One can see that the dependence on mesh nodes is almost
linear for both memory and CPU time, and close to optimal theoretical
estimate for CPU time, T=O(N**) (dashed dark blue curve);

Each node has at least 4 variables: e,h, W,T
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CNSPACK/3D) to other linear solvers for CFD unstructured matrices shows
one to two order faster performance of CNSPACK on an Intel P6 200MHz
CPU, [Fedoseyev (2001)]
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Typical semiconductor device and simulation requirements
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Parallel solution methods — algebraic domain decomposition

(1) Algebraic Domain Decomposition with
preconditioning:

-Cai and Sarkis (1997) proposed a Restricted Additive
Schwarz (RAS) preconditioner.

-Other similar approaches and proof of convergence:
Frommer (2001), Nabben and Szyld (2001), and Benzi et
al (2001)

“Preliminary numerical experiments have shown
convergence of the method, even for a very small
overlapping

-Implementation attempt: RAS with MPI on parallel
computer cluster.

* Slow MPI communications. Long solution times.
Development discontinued

TYPICAL CONVERGENCE HISTORY OF CNSPACK SOLVER

1

0.1
0.01
0.001

1e-04

RESIDUAL

1e-05
1e-06

1e-07

1e-08

CNSPACK

1

10
ITERATION

100

Typical convergence history of preconditioned IDR solver in

CNSPACK.

ADDITIVE PARALLEL SCHWARTZ CONVERGENCE HISTORY
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1e+14
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1e+08
1e+06
10000

100

RESIDUAL

Res0
ResN

1

10
ITERATION

100

Convergence history of Additive Schwartz preconditioner for 8
processors. Test case 3BDMOSFET1. eps=1e-7, iq=20, ns=8. 29



Parallel solution methods and implementation for multi-cores

(2) Multicore processor is a shared memory system : Posuby  Gate conact L Contaen
simplifies parallelization I in convenient OpenMP > e
environment, and fast communication.

-All the original algorithm has been retained, solution
in a single domain

- Implementation of preconditioning and IDR/CGS
methods have been done using modified scheme to fit cFDRC 3D model of the 0.12-um nMOSFET

into OpenMP parallelization Vetoge, = v

- Development started in collaboration with the Dr.
Bessonov and successfully completed within two
months.

3D MOSFET problem - details of mesh and electrostatic potential
distribution. Overall this 3D bin-tree mesh contains 30K poly-cells

resulting in 120K linear equations to be solved in parallel. 0



Implementation issues for multi-cores

®CNSPACK algorithm requires both the speed of arithmetic calculations and the throughput of memory
accesses.

*Because of the computation-memory disbalance of modern processors, the latter property becomes even
more important (i.e. the algorithm is memory-bound rather than computational-bound).

*The above determines the choice of a computer system used for the implementation (more CPU channels
to memory).

*On the other hand, there are no more memory-size limitations, so the algorithms can be re-arranged
correspondingly in favor of the computational speed.
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Analysis of alternative storage schemes for parallelization

(i)Analysis of alternative storage schemes.

* Application of row-wise storage scheme for preconditioning was analyzed as a preparation step to the
implementation of the block-pipelined method.

*Next, the special storage scheme was implemented which stores elements by rows both in lower and
upper parts of the original matrix A.

*This scheme is very convenient for parallelization of the multiplication routine (CNSMUL) because it
makes splitting of the matrix and vectors in the matrix-by-vector expression Y = A X very natural: lines of
both matrix parts, L and U, are used to update a single elements in vector Y (while in the standard storage
scheme, a sparse group of elements in Y is updated through the processing of a column in U).

*As a result, parallelization of CNSMUL for any number of threads becomes possible without any additional
care.
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Twisted factorization for ILU

The mentioned row-wise storage scheme was incorporated into the parallel algorithm in a twisted form,
which is consistent with the twisted storage scheme of the main matrix.

\\\
N

\\
\\

*Schematic representation of the main principle of twisted factorization is illustrated. This algorithm is just a
way to perform Gauss elimination of unknowns from both sides of a banded matrix. As a result, factors of the
matrix decomposition may look as presented on this picture.
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Twisted factorization for ILU (2)

The question is how the central part of the splitting should be organized in order to be able to resolve the
factored system.

Analysis has shown that the only way to split the original matrix is to ensure that portrait of each factor is a
transpose of its counterpart. These factors will be traditionally named as L and U, despite they are no more
“Lower” and “Upper”.

It is convenient to represent the decomposition as K= (L+ D) D* (D + U + R). Here R is the “reverse
diagonal” that separates two part of each factor.

The role of this reverse diagonal is seen on the right part of the figure above, where a preconditioning
matrix K is represented as a product of factors. We can distinguish three areas on the matrix portrait: the
central part (a square area with adjacent areas on the left and on the right), the first part located above it,
and the last part located below it.
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Twisted factorization for ILU (3)

Elimination of non-zero elements in the first and in the last parts is straightforward (as in the standard
Gauss process) because these parts are formed by simple multiplication of corresponding (first or last)
parts of factors L and U.

Elimination of non-zero elements in the central part is much more complicated, because it is formed by
multiplication of complex central parts of L and U and contributions of two dot products (left row in L by
upper column in U. and right row in L by lower column in U) are used in calculation of any elements in this
part. Because of this, the central part of the matrix being decomposed can be called as overlap.

Elimination procedure for the central part: it is necessary
to process simultaneously four rows of the matrix (thick
red lines), using elements of both the main diagonal and
the reverse diagonal for joint update of rows being
processed.
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Twisted factorization for ILU (4)

Parallelization of twisted factorization algorithm:
N \
W] N
RN AN
\

*Parallelization of the matrix-by-vector multiplication (left) is straightforward due to the row-wise storage
scheme applied to both parts, L and U: multiplication of each subset of the matrix by the vector is
performed independently within corresponding thread.

*Parallelization of the preconditioning routine (right) is, in turn, limited by 2 threads. The central part of
the matrix (within overlap) can’t be parallelized and must be processed sequentially, while the first and
the last parts (beyond overlap) are independent and can be executed in parallel both in the forward
(elimination) and backward (back-substitution) sweeps.

*Size of the central part is approximately equal to half-bandwidth in that place. It means that only about
5% of the current matrix is processed sequentially.
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Advanced block-pipelined parallelization

(ii) Implementation of advanced block-pipelined parallelization method for preconditioning.

*New advanced block-pipelined parallelization method of ILU-preconditioning was developed and
implemented. The idea of this method is to split a matrix half-band into pairs of adjacent trapezoidal blocks
that have no mutual data dependences and can therefore be processed in parallel.

*As aresult, parallelization of the preconditioning routine for 4 threads was implemented. For this method,
new blocked storage scheme was designed.

lllustration of implementation of pipelined parallelization of the lower part L of a matrix during the
elimination process (forward sweep). Backsubstitution process (backward sweep) is implemented

R . 37
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Parallel performance of new algorithms

Test matrix 1

(MOSFET 1 & 2) -produced by the discretization of a 3D Finite element grid with irregular structure.
Main characteristics of this matrix are:

*nhumber of equations - 77571,

*number of non-zero element positions in each part (L or U) - 636626;

®average number of non-zero elements in a row (column) - 18.2;

*maximal half-width - 4658.

Thus, this matrix is very sparse, with non-uniform sparsity pattern and variable bandwidth.
Additionally, the matrix is ill-conditioned that leads to irregular convergence behaviour: number of iterations

varies from 600 to 900 (to 102°) and depends on many random factors (such as order of arithmetic operations
etc.).

38



Parallel performance of new algorithms

Test matrix 2

CFD matrix - produced by the discretization of a regular 3D grid with the following characteristics:
*number of equations - 302500;

*nhumber of non-zero elements in each part - 13385919;

®average number of non-zero elements in a row (column) - 44;

*maximal half-width - 2608;

®25% of diagonal are zeros.

This matrix is much dense and much more regular, with almost uniform distribution of elements throughout
its band. The latter property will be very important for efficient block-pipelined parallelization (considered in
the next section).

Additionally, this matrix is better conditioned, that allows using single-precision (32 bit) values for storing
both the original matrix A and the preconditioning matrix K.

As a result, the convergence behaviour of this matrix is more regular: it takes 150 to 170 iterations to
converge (to 10%°), with less dependence on secondary factors.
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Parallel performance of new algorithms- MOSFET

Parallelization performance results of the new algorithm (CNSPACKZ) are presented in the table, in
comparison with the previous parallel code (CNSPACKX).
These results represent performance of the target computer system Intel Core i7-920 (2.66 GHz, 3 memory

channels DDR3-1333).
Only the iterative part of the algorithm was measured (algorithm iterates until the residual reduces by 10%

times for the first matrix (MOSFET) and by 10?° times for the second one (Generalized Navier-Stokes).

l-st matrix original new new
(MO SFE T) CINSPACK CNSPACKX CNSPACKZ
real*s 1 thread 2 threads 4 threads 4 threads
t11ne_ of : 5.73 ms 3.60 ms 3.15 ms 2.69 ms
one iteration

acce!eratu_:}n ot 1 00 159 | 82 513
one iteration
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Parallel performance of new algorithms- CFD

2-nd matrix original new new
(CFD) CNSPACK CNSPACKX CNSPACKZ
real*8 1 thread 2 threads 4 threads 4 threads
1:11116:_ ot : 89.1 ms 55.6 ms 48.1 ms 41.0 ms
one 1iteration

accekﬂanFW1ui 1 .00 1.60 | 8’5 517
one iteration

Results for two matrices look similar.

°In both cases, additional performance gain of 17% was achieved with the new block-pipelined method
(CNSPACKZ).

*However, with the first matrix (MOSFET) the new method additionally benefits from removal of non-zero
elements (they comprise about 5% of the preconditioning matrix).

* Lower performance results for the first matrix follow from its properties - low density and irregular
structure, resulting in bad load balance between blocks “0” and “1” in pipelined parallelization.
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Parallel performance of new algorithms- CFD (32bit)

2-nd matrix original new new
(CFD) CNSPACK CNSPACKX CINSPACEK/Z
real*4 1 thread 2 threads 4 threads 4 threads
time of 89.1 ms 51.3 ms 41.6 ms 32.05 ms
one 1teration

acceleration of 1.00 1.74 2.14 278
one 1iteration

real*4g

speed ratio to 1.00 1.08 l1.16 1.28
real*8

The last table presents results for the second matrix (CFD) using single precision (32-bit) values for storing
both the matrix A and the preconditioning matrix K.

®Single precision storage can reduce total size of arrays and, consequently, memory access traffic thus
increasing performance of a memory-bound algorithm.

*However, using mixed precision arithmetic incurs additional overhead of data conversion.

®As a result, effect of saving memory traffic becomes visible only in parallel runs (curiously, single-precision
results for one thread absolutely coincide with double-precision results in our case).
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Conclusions

The universal fast linear solver was developed for scientific and industrial applications.
Performance of CNSPACK solver is quite satisfactory, with minimal storage and CPU time for
a large variety of problems.

TCAD using CNSPACK is the only industrial parallel solver for semiconductor applications.

Performance of the parallel algorithm was evaluated on the target computer system (Intel Core i7-920)
using two test unstructured matricies for MOSFET and CFD problems.

On a dual-processor shared memory system with individual memory controllers in each processor, the
new method will gain much more owing to the doubled memory throughput limitation - expected
acceleration is 3.5 or more.

Contact information:
Alex Fedoseyev,
Email: af@ultraguantum.com
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