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Applications of CNSPACK solver:

3D Semiconductor transport

Complex Cooling Systems 

Hypersonic Flows

Semiconductor device/circuits simulations

Goal – Robust Parallel Linear Solver for Scientific and Industrial Applications

Turbulent Flows

High Altitude Flows
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3D Internal Flows in Cylinder-Piston-Valve System 

1D-2D-3D models for radiator

3D Radiator simulation: 
•Inlet tube with hot coolant at temperature Tin; 
•Temperature distribution in the air flow ; 
•Averaged velocity field (by arrows) in the air flow;
•Stream tracers in the air flow, colored by flow velocity magnitude; 

Coupled semiconductor device-circuit simulations

3D simulations performed using Femina-3D multiphysics solver with 
CNSPACK

Radiation effects (ion strike) in NMOSFET
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FEMINA/3D flow solver with CNSPACK (hypersonic flows) 

Geometry Density

Industrial Applications with CNSPACK Linear Solver for Hypersonic Flows 

Bi-conic 22/55° flow Ma=15.6: Temperature

FEMINA/3D flow solver with CNSPACK (hypersonic flows) 

70° blunt cone flow Ma=20.2: ρ density 

GHE/ DSMC flight temperature at 160km comparison with Papp(2004) 

2D-cylinder hypersonic flow Ma=25, Kn=0.05, Re=850

TemperatureMach number

Density
Mesh 50,000 nodes
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FEMINA/3D flow solver with CNSPACK (turbulent flows) 

Velocity U
Velocity Vx (x-axis) vs height (y-axis)

Scientific Applications with CNSPACK Linear Solver: Turbulent Flows 

3D lid-driven cavity flow Re=10,000

CNSPACK convergence requirement 1E-16
Turbulent 2D backward-facing step flow at Re=132,000

Turbulent flow in channel Re=14,914

3D backward-facing step flow at Re=55,000 experiment

Velocity |V|

Mesh 800,000 nodes refined near walls

Mesh 20,000 nodes

Mesh 30,000 nodes
Mesh 50,000 nodes
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• CNSPACK started as a linear solver for CFD in 1990s.
• Heavy numerical experiments have been performed to select 

the most efficient solver (IDR, CGS, GMRES, etc) and 
preconditioners with minimal memory requirements.

• IDR and ILU(m) have been an optimal choice at that time.
• No ILU(0) convergence for Finite Element analysis of incompressible 

flow (P2-P1 approximation for velocity-pressure) :  ILU(m>0) is a must.
• No pivoting for ILU construction to make it fast.
• Kershaw modification was used to deal with zero diagonals (due to equation, div V =0).
• Typical convergence for CFD: 20 to 200 iterations for N=2,500,000, eps=1E-9.
• More application in different areas: CFD and semiconductor modeling are 

the most challenging cases.
Recent attempts to make CNSPACK a parallel solver were partly successful.

History

•
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•
Linear Preconditioned IDR Solver for  
Semiconductor Device Simulator: 

    Radiation Effects in Space Environment,  and

     

    Computational Fluid Dynamics:
 
    Hypersonic and turbulent flows 

Current Focus

•
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time (s)
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(Sensitivity to Radiation)

Mixed-Mode or Circuit 
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3D Device 
Simulation

Goal:  Fast Analysis and Prediction of Radiation Effects in Nanoscale Electronics 
(Space, Extreme Environments)
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Imported Layout
(GDSII, CIF, DXF, GIF)

Automatic Generation of 3D Model

3D Mesh

Simulation

IC Layout    3D Model    3D Mesh    Simulation
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IC Layout :   3D Model with Metallization

Imported IC Layout
(GDSII)

Automatically Generated 3D Model
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 incoming particle 

NMOS 

Metal 1 Metal 2 

MRED/Geant4 simulated ion beam, 
focused on the tungsten via 

MRED/Geant4 Radiation Tracks in 3D Model

Vanderbilt MRED 
(Monte Carlo Radiative Energy Deposition) 
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TCAD Solver

Electric Potential Equation

Carrier Continuity Equations

     where current densities are:
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Our 3D Model of NMOSFET, for Mixed-Mode Simulations:

3D Model Setup
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Coupled Mixed-Mode TCAD 3D Simulations with MRED/Geant4 Nuclear 
Reactions in Nanoscale Electronics

Circuit Simulated 
by SPICE

3D NMOS Model
solved by NanoTCAD
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DSET Pulse Propagation

Circuit Simulated 
by SPICE

3D NMOS Model
solved by TCAD

Vout

1
9

S G

D

N1 Ion 
Strike

0 P-subs

VddVdd

Vss

Vss

Vin

2

P1 P2

N2

Vdd

Vss

3

P3

N3

Vdd

Vss

4

P4

N4

inv2 inv3 inv4

inv5

5

inv6

6

inv7

7

inv8

8

10

load_inv

low input

Vdd

Mixed-Mode Results (LET = 8)
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Radiation Effects in Semiconductor Devices -Mesh Adaptation to Ion Tracks from Geant4

Total 20847 cells

Example of using FilterThreshold to remove track segments with low deposited energy

Example of fine mesh generation on 4 segments and a coarser mesh on 3 segments 

• works also with 
additional adaptation 

(e.g., doping )
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Momentum transport equation for the incompressible fluid :

GHE continuity equation for the incompressible fluid is:

τ* (GHE timescale), τ = l2 /L2 Re = K Re, K = l2 /L2

ASSUMPTIONS:  
- τ is constant. 
- neglect the nonlinear terms of the third order in the
  fluctuations, and terms of the order τ /Re and smaller  
- assume the slow flow variation => neglect second derivatives in time

ADVANTAGES :
 Finite Element Method with equal order approximation for velocity and pressure
Allows to solve using efficient iterative methods (CG-like)
CHALLENGES:
The model to be carefully tested, results to be compared with published results and experimental data 
obtained for different flow problems

Generalized Hydrodynamic Equations (GHE) [Fedoseyev 2012]

Physics Based Model for Fluid Flow
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Generalized Boltzmann Equation (GBE) [Alexeev 1994; 2004]
The GHE model is based on results from kinetic theory by Alexeev(1994) * 

The Boltzmann equation (BE)  describes the evolution of the one-particle velocity distribution function f in time and space and is the 
basis of the kinetic theory of gases. 

Here J is a collision integral, and D/Dt is a material derivative. It takes into account the changes in the f on a scale of the mean time 
between collisions and on hydrodynamic time scale. As shown by Alexeev a generalization of BE accounting for a third scale (related to 
the finite dimension of the particles) results in an additional term :

where  τ is a mean time between collisions. The new term is proportional to the Knudsen number, Kn, and, therefore, in the hydrodynamic 
limit, to viscosity. 

The Generalized Hydrodynamic Equations (GHE) for gases are obtained by a standard procedure from the generalized BE  (GBE) and 
contain new terms, related to an additional term in GBE, that represents spatial and temporal Kolmogorov fluctuations.

References:
* Alexeev,  The generalized Boltzmann equation, generalized hydrodynamic equations and their  applications. 
Phil. Trans. Roy. Soc. London, A. 349 (1994), 417-443 
** Alexeev, Generalized Boltzmann Kinetics, Elsevier, 2004.

Kinetic Physics Based Model
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FEMINA/3D flow solver with CNSPACK (hypersonic flows) 

Geometry Density

CFD Industrial Applications with CNSPACK Linear Solver - Hypersonic Flows 

Bi-conic 22/55° flow Ma=15.6: Temperature

FEMINA/3D flow solver with CNSPACK (hypersonic flows) 

70° blunt cone flow Ma=20.2: ρ

GHE/ DSMC flight temperature at 160km comparison with Papp(2004) 

2D-cylinder hypersonic flow Ma=25, Kn=0.05, Re=850

TemperatureMach number

Density
Mesh 50,000 nodes
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FEMINA/3D flow solver with CNSPACK (turbulent flows) 

Velocity U
Velocity Vx (x-axis) vs height (y-axis)

CFD Scientific Applications with CNSPACK Linear Solver: Turbulent Flows 

3D lid-driven cavity flow Re=10,000

CNSPACK convergence requirement 1E-16
Turbulent 2D backward-facing step flow at Re=132,000

Turbulent flow in channel Re=14,914

3D backward-facing step flow at Re=55,000 experiment

Velocity |V|

Mesh 800,000 nodes refined near walls

Mesh 20,000 nodes

Mesh 30,000 nodes
Mesh 50,000 nodes
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Ax = b

- A is nonsymmetric, not positively definite
-Unstructured and large
-Sparse
- Banded
- Number of nonzero elements in each row ~ 100 (varies)
- Gibbs-Pool-Stockmayer (GPS) method is used to reduce the matrix bandwidth. 
-Sparse storage scheme is implemented for rows and columns with fast access.
- Storing A as real*4 to save memory, arithmetic is done in double precision 

Matrix properties and tricks to speed up computations
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P. Wesseling, P. Sonneveld (1980). Numerical experiments with a multiple grid and a preconditionned Lanczos type methods. Lecture Notes in 

Mathematics, 771, Berlin: Springer, 1980, 543-562. (algorithms are provided from the original paper)

IDR  & ILU algorithms (P.Wesseling & P.Sonneveld (1980)

IDR ILU

(Krylov/Lanczos type method)

Incomplete LU: Elements of L and U are calculated only where the matrix has non-
zero elements.

(m=1)

Number of vectors p is user input.
Usually one vector p is used, and the 
memory for the method is 8*[dim p]
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P. Wesseling, P. Sonneveld (1980). Numerical experiments with a multiple grid and a preconditionned Lanczos type methods. Lecture Notes in 

Mathematics, 771, Berlin: Springer, 1980, 543-562. 

ILU algorithm (for m>1)

ILU(m), m is user chosen

Incomplete LU (m>1): Elements of LU are calculated also near the matrix hs non-zero 
elements:

X -original martix nonzero elements
2 – (m=2) ILU decomposition, the elements at these positions are also computed in ILU
3 -  (m=3) ILU decomposition, these elements are also computed in ILU
4 -  (m=4) ILU decomposition, these elements are also computed in ILU
…

Typically used m:
m = 1 or 2 for CFD problems.
m = 3 or 4 for semiconductor problems.
m = 4 to 6 for eigenvalue problems.
Sometime m is made as adaptive: if the solution is not converged within a limit of the 
number of iterations, then m is increased by 1, and the solution repeated, etc.

x234                                        432x234
2xxx234                                       432x234
32xxx234                                           432x234
                  …
                     …
                       …
xx234                  …
2xx234                  ...   
32xx234                 ...    
432xx234                 ... 

If m=N (order of matrix), then it is a complete LU decomposition 
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P. Wesseling, P. Sonneveld (1980). Numerical experiments with a multiple grid and a preconditionned Lanczos type methods. Lecture Notes in Mathematics, 771, 
Berlin: Springer, 1980, 543-562.

D. S. Kershaw (1978). The incomplete Cholesky-conjugate gradient method for the iterative solution of systems of linear equations. J. Comput. Phys., 2, 43-65. 

IDR  & ILU algorithms implementation in CNSPACK

IDR ILU • A simple incomplete decomposition of the firstorder, ID = 1, 
can result in the divergence of the iterations. That may be a 

reason, why this approach is not widely used yet. 

We implemented the fast arbitrary order ILU preconditioning 
ID = m for unstructured matricies. Users typically choose 1 to 
3. Sometimes ID is adjusted adaptively, if not converged. 
For eigenvalue solutions ID is up to 4 or 6.

•To avoid a diagonal pivot degeneration we use the Kershaw 
diagonal modification:
If the value  of diagonal element was small, i.e.
|aii| < α = sqrt(2−t σμ), the diagonal was replaced by α. 
Here σ and μ are the maximum magnitudes of row
and column elements, and 2−t is a machine precision
(t bits in mantissa), details in Kershaw (1978).

•Compare the IDR and GMRES methods:
both methods converge well, if a good 

preconditioner is used.

•The IDR method needs comparably less memory to
store only eight work vectors.  

• Both solvers remain accessible in CNSPACK, with time 
found out that users prefer the IDR solver.

•Number of p vectors is arbitrary, users prefer just one 
vector. Inceasing the number of vector decrease the 
number of iterations, but the time increases 
proportionaly.
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Typical performance of CNSPACK for CFD 

N=1.4M 

Performance of CNSPACK (Dell T5500Intel(R) Xeon(R) CPU  X5650 @2.67GHz)
Matrix N =2.5M, Termination criterion: residual  R < Eps = 1E-8 * R0

Matrix assembly  22s
ILU decomp          18s
Solve (250 iter)  100s

Need to reduce one iteration cost:
- search for faster backward substitution algorithms / parallelization algorithms. 

Performance versus matrix order N: 
- CPU is almost linear vs N
- Memory is linear vs N
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(a) Performance of CNSPACK linear solver for electronic device simulator in 
modeling 3D devices using unstructured meshes. Memory (in secs) is shown by 
solid curve with diamonds (in MB) for IBM Thinkpad T42 laptop,  INTEL 
PENTIUM M 740 1.73GHZ .
 CPU time is shown by solid curve with circles (per Newton iteration, 
[Fedoseyev (2009)]). One can see that the dependence on mesh nodes is almost 
linear for both memory and CPU time, and close to optimal theoretical 
estimate for CPU time, T=O(N5/4) (dashed dark blue curve);

Each node has at least 4 variables: e,h, Ψ,T 

Typical performance of CNSPACK for CFD and semiconductor modeling

(b) Comparison of CNSPACK software (pink color curve with circles labeled 
CNSPACK/3D) to other linear solvers for CFD unstructured matrices shows 
one to two order faster performance of CNSPACK on an Intel P6 200MHz 
CPU, [Fedoseyev (2001)]
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3D model ID-VGS subthreshold results (at VDS = 0.05V) for NMOSFET compared 
with Georgia Tech measured data and IBM 8HP Process Manual data

Typical semiconductor device and simulation requirements

3D model results for NMOSFET (Id-Vg at Vd = 1.2V) compared with IBM 8HP 
Process Manual data, for two different substrate-to-source biases (Vbs)
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(1) Algebraic Domain Decomposition with 
preconditioning:

-Cai and Sarkis (1997) proposed a Restricted Additive 
Schwarz (RAS) preconditioner. 
-Other similar approaches and proof of convergence: 
Frommer (2001), Nabben and Szyld (2001), and Benzi et 
al (2001) 
-Preliminary numerical experiments have shown 
convergence of the method, even for a very small 
overlapping 

-Implementation attempt: RAS with MPI on parallel 
computer cluster.

*  Slow MPI communications. Long solution times. 
Development discontinued 

Parallel solution methods – algebraic domain decomposition

Typical convergence history of preconditioned IDR solver in 
CNSPACK.

Convergence history of Additive Schwartz preconditioner for 8 
processors. Test case 3DMOSFET1. eps=1e-7, iq=20, ns=8.
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(2) Multicore processor is a shared memory system : 
simplifies parallelization  in convenient OpenMP 
environment, and fast communication.
 
-All the original algorithm has been retained, solution 
in a single domain
- Implementation of preconditioning and IDR/CGS 
methods have been done using modified scheme to fit 
into OpenMP parallelization

- Development started in collaboration with the Dr. 
Bessonov and successfully completed within two 
months.

Parallel solution methods and implementation for multi-cores

CFDRC 3D model of the 0.12-μm nMOSFET

3D MOSFET problem – details of mesh and electrostatic potential 
distribution. Overall this 3D bin-tree mesh contains 30K poly-cells 
resulting in 120K linear equations to be solved in parallel.
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•CNSPACK algorithm requires both the speed of arithmetic calculations and the throughput of memory 
accesses. 

•Because of the computation-memory disbalance of modern processors, the latter property becomes even 
more important (i.e. the algorithm is memory-bound rather than computational-bound). 

•The above determines the choice of a computer system used for the implementation (more CPU channels 
to memory). 

•On the other hand, there are no more memory-size limitations, so the algorithms can be re-arranged 
correspondingly in favor of the computational speed.

Implementation issues for multi-cores
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(i)Analysis of alternative storage schemes. 

•Application of row-wise storage scheme for preconditioning was analyzed as a preparation step to the 
implementation of the block-pipelined method.
 
•Next, the special storage scheme was implemented which stores elements by rows both in lower and 
upper parts of the original matrix A. 
•This scheme is very convenient for parallelization of the multiplication routine (CNSMUL) because it 
makes splitting of the matrix and vectors in the matrix-by-vector expression Y = A X very natural: lines of 
both matrix parts, L and U, are used to update a single elements in vector Y (while in the standard storage 
scheme, a sparse group of elements in Y is updated through the processing of a column in U). 
•As a result, parallelization of CNSMUL for any number of threads becomes possible without any additional 
care.

Analysis of alternative storage schemes for parallelization
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The mentioned row-wise storage scheme was incorporated into the parallel algorithm in a twisted form, 
which is consistent with the twisted storage scheme of the main matrix. 

Twisted factorization for ILU

                              

 
 
 
 
 

 
 
 
 
 
 
 

•Schematic representation of the main principle of twisted factorization is illustrated. This algorithm is just a 
way to perform Gauss elimination of unknowns from both sides of a banded matrix. As a result, factors of the 
matrix decomposition may look as presented on this picture.
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The question is how the central part of the splitting should be organized in order to be able to resolve the 
factored system. 

Analysis has shown that the only way to split the original matrix is to ensure that portrait of each factor is a 
transpose of its counterpart. These factors will be traditionally named as L and U, despite they are no more 
“Lower” and “Upper”. 

It is convenient to represent the decomposition as K = (L + D) D-1 (D + U + R). Here R is the “reverse 
diagonal” that separates two part of each factor. 

The role of this reverse diagonal is seen on the right part of the figure above, where a preconditioning 
matrix K is represented as a product of factors. We can distinguish three areas on the matrix portrait: the 
central part (a square area with adjacent areas on the left and on the right), the first part located above it, 
and the last part located below it.

Twisted factorization for ILU (2)
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Elimination of non-zero elements in the first and in the last parts is straightforward (as in the standard 
Gauss process) because these parts are formed by simple multiplication of corresponding (first or last) 
parts of factors L and U. 

Elimination of non-zero elements in the central part is much more complicated, because it is formed by 
multiplication of complex central parts of L and U and contributions of two dot products (left row in L by 
upper column in U. and right row in L by lower column in U) are used in calculation of any elements in this 
part. Because of this, the central part of the matrix being decomposed can be called as overlap. 

Twisted factorization for ILU (3)

                              

Elimination procedure for the central part: it is necessary 
to process simultaneously four rows of the matrix (thick 
red lines), using elements of both the main diagonal and 
the reverse diagonal for joint update of rows being 
processed. 
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Parallelization of twisted factorization algorithm:

Twisted factorization for ILU (4)

                              

•Parallelization of the matrix-by-vector multiplication  (left) is straightforward due to the row-wise storage 
scheme applied to both parts, L and U: multiplication of each subset of the matrix by the vector is 
performed independently within corresponding thread. 
•Parallelization of the preconditioning routine (right) is, in turn, limited by 2 threads. The central part of 
the matrix (within overlap) can’t be parallelized and must be processed sequentially, while the first and 
the last parts (beyond overlap) are independent and can be executed in parallel both in the forward 
(elimination) and backward (back-substitution) sweeps. 
•Size of the central part is approximately equal to half-bandwidth in that place. It means that only about 
5% of the current matrix is processed sequentially.
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(ii) Implementation of advanced block-pipelined parallelization method for preconditioning. 
•New advanced block-pipelined parallelization method of ILU-preconditioning was developed and 
implemented. The idea of this method is to split a matrix half-band into pairs of adjacent trapezoidal blocks 
that have no mutual data dependences and can therefore be processed in parallel. 
•As a result, parallelization of the preconditioning routine for 4 threads was implemented. For this method, 
new blocked storage scheme was designed. 

Advanced block-pipelined parallelization 

Illustration of implementation of pipelined parallelization of the lower part L of a matrix during the 
elimination process (forward sweep). Backsubstitution process (backward sweep) is implemented 
similarly.
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Test matrix 1 

(MOSFET 1 & 2) -produced by the discretization of a 3D Finite element grid with irregular structure. 
Main characteristics of this matrix are: 
•number of equations – 77571; 
•number of non-zero element positions in each part (L or U) – 636626; 
•average number of non-zero elements in a row (column) – 18.2; 
•maximal half-width – 4658. 

Thus, this matrix is very sparse, with non-uniform sparsity pattern and variable bandwidth.

Additionally, the matrix is ill-conditioned that leads to irregular convergence behaviour: number of iterations 
varies from 600 to 900 (to 10-25) and depends on many random factors (such as order of arithmetic operations 
etc.).

Parallel performance of new algorithms
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Test matrix 2 

CFD matrix  - produced by the discretization of a regular 3D grid with the following characteristics: 
•number of equations – 302500; 
•number of non-zero elements in each part – 13385919; 
•average number of non-zero elements in a row (column) – 44; 
•maximal half-width – 2608;
•25% of diagonal are zeros. 
This matrix is much dense and much more regular, with almost uniform distribution of elements throughout 
its band. The latter property will be very important for efficient block-pipelined parallelization (considered in 
the next section). 
Additionally, this matrix is better conditioned, that allows using single-precision (32 bit) values for storing 
both the original matrix A and the preconditioning matrix K. 

As a result, the convergence behaviour of this matrix is more regular: it takes 150 to 170 iterations to 
converge (to 10-15), with less dependence on secondary factors.

Parallel performance of new algorithms
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Parallelization performance results of the new algorithm (CNSPACKZ) are presented in the table, in 
comparison with the previous parallel code (CNSPACKX). 
These results represent performance of the target computer system Intel Core i7-920 (2.66 GHz, 3 memory 
channels DDR3-1333). 
Only the iterative part of the algorithm was measured (algorithm iterates until the residual reduces by 1025 
times for the first matrix (MOSFET) and by 1015 times for the second one (Generalized Navier-Stokes).

Parallel performance of new algorithms- MOSFET
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Results for two matrices look similar. 
•In both cases, additional performance gain of 17% was achieved with the new block-pipelined method 
(CNSPACKZ). 
•However, with the first matrix (MOSFET) the new method additionally benefits from removal of non-zero 
elements (they comprise about 5% of the preconditioning matrix). 
• Lower performance results for the first matrix follow from its properties – low density and irregular 
structure, resulting in bad load balance between blocks “0” and “1” in pipelined parallelization. 

Parallel performance of new algorithms- CFD
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The last table presents results for the second matrix (CFD) using single precision (32-bit) values for storing 
both the matrix A and the preconditioning matrix K. 
•Single precision storage can reduce total size of arrays and, consequently, memory access traffic thus 
increasing performance of a memory-bound algorithm. 
•However, using mixed precision arithmetic incurs additional overhead of data conversion. 
•As a result, effect of saving memory traffic becomes visible only in parallel runs (curiously, single-precision 
results for one thread absolutely coincide with double-precision results in our case).

Parallel performance of new algorithms- CFD (32bit)
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The universal fast linear solver was developed for scientific and industrial applications.
Performance of CNSPACK solver is quite satisfactory, with minimal storage and CPU time for
a large variety of problems.

TCAD using CNSPACK is the only industrial parallel solver for semiconductor applications.

Performance of the parallel algorithm was evaluated on the target computer system (Intel Core i7-920) 
using two test unstructured matricies for MOSFET and CFD problems.

On a dual-processor shared memory system with individual memory controllers in each processor, the
new method will gain much more owing to the doubled memory throughput limitation – expected
acceleration is 3.5 or more. 

Conclusions

Contact information:
Alex Fedoseyev, 
Email: af@ultraquantum.com 
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