MATH Seminar

Title: Local-to-global principle for rational points on conic and quadric bundles over curves
Seminar: Algebra and Number Theory
Speaker: Alexei Skorobogatov of Imperial College London
Contact: Michael H. Mertens, michael.mertens@emory.edu
Date: 2015-11-17 at 5:15PM
Venue: White Hall 112
Download Flyer
Abstract:
One expects the Brauer-Manin obstruction to control rational points on 1-parameter families of conics and quadrics over a number field when the base curve has genus 0. Results in this direction have recently been obtained as a consequence of progress in analytic number theory. On the other hand, it is easy to construct a family of 2-dimensional quadrics over a curve with just one rational point over Q, which is a counterexample to the Hasse principle not detected by the etale Brauer-Manin obstruction. Conic bundles with similar properties exist over real quadratic fields, though most certainly not over Q.

See All Seminars