MATH Seminar
Title: Number Theory and a Lower Bound for Closed Geodesics |
---|
Seminar: Topology |
Speaker: Sean Thomas of Emory University |
Contact: Sean Thomas, sean.thomas@emory.edu |
Date: 2009-02-03 at 3:00PM |
Venue: MSC E406 |
Download Flyer |
Abstract: Lehmer's conjecture (1933) states that the Mahler measure of an algebraic number that is not a root of unity is bounded away from 1. The aim of the seminar is to show the conjecture would imply there is a positive lower bound for closed geodesics in compact arithmetic hyperbolic 3-manifolds of finite volume. In the first lecture, I will introduce the necessary background material on arithmetic hyperbolic 3-manifolds. Then, in the second lecture, I will show how Lehmer's conjecture would imply the existence of the aforementioned positive lower bound. Also, I will prove the existence of a positive lower bound for closed geodesics in non-compact arithmetic hyperbolic 3-manifolds of finite volume to fully address the topic. |
See All Seminars