Maja Tasković

Assistant Professor
Department of Mathematics
Emory University



    Publications

  1. I. Ampatzoglou, I. M. Gamba, N. Pavlović, M. Tasković
    Moment estimates and well-posedness of the binary-ternary Boltzmann equation.
    arXiv:2210.09600, arXiv

  2. I. Ampatzoglou, I. M. Gamba, N. Pavlović, M. Tasković
    Global well-posedness of a binary-ternary Boltzmann equation.
    Ann. Inst. H. Poincaré Anal. Non Linéaire 39 (2022), no. 2, 327-369. arXiv

  3. R. M. Strain, M. Tasković
    Entropy dissipation estimates for the relativistic Landau equation, and applications.
    J. Funct. Anal. 277 (2019), no. 4, 1139-1201. arXiv

  4. R. J. Alonso, I. M. Gamba, M. Tasković
    Exponentially-tailed regularity and time asymptotic for the homogeneous Boltzmann equation.
    (Preprint), arXiv

  5. M. Pavić-Čolić, M. Tasković
    Propagation of exponential moments for the Kac equation and the Boltzmann equation for Maxwell molecules. Kinet. Relat. Models 11 (2018) no. 3, 597-613. arXiv

  6. I. M. Gamba, N. Pavlović, M. Tasković
    Propagation of pointwise exponentially weighted estimates for the Boltzmann equation without cutoff
    SIAM J. Math. Anal. 51 (2019), no. 5, 3921-3955. arXiv

  7. M. Tasković, R. J. Alonso, I. M. Gamba, N. Pavlović
    On Mittag-Leffler moments for the Boltzmann equation for hard potentials without cutoff,
    SIAM J. Math. Anal. 50 (2018), no. 1, 834-869. arXiv

  8. Y. Hong, M. Tasković
    On dispersive blow-ups for the nonlinear Schrödinger equation,
    Differential and Integral Equations, Volume 29 (2016), 875-888, arXiv

  9. M. Budinčević, D. Perišić, M. Tasković
    Structural theorems for Gelfand-Shilov spaces,
    Integral Transforms Spec. Funct. 20 (2009), no. 3-4, 223-229

  10. Z. Lozanov-Crvenković, D. Perišić, M. Tasković
    Gelfand-Shilov spaces, Structural and Kernel theorems,
    arXiv:0706.2268, arXiv

    Ph.D. Thesis

  11. M. Tasković
    Mittag-Leffler moments and weighted L estimates for solutions to the Boltzmann equation for hard potentials without cutoff, Ph.D. Thesis, The University of Texas at Austin (2016), pdf